
Industrial Application of Concolic Testing on Embedded Software: Case Studies

Moonzoo Kim, Yunho Kim

Department of Computer Science
KAIST

South Korea
moonzoo@cs.kaist.ac.kr,kimyunho@kaist.ac.kr

Yoonkyu Jang

Samsung Electronics
South Korea

yoonkyu.jang@samsung.com

Abstract—Current industrial testing practices often build
test cases in a manual manner, which is slow and ineffective. To
alleviate this problem, concolic testing generates test cases that
can achieve high coverage in an automated fashion. However,
due to a large number of possible execution paths, concolic
testing might not detect bugs even after spending significant
amount of time. Thus, it is necessary to check if concolic
testing can detect bugs in embedded software in a practical
manner through case studies. This paper describes case studies
of applying the concolic testing tool CREST to embedded C
applications. Through this project, we have detected new faults
in the Samsung Linux Platform (SLP) file manager, Samsung
security library, and busybox ls.

I. INTRODUCTION

Testing is a standard method to improve the quality of

software. However, conventional testing methods frequently

fail to detect faults in target programs. One reason is that a

program can have an enormous number of different execu-

tion paths due to conditional and loop statements. Thus, it

is infeasible for a test engineer to manually create test cases

sufficient to detect subtle errors in specific execution paths.

In addition, it is technically challenging to generate effective

test cases in an automated manner.

These limitations are manifested in many industrial

projects. Since the consumer electronics market requires

short time-to-market and high reliability, Samsung Elec-

tronics decided to apply advanced testing techniques to

overcome the aforementioned limitations. As a consequence,

Samsung Electronics and KAIST set out to investigate

the practical application of Concolic testing techniques to

embedded software for three years (2010-2012).

Concolic (CONCrete + symbOLIC) [33] testing (also

known as dynamic symbolic execution [22], [9], [36] or

white-box fuzzing [14]) combines concrete dynamic analysis

and static symbolic analysis to automatically generate test

cases to explore execution paths of a program. A drawback

of concolic testing, however, is that the coverage drops if

the target program has external binary libraries or complex

operations such as pointer operations [29]. Thus, its effec-

tiveness (in terms of bug detection capability) and efficiency

(in terms of time taken to detect a bug) must be investigated

further through case studies.

This paper describes our case studies on the application

of CREST [5] (an open-source concolic testing tool for C

programs) to embedded C programs used in the products

of Samsung Electronics including Samsung Linux Platform

(SLP) file manager, Samsung security library, and busybox

ls.1 Through the project, we have detected new faults in

the aforementioned applications. For example, we detected

an infinite loop bug in the SLP file manager, invalid memory

access bug in in the Samsung security library, and four

command-line option related bugs in busybox ls that has

been undetected for several years in spite of being used by

millions of users.

The organization of the paper is as follows. Section II

overviews this testing project. Section III explains related

work on concolic testing tools and related case studies.

Section IV overviews CREST. Sections V to VII describe

testing experiments targeting SLP file manager, Samsung

security library, and busybox ls respectively. Section VIII

summarizes the lessons learned from the project. Section IX

concludes this paper with future work.

II. PROJECT BACKGROUND

The case studies described in this paper were conducted

as a part of the three-year project to apply concolic testing

approach to improve the quality of the consumer electronics

products of Samsung Electronics. Through the case studies,

we aim to evaluate the effectiveness of concolic testing

approach as a method to improve quality of embedded soft-

ware. Samsung Linux Platform (SLP) file manager, Samsung

security library, and busybox ls were selected as target

programs, because they are important for the products of

Samsung Electronics and written in C with modest size and

complexity (see Sections V to VII).

Our team consisted of one professor, one graduate student,

and one senior SQA engineer from Samsung Electronics.

The original developers for the SLP file manager and the

Samsung security library could not join this project. In

addition, there were no documents on the SLP file manager

and the Samsung security library. Thus, our team had to

1Preliminary testing result on the SLP file manager and the Samsung
security library were reported in a 4 page short paper [21].

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.51

391

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.51

390

understand the requirements and target code from scratch,

which took almost half the time of the project. In contrast,

we could obtain detailed requirement specification of busy-

box ls from IEEE Std 1003.1 [35] that describes detailed

requirements for UNIX utilities such as ls.

We used CREST [5] as a concolic testing tool in the

project for the following reasons. First, we needed an open

source concolic testing tool for C programs to control

testing experiments in a refined manner, and analyze testing

results in deep technical level by obtaining various internal

information. KLEE [7] and CREST satisfy this requirement.

Second, from our experience on other embedded software

such as a flash memory device driver, KLEE is an order

of magnitude slower than CREST due to the overhead

of the LLVM virtual machine and the complex symbolic

path formulas supporting bit-vector SMT solver. In contrast,

CREST inserts probes in a target program to record symbolic

path formulas at runtime and uses a linear integer arithmetic

SMT solver, which achieves faster testing speed compared

to KLEE. Last, we had rich experience with CREST in other

industrial case studies [17], [21], [18].

We performed the experiments on a VMware 2.5 virtual

machine that runs 32 bit Ubuntu 9.04, whose host machines

were Windows XP SP3 machines equipped with Intel i5

2.66 GHz and 4 GBytes memory for the SLP file manager,

and Intel Core2Duo 2 GHz and 2 GBytes memory for the

Samsung security library and busybox ls. We could not run

Linux on a real machine due to Samsung’s security policy

for visitors.

III. RELATED WORK

A. Concolic Testing Tools

The core idea behind concolic testing is to obtain sym-

bolic path formulas from concrete executions and solve

them to generate test cases by using constraint solvers (see

Section IV-A). Various concolic testing tools have been

implemented to realize this core idea (see [28] for a survey).

We can classify the existing approaches into the following

three categories based on how they extract symbolic path

formulas from concrete executions.

1) Static instrumentation of target programs: The con-

colic testing tools in this group instrument a source pro-

gram to insert probes that extract symbolic path formulas

from concrete executions at run-time (Section IV-A). Many

concolic testing tools adopt this approach because it is

relatively simple to implement and, consequently, convenient

when attempting to apply new ideas in tools. In this group,

CUTE [33], DART [13], and CREST [6] operate on C

programs, while jCUTE [32] operates on Java programs.

2) Dynamic instrumentation of target programs: The

concolic testing tools in this group instrument a binary

program when it is loaded into memory (i.e., through a

dynamic binary instrumentation technique [25]). Thus, even

when the source code of a program is not available, its binary

can be automatically tested. In addition, this approach can

detect low-level failures caused by a compiler, linker, or

loader. SAGE [14] is a concolic testing tool that uses this

approach to detect security bugs in x86-binaries.

3) Instrumentation of virtual machines: The concolic

testing tools in this group are implemented as modified

virtual machines on which target programs execute. One

advantage of this approach is that the tools can exploit all

execution information at run-time, since the virtual machine

possesses all necessary information. PEX [36] targets C#

programs that are compiled into Microsoft .Net binaries,

KLEE [7] targets LLVM [23] binaries, and jFuzz [15] targets

Java bytecode on top of Java PathFinder [27].

B. Concolic Testing Case Studies

Concolic testing has been applied to detect bugs in various

target applications such as database applications [12], [26],

web application servers [3], [31], web application client [16],

source code control client [24], mobile sensor network [30],

network card device driver [8], and flash memory storage

platform [18].

Emmi et al. [12] applied jCute [32] to generate test cases

for database applications which make calls to a database

through an API to execute SQL queries. Pan et al. [26] also

applied the concolic testing to database applications RiskIt

and UnixUsage by using PEX [36]. Artzi et al. [3] developed

the concolic testing tool, Apollo, to automatically generate

test cases for server-side web applications written in PHP.

Kiezun et al. [16] utilized Apollo to generate test cases

which trigger the SQL injection and cross-site scripting

security vulnerabilities in web programs written in PHP.

Saxena et al. [31] applied concolic testing to client-side web

applications such as FaceBook Chat written in JavaScript.

Marri et al. [24] applied PEX [36] to CodePlex, which

is a source code control client written in C#. Sasnauskas

et al. [30] developed a debugging environment KleeNet to

detect bugs in the μIP TCP/IP protocol stack in the Contiki

OS [10]. Chipounov et al. [8] developed S2E, which is a x86

binary program analysis platform based on QEMU [4] and

KLEE and applied S2E to test network card device driver on

the windows platform. Kim et al. [18] applied CREST [6]

to Samsung flash storage platform. [18] described the im-

portance of an environment model for the target program in

terms of testing speed and conducted performance analysis

based on the characteristics of generated symbolic path

formulas and reduction techniques on the symbolic path

formulas.

However, most related case studies mainly describe the

authors’ own algorithms to utilize concolic testing to detect

bugs, not detailed explanation on user efforts and obstacles

to apply concolic testing to real world target programs. In

contrast, we describe the detailed testing experiments and

lessons learned from the case studies (see Section VIII).

392391

IV. OVERVIEW OF CREST

CREST [6] is an open source concolic testing tool for

C programs. To build symbolic path formulas from concrete

execution paths, CREST inserts probes in a target C program

before a target program executes. CREST supports linear

integer arithmetic (LIA) formula and uses Yices [11] to solve

symbolic path formulas to obtain next test inputs.

A. Concolic Testing Process

This section presents an overview of the original (non-

distributed) concolic testing process that performs static

instrumentation of a target program to extract symbolic path

formulas. The concolic testing process proceeds via the

following steps:

1. Declaration of symbolic variables. Initially, a user

specifies which variables should be handled as symbolic

variables, based on which symbolic path formulas are con-

structed.2

2. Instrumentation. A target source program is statically

instrumented with probes, which record symbolic path con-

ditions from a concrete execution path when the target pro-

gram is executed. For example, at each conditional branch,

a probe is inserted to record the branch condition/symbolic

path condition; then, the instrumented program is compiled

into an executable binary file.

3. Concrete execution. The instrumented binary is exe-

cuted with given input values. For the first execution of the

program, initial input values are assigned randomly. From

the second execution onwards, input values are obtained

from Step 6.

4. Obtain a symbolic path formula φi. The symbolic

execution part of the concolic execution collects symbolic

path conditions over the symbolic input values at each

branch point encountered for along the concrete execution

path for a test case tci. Whenever each statement s of the

target program is executed, a corresponding probe inserted

at s updates the map of symbolic variables if s is an

assignment statement, or collects a corresponding symbolic

path condition, c, if s is a branch statement. Thus, a symbolic

path formula φi is built at the end of the ith execution as

c1 ∧ c2... ∧ cn where cn is the last path condition executed

and ck is executed earlier than ck+1 for all 1 ≤ k < n.

5. Generate a new symbolic path formula ψi. Given a

symbolic path formula φi obtained in Step 4, to obtain the

next input values, ψi is generated by negating one path

condition cj and removing subsequent path conditions (i.e.,

2Proper selection of symbolic input is important for effective and efficient
testing, since search space is decided based on the symbolic input and
the search space is usually very large to cover completely. This step
requires human expertise on a target domain. For example, Kim et al. [19]
demonstrated that testing strategies on selecting symbolic input affects bug
detection capability through a case study on the open source libexif
library.

01:int main() {
02: int x, y,z, max_num=0;
03: CREST_int(x); // Declaration of x, y, z
04: CREST_int(y); // as symbolic integer
05: CREST_int(z); // variables
06:
07: if(x >= y) {
08: // SYM_COND(x,y, ">=");
09: if(y >= z) {
10: // SYM_COND(y,z, ">=");
11: max_num = x;
12: } else {
13: // SYM_COND(y,z, "<");
14: if (x >= z){
15: // SYM_COND(x,z, ">=");
16: max_num = x;
17: } else {
18: // SYM_COND(x,z, "<");
19: max_num = z;
20: }
21: }
22: } else { ...}
23: printf("%d is the largest number among\
24: {%d,%d,%d}", max_num, x,y,z);
25: // SMT_Solve();
26:}

Figure 1. Example used to illustrate concolic testing

ψi = c1 ∧ c2... ∧ ¬cj). For example, if a depth first search

(DFS) strategy is used, as it often is, to explore the symbolic

path formula, then cj is the last symbolic path condition

in φi whose negated path condition has not been executed

previously. If ψi is unsatisfiable, another path condition cj′
is negated and subsequent path conditions are removed until

a satisfiable path formula is found. If there are no further

new paths to try, the algorithm terminates.

6. Select the next input values tci+1. A constraint solver

such as a Satisfiability Modulo Theory (SMT) solver [34]

generates a model that satisfies ψi. This model determines

the next concrete input values to try (i.e., tci+1), and the

concolic testing procedure iterates from Step 3 using these

input values.

B. Example of Concolic Testing Process

We illustrate this process through an example involving

Figure 1, which returns the largest number from three given

integers x, y, and z.

1. Declaration of symbolic variables. A user declares

x, y, and z as symbolic integer variables by using

CREST_int() (lines 3-5).

2. Instrumentation. A concolic testing tool inserts a probe

to record a corresponding path condition at each then
branch in an automated manner. Similarly, at each else
branch, a probe is inserted to record a corresponding path

condition. In Figure 1, probes inserted through instrumen-

tation are shown as comments. For example, at line 10,

SYM_COND(y,z,">=") is inserted to record path condi-

393392

tion y >= z. Similarly, SYM_COND(y,z,"<") is inserted

at line 13 to record path condition y < z.

3. Concrete execution. Initial input values for the symbolic

variables are randomly chosen. We assume that x, y, and z
are assigned 1, 1, and 0 as initial random values, respectively

(i.e., tc1 =< 1, 1, 0 >). Then, the instrumented target

program executes lines 2-11 and lines 23-26.

4. Obtain a symbolic path formula φi. During the concrete

execution of lines 2-11, the probes record two symbolic path

conditions x >= y and y >= z through SYM_COND(x,y,
">=") (line 8) and SYM_COND (y,z,">=") (line 10)

respectively. Thus, the symbolic formula φ1 = (x >= y) ∧
(y >= z) is obtained for the first iteration.

5. Generate a new symbolic path formula ψi. If a DFS

algorithm is used, ψ1 is (x >= y) ∧ ¬(y >= z).
6. Select the next input values. At line 25, the target

program finishes its first iteration and invokes a constraint

solver to solve ψ1. Suppose that an SMT solver solves ψ1

and generates 1, 1, and 2 for x, y, and z as a solution (i.e.,

tc2 =<1, 1, 2>). Then, the target program starts the second

iteration with these values, and the entire process from Step

3 is repeated.

V. SLP FILE MANAGER

Figure 2. Overview of the SLP file manager

Figure 2 shows an overview of the SLP file manager.

The file manager (FM) monitors a file system and notifies

corresponding applications of events in the file system. FM

uses an inotify system call to register directories/files to

monitor. When the directories and files that are being mon-

itored change, the Linux kernel generates inotify events

and adds these events to an inotify queue. FM reads an

event from the queue and notifies corresponding programs

of the event through a D-BUS inter-process communication

interface. For example, when a user adds an MP3 file to a

file system, FM notifies a music player to update its playlist

automatically. A fault in FM can cause serious problems in

SLP, since many applications depend on FM. The SLP file

manager is 18000 lines long containing 85 functions.

A. Difficulties of Concolic Testing For SLP FM

Embedded software such as FM often has different

development and runtime environments from those of

non-embedded software. Due to limited computational

power, embedded software has unique characteristics in its

development/build-process and runtime environments, which

causes difficulties for concolic testing. Since concolic testing

is involved with build-process and runtime environment (see

Section IV), these tool problems can be critical in industrial

setting. We observed the following difficulties when we

applied CREST to FM:

1) Complex build process: To instrument FM, we had to

modify the build process to use a compiler wrapper tool

for CREST. The wrapper tool, however, had limitations

to handle the build process for embedded software. For

performance improvement, a build process for embedded

software utilizes complex optimization techniques that are

not normally used for non-embedded software. One example

was that a build script of FM enforced a specific order of li-

brary linking options to optimize the FM binary. The CREST

wrapper tool, however, did not keep the order of given

options, because the order of options for compilers/linkers

does not affect the build process of most non-embedded

software. Thus, we had to modify the CREST wrapper tool

to keep the order of options. Understanding the optimized

build process and modifying the build script took around

one fourth of the total project time.

2) Specialized execution environment: The target plat-

form of FM was Samsung Electronics’ own Linux platform

based on the ARM architecture. An original test environment

was constructed on the Scratchbox [2] ARM simulator,

on which CREST runtime modules such as libcrest and

Yices [11] could not execute, since only the x86 binary

of Yices was available. Thus, we ported FM and related

SLP libraries to the Scratchbox x86 simulator and applied

CREST to FM on the simulator. We could not execute FM on

x86 Linux directly, since FM had dependencies on libraries

that could run only on Scratchbox.

B. Symbolic Inputs
To apply concolic testing, we must specify symbolic

variables in a target program, based on which symbolic
path formulas are generated at runtime. We specified
inotify_event as a symbolic input, whose fields are
defined as follows:

struct inotify_event {
int wd; /* Watch descriptor */
uint32_t mask; /*Event */
uint32_t cookie;/*Unique cookie

associating events*/
uint32_t len; /*Size of ’name’ field*/
char name[]; /*Optional name */};

wd indicates the watch for which this event occurs. mask
contains bits that describe the type of an event that oc-

curred such as MOVE_IN (a file moved in the watched

directory). cookie is a unique integer that connects related

events (e.g., pairing IN_MOVE_FROM and IN_MOVE_TO).

name[] represents a file/directory path name for which

394393

the current event occurs and len indicates a length of

the file/directory path name. Among the five fields, we

specified wd, mask, and cookie as symbolic variables,

since name and len are optional fields. We built a symbolic

environment to provide an inotify_event queue that

contains up to two symbolic inotify_events.

C. Results

Two persons of our team worked to apply CREST to FM

for ten days. KAIST visited Samsung Electronics every week

to analyze target code, since Samsung Electronics could not

release the target code to KAIST for intellectual property

issues. We added 14 assertions to check return values of the

FM functions for a basic sanity check. By using CREST, we

detected an infinite loop fault in FM in one second. After FM

reads an inotify_event in the queue, the event should

be removed from the queue to process the other events in

the queue. We found that FM did not remove an abnormal

event whose wd is zero or negative from the queue and

caused an infinite loop when an abnormal event was added

to the queue.

The FM code in Figure 3 handles inotify_event. FM

moves BUF_LEN bytes from the inotify_event queue

(event_queue) to buf (line 1). Then, it processes all

events in buf through the while loop (lines 3-13). Line 7

checks whether or not a current event (ev) is normal. If ev
is normal (line 10), FM sends notifications to corresponding

programs (line 11) and removes ev by increasing i to

indicate the next event (line 12). If ev is abnormal, line 9

continues the loop without increasing i. Thus, at the next

iteration of the loop, FM reads the same abnormal ev again,

which causes an infinite loop. The original developers of FM

confirmed that this fault is real and fixed it. They had failed

to detect this fault for long time, because they had created

only a dozen test cases for FM in a manual manner. These

manual test cases did not include test cases with abnormal

events that were difficult to generate for a real file system.

After the fault was corrected, CREST generated 138

test cases in five minutes, which covered around 1750

branches among 8152 branches of FM.3 These test cases

did not violate any of the 14 assertions. Due to the limited

time for the project (i.e., ten days), we could not perform

more elaborate concolic testing with more assertions and

sophisticated symbolic inputs.

VI. SAMSUNG SECURITY LIBRARY

The Samsung security library provides API functions for

various security applications on mobile platforms such as

SSH (secure shell) and DRM (digital right management).

The security library consists of the following three layers:

3CREST transforms a target program to an equivalent extended version
whose branches contain only one atomic condition per branch. The branch
coverage data in this paper is based on the extended target program.

01:length=read(event_queue,buf,BUF_LEN);
02:i=0;
03:while(i<length){
04: struct inotify_event *ev =
05: (struct inotify_event*)&buf[i];
06: ...
07: if (ev->wd<1) {
08: ERROR("invalid wd : %d",ev->wd);
09: continue;}//ev is NOT removed
10: else if (ev->mask & MOVE_IN){
11: ... //notify registered programs
12: i+=ev_len(ev);//ev is removed
13: } else if (ev->mask & DELETE){...

Figure 3. FM code to handle inotify_events

• Security functions:
This top layer provides security APIs such as AES

(advanced encryption standard) or SHA (secure hash

algorithm) that are frequently used by applications

that handle security operations such as encryption and

description.

• Complex math functions:
This middle layer provides complex mathematical func-

tions such as elliptic curve functions and large prime

number generators that are used by the security func-

tions.

• Large integer functions:
This bottom layer provides data structures for large

integers that cannot be represented by int and related

operations such as addition and subtraction of two large

integers.

Figure 4. Structure of the Samsung security library

The security library consists of 62 functions and is 8000

lines long.

A. Difficulties of Concolic Testing for the Security Library

We targeted the large integer function layer in the security

library, since the security function and complex math func-

tion layers were not proper for us to apply concolic testing to

for the following reasons. First, these two layers frequently

use external binary math functions such as pow() and

sqrt(), which decreases the effectiveness of concolic

testing (i.e., resulting in low coverage). This is because

concolic testing cannot solve a symbolic path formula that

395394

contains binary library calls on symbolic variables. Second,

the security function and complex math function layers

are hard for us to understand due to complex algorithms.

Consequently, it would be difficult to specify test oracles

and to develop appropriate symbolic inputs for these layers.

In contrast to FM, the security library could be compiled

and tested on x86 Linux without difficulty.

B. Symbolic Inputs

A large integer is represented by the L_INT data structure

in Figure 5.

struct L_INT {
// Allocated mem size in 32 bits
unsigned int size;
// # of valid 32 bit elements
unsigned int len;
// Pointer to the dynamically allocated
// data array. da[len-1] are the most-
// significant bytes
unsigned int *da;
// 0:non-negative, 1: negative
unsigned int sign; }

Figure 5. Large integer data structure

For example, 4294967298 (=2 + 232) can be rep-

resented by a L_INT data structure that contains

size=3, len=2, da={2,1,0} (i.e., 2×2(32×0) +

1×2(32×1) + 0×2(32×2)), and sign=0. Large inte-

gers are passed as operands to large integer functions

such as L_INT_ModAdd(L_INT d,L_INT n1,L_INT
n2,L_INT m) that performs d=(n1+n2)%m.

To test large integer functions, we built a symbolic large

integer generator that returns a symbolic large integer n
(line 12) as shown in Figure 6. Lines 3-5 allocate memory

for n (line 5). Line 3 declares the size of n as a symbolic

variable of unsigned char type. Note that line 4 en-

forces a constraint on size such that min≤size≤max.

Without this constraint, size can be 255, which will

generate unnecessarily many large integers, since the number

of generated large integers increases as the size increases.

Line 5 allocates memory for n using L_INT_Init().

For simple analysis, we assume that len==size (line 6).

Lines 9-10 fill out a data array of n, if necessary (line 8).

For example, we do not need to fill out a data array for

d that is a result of L_INT_ModAdd(L_INT d,...).

Since we assume that size==len, we do not allow the

most-significant bytes to be 0 (line 11).

C. Test Drivers

Using gen_s_int(), we developed test drivers for

all 14 large integer functions. For example, a test driver

for L_INT_ModAdd() is described in Figure 7, which

generates symbolic large integers whose values are between

01:L_INT* gen_s_int(min,max,to_fill) {
02: unsigned char size, i;
03: CREST_unsigned_char(size);//sym. var.
04: if(size> max || size< min) exit(0);
05: L_INT *n=L_INT_Init(size);
06: n->len=size;
07:
08: if(to_fill){// sym. value assignment
09: for(i=0; i < size; i++) {
10: CREST_unsigned_int(n->da[i]);}
11: if(n->da[size-1]==0) exit(0); }
12: return n;}

Figure 6. Symbolic large integer generator

2(32×1)−1 and 2(32×4)−1 (lines 2-4).4 dest and dest2
do not need to have symbolic values (lines 5-6), since

they will be assigned new values by L_INT_ModAdd().

This test driver checks whether or not (n1+n2)%m ==
(n2+n1)%m at line 11.

01:void test_L_INT_ModAdd() {
02: L_INT *n1=gen_s_int(1,4,1),
03: *n2= gen_s_int(1,4, 1),
04: *m= gen_s_int(1,4, 1),
05: *dest= gen_s_int(1,4,0),//to_fill=0
06: *dest2=gen_s_int(1,4,0);//to_fill=0
07:
08: L_INT_ModAdd(dest,n1,n2,m);
09: L_INT_ModAdd(dest2,n2,n1,m);
10: // (n1+n2)%m == (n2+n1)%m
11: assert(L_INT_Cmp(dest,dest2)==0);}

Figure 7. Test driver for L_INT_ModAdd()

D. Results

Two persons of our team worked to apply CREST to the

security library for ten days. We inserted 40 assertions in

the 14 large integer functions and found that all 14 large

integer functions violated some assertions. CREST generates

7537 test cases for the 14 large integer functions in five

minutes, that cover 1284 of 1753 branches (73%) in the

target functions. 5

For example, test_L_INT_ModAdd() generated 831

test cases that covered 129 of 150 branches (86%) in

L_INT_ModAdd(). 17 of the 831 test cases violated the

assert() at line 11 of Figure 7.

We analyzed L_INT_ModAdd(L_INT d,L_INT
n1,L_INT n2,L_INT m) and found that this function

did not check the size of d. Thus, if the size of d is

smaller than (n1+n2)%m, this function writes beyond the

44 is the smallest number for the len that can represent all pos-
sible relations between lens of d, n1, n2, and m. For example,
1=len(m)<len(d)<len(n1)<len(n2)=4 where len(x) is the len
of a large integer x.

5Large integer functions contain several non-linear arithmetic operations,
which prevents CREST from reaching high branch coverage. In addition,
the reported branch coverage is based on the extended target program,
which is equivlanet to the condition/decision coverage on the original target
program.

396395

allocated memory for d, which may corrupt d later by other

memory writes. To analyze the fault further, we checked

all functions in the security function and complex math

function layers that invoke L_INT_ModAdd() and found

that those functions set the size of d as equal to n1 and

pass d to L_INT_ModAdd(). We suspect that this fault

has not been detected, because (n1+n2)%m < m and m
is usually smaller than n1 in most mathematical formulas

used in security applications. Furthermore, many security

algorithms assume that the bit size of operands and the bit

size of the result are fixed and same. However, the large

integer library should handle exceptional cases properly,

since there is no such guarantee in general. Failure to handle

such exceptional scenarios can cause serious problems and

the original developers confirmed their mistakes.

VII. BUSYBOX LS

Busybox [1] is a one-in-all command-line utility that

combines tiny versions of many common UNIX utilities

such as ls and grep. Busybox is written for minimal

size and limited resources. Also, it is modular to customize

busybox to be adopted in various embedded systems.

We selected ls as our target utility among the busybox

utilities, since ls is the most frequently used utility in

busybox and used/tested by millions of users. Thus, we can

evaluate the effectiveness of a concolic testing approach to

improve the reliability of field-proven application further-

more. We targeted busybox 1.17.0, the latest version at the

time of the project. Busybox ls consists of 16 functions

and it is 1100 lines long in C.

To apply concolic testing effectively, we reviewed the

POSIX specification (IEEE Std 1003.1 [35]) on ls that

describes expected behaviors of ls with various command-

line options and environment conditions. For example, the

POSIX specification requires that ls should print out the

‘@’ symbol right after a symbolic link file slnk when

-F option is given (i.e., ls should obtain the status of

slnk, not the status of the file slnk points to). Based on

the POSIX specification for various options, we declared

related variables of busybox ls as symbolic and inserted

assert() statements correspondingly.

A. Difficulties of Concolic Testing for busybox ls

Since CREST can analyze only linear integer arithmetic

(LIA) expression symbolically, CREST cannot test a target C

program effectively that utilizes bit-wise operations (e.g., &,

|, <<) heavily. We found that busybox ls stores command-

line options in a 32 bit unsigned integer variable opt as

a bit sequence. In other words, each bit in opt indicates

if a corresponding command-line option is on or off. For

example, the 21st bit of opt indicates -F option that

appends the indicator symbol ‘@’ to a file name to display.

Thus, we had to develop a work-around solution to

analyze bit-wise operations symbolically. We modified busy-

box ls by replacing operations on a bit sequence with

operations on an integer array each element of which

corresponds to each bit of the bit sequence as shown

in Figure 8. For example, we converted opt into int
opt_list[32] by bs2ia(opt, opt_list) and re-

placed & with bit_and().

//a number of bits used in a bit sequence
int BITSIZE;

//a bit sequence bs->an integer array ia
static int* bs2ia(unsigned bs,int *ia){

int i;
for(i=BITSIZE-1;i>=0;i--,bs=bs/2)

ia[BITSIZE-i-1] = bs%2;
return ia; }

// Replacement of bitwise &
static int bit_and(int *a, int *b) {

int i;
for(i=0 ; i<BITSIZE ; i++)

if(a[i]!=0 && b[i]!=0) return 1;
return 0; }

// Replacement of bitwise |
static int bit_or(...) {...}
...

Figure 8. Transformation of operations on a bit sequence into operations
on an integer array

B. Symbolic Inputs
Since a main task of busybox ls is to display the

status/meta-data of files/directories, we declared stat (de-

fined in sys/stat.h) data structure symbolically that

represents a status of a file/directory. In other words, we

declared all 13 members of stat as symbolic variables such

as mode_t st_mode (mode of a file), ino_t st_ino
(inode number), and uid_t st_uid (user ID of file).

In addition, we made a symbolic directory environment

that has two files, whose file name lengths are declared

symbolically but less than nine characters (for example,

“aa” and “b”). Also, we feed these two file names as

command-line arguments to busybox ls by setting argv[]
and argc correspondingly.

To apply these symbolic settings, we modified

static struct dnode * my_stat(const
char *fullname, const char *name, int
force_follow) that returns status of a file pointed by

name in dnode structure; modified my_stat() invokes

sym_stat() and sym_lstat() to return symbolic

status of files instead of stat() and lstat() that access

status of a concrete file.
Furthermore, we declared opt_list[32] as symbolic

variables, which corresponds to opt that is a bit sequence

indicating a list of given command-line options. Thus, we

analyzed all possible combinations of command-line options

through concolic testing.

397396

C. Test Oracles

For each command-line option, we inserted corresponding

assert() as test oracles. For example, for -F, we inserted

the following assert() in my_stat() (line 292 in

ls.c.

assert(!(opt_list[21] && !opt_list[23])||
!((all_fmt & FOLLOW_LINKS)||force_follow))

opt_list[21] and opt_list[23] indicate -F and -L
options respectively. -L forces busybox ls to follow a sym-

bolic link slnk to display the status of the file slnk points to

(call the file linked) instead of that of slnk. all_fmt indi-

cates how to display files and FOLLOW_LINKS is a constant

mask to display linked instead of slnk. force_follow
is a flag to force my_stat() to return the status of linked.

Thus, the assert() claims that if -F without -L is

given, all_fmt should not indicate to display linked and

force_follow should be false.

In a similar manner, we defined and inserted 15

assert() statements.

D. Results

Two persons of our team worked to apply CREST to

busybox ls for ten days. Most of time were spent to define

assert() statement by understanding the IEEE Std 1003.1

specification and identifying corresponding segments in the

busybox ls code.

CREST detected the following four bugs in 15 minutes

by generating 13000 test cases and covered 68.6% of the

branches in busybox ls (188 out of 274 branches). We

reported these bugs to the busybox development team. All of

these bugs were confirmed by the busybox developers and

fixed in busybox 1.19.

1) -F does not show the status of slnk itself, but the file
slnk points to: This bug was detected through the violation

of the assert() statement in Section VII-C. The bug

was caused because the last parameter to my_stat() in

ls_main() (at line 1074 of ls.c) was incorrect:

1:cur = my_stat(*argv, *argv,
2:!(all_fmt & (STYLE_LONG|LIST_BLOCKS)));

With -F without -L, the last parameter of my_stat()
at line 2 becomes true, since STYLE_LONG and

LIST_BLOCKS are constant masks to display files in a long

format and with a block size respectively and none of them

are enabled by -F. Then, force_follow (the last formal

parameter of my_stat()) becomes true and my_stat()
obtains the status of linked instead of slnk, which violates

the requirement for -F option. For example, busybox ls
-F -i slnk does not display the ‘@’ mark for slnk and

displays the inode number of linked.

2) -i does not show space between adjacent two
columns: -i forces busybox ls to display inode number

of each file. This bug was detected from the violation of the

following assert() statement inserted in showfiles()
(line 857 in ls.c).

assert(nexttab >= column + tabstops);

nexttab is the start position of the next column, column
is the end position of the previous column, and tabstops
is the number of spaces between columns. This bug was

caused because showfiles() assumed that an inode

number can be displayed in eight digits (i.e., inode number

≤ 99999999), which is not true. Thus, busybox ls -i aa
b displays no space between the adjacent columns, if b has

a large inode number (i.e., nine digits).
3) -s does not show space between adjacent two

columns: -s forces busybox ls to display block size of

each file. This bug was caused by the similar reason of

the bug in Section VII-D2; showfiles() assumed that

maximum block size of a file can be displayed in five digits,

which is not true, either.
4) -n does not show user id and group id in a numeric

format: This bug was detected from the violation of the

following assert() statement inserted in ls_main()
(line 1166 of ls.c) where opt_mask[7] is -n that forces

busybox ls to display user id and group id in a numeric

format.

assert(!opt_mask[7] ||
(all_fmt & LIST_ID_NUMERIC));

VIII. LESSONS LEARNED

A. Covering Exceptional Scenarios

A main reason why the original developers could not

detect the faults discovered in this work is that these faults

cause errors only in corner-case/unexpected scenarios. For

example, the fault in the SLP file manager triggers errors

only when a file system error occurs (i.e., when an abnormal

event is generated). It is very difficult for a human engineer

to detect faults that are manifest only in exceptional sce-

narios through manual testing. This is because developers

tend to concentrate on the expected behaviors of the target

programs and often miss testing unexpected behaviors in a

systematic manner. Another reason is that manual test case

generation consumes a large amount of time and there can

be too many exceptional test cases.

Concolic testing aims to automatically generate test cases

that cover all possible execution paths including unexpected

execution scenarios of a target program. Thus, concolic test-

ing can test unexpected execution scenarios in an effective

and efficient manner. Through this work, we demonstrated

that concolic testing could detect corner-case faults in in-

dustrial software successfully.

B. Concolic Testing Approach for Embedded Software

Through this work, we identified issues to consider for

successful application of concolic testing to embedded soft-

ware that runs on specialized platforms (see Section V-A).

398397

First, a concolic testing approach that instruments a target

source code is more appropriate for embedded software

than virtual machine based approach, since the former is

lighter than the latter in terms of porting efforts. A virtual

machine based approach [7], [36], [27] has an advantage

in terms of applicability; it can be applied to target pro-

grams in various high-level languages, since the virtual

machine works on low-level bytecodes (e.g., LLVM bit-

code, Java bytecode). However, for an embedded target

program, a virtual machine/emulator of a specific target

OS/HW platform (e.g., SLP or Samsung Bada OS on ARM

architecture) should be modified to add concolic testing

capability, which requires huge effort or may not be feasible.

Second, it is advantageous to separate the symbolic path

formula construction/solving mechanism from the runtime

information extraction mechanism (i.e., probes). Due to the

limited computing power of an embedded target platform,

heavy computing activities (the former) need to run on a

powerful machine while the probes (the latter) run on the

embedded target platform and communicate with the former.

In this regard, an instrumentation based concolic testing

approach has benefits for embedded software.

C. Limitations of CREST

As noted in Sections V-A, VI-A, and VII-A, concolic

testing in general has limitations. We also noted specific

limitations in CREST as follows. CREST uses a linear

integer arithmetic (LIA) SMT solver to solve generated

symbolic path formulas. Thus, CREST cannot handle full

ANSI C semantics, especially those related to bit-level repre-

sentations. The first limitation we observed was that CREST

did not support bit-wise operators in a target program. If a

branch condition contains a bit-wise operator, that branch

condition cannot be negated to generate a new test case

that will execute an unexplored path. For example, busybox

ls used bit-wise operators to check given command-line

options. As a workaround, we replace bit-wise operators

with functions that contain loops to handle each bit of

the operands explicitly as shown in Section VII-A. The

second limitation was that CREST could not analyze integer

overflow semantics of C programs as a default. The security

library utilizes integer overflow explicitly (e.g., large integer

functions contain if(x+y >= x) {...} else {...}
where x and y are unsigned int types). In C semantics,

x+y>=x is always true for unsigned int x and y
except when integer overflow occurs (e.g., when x=232 − 1
and y=2). However, CREST cannot generate a test case

representing this integer overflow scenario, since it generates

symbolic path formulas in LIA only.

D. Importance of Detailed Requirement Specifications

A main reason that we could detect the four hidden bugs

in busybox ls that had not been detected for several years by

millions of users, is that we had a detailed requirement spec-

ification for busybox ls. Based on the detailed requirements

(i.e., IEEE Std 1003.1 [35]), we declared relevant command

line options as symbolic input and inserted a corresponding

assert() for each option to detect bugs. In contrast, we

could detect only an infinite loop bug in the SLP file manger,

since we did not have a detailed requirement specification;

consequently, less elaborated symbolic analysis was con-

ducted. Thus, we need a detailed requirement specification

for effective concolic testing.

However, most software development projects in IT in-

dustry are under time pressure due to heavy competition

in the market and often do not have a detailed written

requirement specification. Thus, it can be also practically

useful to develop a testing method to focus on detecting run-

time failure bugs such as null-pointer dereference, divide-

by-zero, and out-of-bound memory access, which can be

detected without explicit requirement specifications.

IX. CONCLUSION AND FUTURE WORK

We reported our case studies to apply CREST on the SLP

file manager and the Samsung security library that were

developed by Samsung Electronics. In addition, we applied

CREST to busybox ls that is known as a field-proven reli-

able utility. As results, we detected new bugs in the all target

applications, which were difficult to find through manual

testing, since human engineers often miss such exceptional

scenarios. Thus, we confirmed that concolic testing approach

can improve the quality of industrial embedded applications,

even a field-proven reliable one such as busybox ls.

Through the case studies, however, we also observed

several limitations of a current concolic testing approach

and a tool (i.e., CREST). Samsung Electronics and KAIST

will continue collaboration to overcome such limitations (see

Section VIII-C) [20], [19].

ACKNOWLEDGMENTS

This work was supported by Samsung Electronics, the

ERC of Excellence Program of Korea Ministry of Education,

Science and Technology(MEST) / National Research Foun-

dation of Korea) (Grant 2011-0000978), and Basic Science

Research Program through the NRF funded by the MEST

(2010-0005498).

REFERENCES

[1] Busybox home page. http://www.busybox.net/.

[2] Scratchbox - cross-compilation toolkit. http://www.
scratchbox.org/.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. D. Ernst. Finding bugs in dynamic web applications. In
International Symposium on Software Testing and Analysis,
2008.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In
USENIX Annual Technical Conference Freenix Track, 2005.

399398

[5] J. Burnim. CREST - automatic test generation tool for C.
http://code.google.com/p/crest/.

[6] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. Technical Report UCB/EECS-2008-123, EECS
Department, University of California, Berkeley, Sep 2008.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In Operating System Design and Imple-
mentation, 2008.

[8] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform
for in-vivo multi-path analysis of software systems. In
ASPLOS, 2011.

[9] R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Transactions on Software Engi-
neering (TSE), 17(9):900–910, 1991.

[10] A. Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys,
2003.

[11] B. Dutertre and L. Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer Aided Verification, 2006.

[12] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input gen-
eration for database applications. In International Symposium
on Software Testing and Analysis, 2007.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Programming Language Design
and Implementation, 2005.

[14] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In Network and Distributed Systems
Security, 2008.

[15] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz:
A concolic whitebox fuzzer for Java. In NASA Formal
Methods Symposium, 2009.

[16] A. Kiezun, P. J. Guo, k. Jayaraman, and M. D. Ernst.
Automatic creating of SQL injection and Cross-Site scripting
attacks. In International Conference on Software Engineering,
2009.

[17] M. Kim and Y. Kim. Concolic testing of the multi-sector
read operation for flash memory file system. In Brazilian
Symposium on Formal Methods, 2009.

[18] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-
sector read operation for flash storage platform software.
Formal Aspects of Computing, 24(2), 2012.

[19] M. Kim, Y. Kim, and Y. Kim. Industrial application of
concolic testing approach: A case study on libexif by using
CREST-BV and KLEE. In International Conference on
Software Engineering, 2012. under review.

[20] M. Kim, Y. Kim, and G. Rothermel. A scalable distributed
concolic testing approach: An empirical evaluation. In In-
ternational Conference on Software Testing, Verification and
Validation (ICST), 2012.

[21] Y. Kim, M. Kim, and Y. Jang. Concolic testing on embedded
software - case studies on mobile platform programs. In
European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE) Industrial Track, 2011.

[22] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering (TSE), 16(8):870 –879,
aug 1990.

[23] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Intl. Symp.
on Code Generation and Optimization, 2004.

[24] M. Marri, T. Xie, N. Tillmann, J.de Halleux, and W. Schulte.
An empirical study of testing file-system-dependent software
with mock objects. In Automation of Software Test, 2009.

[25] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Program-
ming Language Design and Implementation, 2007.

[26] K. Pan, X. Wu, and T. Xie. Generating program inputs
for database application testing. In Automated Software
Engineering, 2011.

[27] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level
symbolic execution and system-level concrete execution for
testing nasa software. In International Symposium on Soft-
ware Testing and Analysis, 2008.

[28] C. Pasareanu and W. Visser. A survey of new trends in
symbolic execution for software testing and analysis. Software
Tools for Technology Transfer, 11(4):339–353, 2009.

[29] X. Qu and B. Robinson. A case study of concolic testing
tools and their limitations. In Empirical Software Engineering
and Measurement (ESEM), 2011 International Symposium on,
pages 117 –126, sept. 2011.

[30] R. Sasnauskas, O. Landsiedel, M. h. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. KleeNet: Discovering in-
sidious interaction bugs in wireless sensor networks before
deployment. In ACM/IEEE International Conference on
Information Processing in Sensor Networks, 2010.

[31] P. Saxena, D. Akhawa, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for JavaScript. In
IEEE Symposium on Security and Privacy, 2010.

[32] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools. In Computer
Aided Verification, 2006.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In European Software Engineering
Conference/Foundations of Software Engineering, 2005.

[34] SMT-LIB: The satisfiability module theories library. http:
//combination.cs.uiowa.edu/smtlib/.

[35] IEEE Computer Society. Standard for information
technology-portable operating system interface (POSIX),
2008.

[36] N. Tillmann and W. Schulte. Parameterized unit tests. In
European Software Engineering Conference/Foundations of
Software Engineering, 2005.

400399

