
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E May/June 2013 | Ieee Software 35

FOCUS: Safety-CritiCal Software

During the past few decades,
the proportion of software in safety-
critical systems has significantly in-
creased. So, to ensure high-level safety,
it’s essential to improve software reli-
ability. Consequently, it has become
important to implement and acquire
highly reliable software and to satisfy
the safety requirements imposed by

functional-safety standards, such as IEC
61508 and ISO 26262.1–3 These stan-
dards define safety integrity level (SIL)
and automobile SIL (ASIL) as measures
of a system’s quality or dependability.

To develop a highly reliable soft-
ware-intensive system, developers allo-
cate a reliability goal for a target sys-
tem according to a target SIL or ASIL

after hazard analysis and risk assess-
ment.4 Then, they allocate reliability
goals to each software component early
in the life cycle. Each component’s reli-
ability goal is usually validated through
failure detection during software test-
ing, which can result in high costs to
correct defects.

We propose a framework to validate
the reliability goals of safety-critical
systems at an early stage by using sta-
tistical model checking (SMC) to ob-
tain safety certification. SMC validates
a target system’s reliability by comput-
ing the probabilities that an executable
model of a target system satisfies given
functional-safety requirements. (For
more information, see the “Statistical
Model Checking” sidebar.)

the Framework
Our framework (see Figure 1) extends
IEEE Standard 1633, which covers
software reliability practices. (For more
information, see the “Software Reli-
ability Engineering” sidebar.) It em-
ploys the following process.

Specify the Functional-Safety
Requirement
This step uses hazard analysis methods
such as FTA (fault tree analysis), FMEA
(failure mode and effects analysis), and
Fracas (failure reporting, analysis, and
corrective action system) to identify
safety-related functions for each com-
ponent Ci.

4 It then converts functional-
safety requirements for those functions
into bounded linear temporal logic
(BLTL) requirements reqij of Ci.

Allocate the Reliability Requirement
On the basis of the results of the “Spec-
ify the reliability requirement” step of
IEEE Standard 1633, this step allocates
a reliability goal Ri to Ci.

Validate the Reliability Requirement
This is the step we added that ex-
tends IEEE Standard 1633. Here, SMC

Validating
Software
Reliability Early
through Statistical
Model Checking
Youngjoo Kim, S-Core

Okjoo Choi, Moonzoo Kim, and Jongmoon Baik, Korea Advanced Institute
of Science and Technology

Tai-Hyo Kim, FormalWorks

// A proposed framework employs statistical model checking

to validate software reliability at an early stage. This can

prevent the propagation of reliability allocation errors and

design errors at later stages, thereby achieving safer, cheaper,

and faster development of safety-critical systems. //

36 Ieee Software | www.coMputer.org/Software

FOCUS: Safety-CritiCal Software

generates random sample execution traces σi repeatedly until
the number of the traces is enough to calculate the probabil-
ity that Ci satisfies reqij (that is, P(reqij)). If not, SMC simu-
lates Ci again to generate more sample traces.

Validate the Reliability Goal
This step validates Ri by comparing it with the calculated re-
liability Ri′, obtained on the basis of P(reqij) and the corre-
sponding weight values for reqij.

Continue Validation or Reallocate
If Ri′ satisfies Ri (that is, Ri′ ≥ Ri), validation continues for the
next component Ci + 1 regarding Ri + 1. If the calculated reli-
abilities of all the components satisfy the allocated reliability
goals, software reliability assessment continues.

If Ri′ doesn’t satisfy Ri, this step reallocates all the com-
ponents’ reliability goals. If the reallocation continues to fail,

this could indicate that the target component was designed
incorrectly. If this is the case, after several trials of the reli-
ability reallocation, the component should be redesigned to
improve its reliability.

employing the Framework: a Case study
The top part of Figure 2 diagrams a fault-tolerant fuel con-
trol system (FFCS),5 a safety-critical component of an auto-
mobile’s engine controller. The FFCS receives input from sen-
sors for throttle angle, speed, exhaust gas oxygen (EGO), and
manifold absolute pressure (MAP). It then generates a proper
fuel injection rate and air-to-fuel ratio. It also detects sensor
faults and shuts down the engine for safety if necessary. It
has three components: a sensor failure detector and estima-
tor (SFDE), an airflow calculator, and a fuel calculator.

The SFDE consists of a sensor failure detector and a
sensor data estimator. The detector receives all the sensor

statistiCal MoDel CheCking
Statistical model checking (SMC) uses randomly sampled simula-
tion traces to compute the probabilities that a target model will
satisfy given requirement properties.1 Figure A gives an overview
of SMC, which consists of a simulator, a bounded linear temporal
logic (BLTL) model checker, and a statistical analyzer. It receives

•	 a stochastic target model M, which is an executable simula-
tion model;

•	 a BLTL formula φ, which formally represents a functional-
safety requirement of the target system; and

•	 precision parameters with which to determine a calculated
probability’s accuracy.

The simulator executes
M and generates a sample
execution trace σi. The model
checker determines whether
σi satisfies φ and sends the
result (success or failure) to
the statistical analyzer. The
statistical analyzer calculates
the probability p that M satis-
fies φ by checking whether
σi satisfies φ. The statistical
analyzer then asks the simu-
lator to generate σi repeatedly
until the number of success-
ful results of σi over the total

number of σi is distributed within a given precision boundary.
Unlike conventional formal verification techniques such as

model checking, SMC doesn’t analyze a target system’s internal
logic. So, it can validate complex safety-critical systems without
the state explosion problems caused by those systems’ com-
plex hybrid (continuous dynamics plus discrete computation)
characteristics.

reference
 1. P. Zuliani, A. Platzer, and E.M. Clarke, “Bayesian Statistical Model Checking

with Application to Stateflow/Simulink Verification,” Proc. 13th ACM Int’l
Conf. Hybrid Systems: Computation and Control (HSCC 10), ACM, 2010,
pp. 243–252.

SimulatorStochastic
target system M BLTL

model
checker

Statistical
analyzer

Precision
parameters

BLTL
property �

Probability p
for M to
satisfy �

To generate more trace �i

Staistical model checker

A sample
execution
trace �i

Success/
fail

figure a. Statistical model checking uses randomly sampled simulation traces to compute the

probabilities that a target model satisfies given requirement properties.

 May/June 2013 | Ieee Software 37

data and decides whether a sensor has
failed. It delivers all the data to the es-
timator; if a sensor fails, it notifies the
estimator of the failure. If multiple
sensors fail, the detector shuts down
the engine because the air-fuel ratio is
uncontrollable.

The Simulink/Stateflow FFCS mod-
el’s size and complexity in terms of the
Halstead metrics6 are as follows. The
model has 65 operator blocks, 111 op-
erands, 35 distinct operators, and 95

…

Validate the reliability requirement

To redesign
a target

component

Component
reliability Ri

To continue
software reliability

assessment

To reallocate
reliability

Precision
parameters

SW Reliability Assessment
Procedure in IEEE Std. 1633

...

3. Allocate the
reliability requirement

2. Specify the
reliability requirement

1. Identify the
application

4. Make a reliability
risk assessment

Simulator BLTL
model

checker

Statistical
analyzer

Statistical model checker

Validate the component reliability Ri

�i

Probabilities P(reqij)

S/F

Architecture
design

Requirement
speci�cation

Software development process

Component
design

BLTL
requirement

reqij

Component
model

Ci ∈System

Generate an
executable computation

model

Specify safety
functional requirements in
bounded linear temporal

logic (BLTL)

figure 1. Our software reliability validation framework extends IEEE Standard 1633 by adding the step “Validate the reliability requirement”

after the “Allocate the reliability requirement” step during software reliability assessment.

Sensor fails

Throttle angle

Engine speed

EGO

MAP

Fault-tolerant fuel control system

Sensor
failure

detector
and

estimator

Throttle
angle
sensor

Speed
sensor

EGO
sensor

MAP
sensor

Air�ow
calculator

Air�ow
calculator

Fuel
calculator

Estimated
air�ow

Feedback
correction

Fuel rate

Air-fuel ratio

Sensor
failure

detector
and

estimator

Throttle
angle
sensor

Speed
sensor

EGO
sensor

MAP
sensor

Sensor failure detector
and estimator

figure 2. A fault-tolerant fuel control

system (FFCS). Using input from sensors for

throttle angle, speed, exhaust gas oxygen

(EGO), and manifold absolute pressure

(MAP), the FFCS generates a proper fuel

injection rate and air-fuel ratio. It also detects

sensor faults and shuts down an engine for

safety if multiple sensor failures occur.

38 Ieee Software | www.coMputer.org/Software

FOCUS: Safety-CritiCal Software

distinct operands. So, the calculated program volume V,
representing the model’s size, is 1,234, and the program
difficulty D, representing the model’s complexity, is 20.7.
The automatically generated C code from the model has
222 functions in 8,266 SLOC. More information on the
FFCS model is at www.mathworks.co.kr/products/simu-
link/examples.html?file=/products/demos/shipping/simu-
link/sldemo_fuelsys.html.

FFCS Software Reliability Validation
An FFCS requires the ASIL D safety goal, and ASIL D
in ISO 26262 requires a 1 – 10−3 to 1 – 10−9 reliability
goal. So, we specify an FFCS’s reliability goal as 0.9999.
To determine the reliability goals for each component
(the SFDE, airflow calculator, and fuel calculator) and
the weight values for the functional-safety requirements,
we consulted field experts from FormalWorks. This com-
pany produces software tools to test automobile software
and conducts consulting for ISO 26262 certification. To
obtain the reliability goals and the weight values more
accurately, we can use Wideband Delphi estimation7 with
several iterations of experts’ evaluations. We can also
use Probe (proxy-based estimation),8 another effective
technique.

Specifying the functional-safety requirement. Through dis-
cussion with the FormalWorks experts who performed
hazard analysis, we decided to specify functional-safety

requirements for each of the component’s output values.
(For example, we specify four requirements for the SFDE,
each corresponding to the output values for throttle an-
gle, speed, EGO, and MAP.) So, we specified four safety-
critical requirements for the SFDE, two requirements for
the airflow calculator, and two requirements for the fuel
calculator. During the entire execution period, the SFDE
has these requirements:

•	 reqthrottle. The throttle output shouldn’t be out of the throt-
tle opening range (from 3 to 90 percent) for 1 second.

•	 reqspeed. The engine speed output shouldn’t exceed 628 ra-
dians per second (6,000 rpm) for 1 second.

•	 reqEGO. During the initial warm-up period (25 seconds),
the EGO output should not be out of the range [0, 1] for
1 seccond. After the warm-up, the EGO output should be
between 0.03 and 0.97.

•	 reqMAP. The MAP output shouldn’t exceed one
atmosphere.

Assuming that the execution period is 60 seconds, the re-
quirements become these BLTL formulas:

req F G throttle throttle: 3 || 90throttle
60 1

out out()()¬ < > ,

req F G enginespeed: 628speed
60 1

out()()¬ > ,

soFtware reliability engineering
Software reliability engineering (SRE) deals with predicting, es-
timating, and evaluating a target software system’s reliability.1
To apply statistical SRE techniques, developers collect reliability-
related metrics throughout the development life cycle by testing
the system on the basis of its operational profile.2 So, SRE is es-
sentially a quantitative study of software development regarding
the given reliability goal. This activity repeats until it achieves the
reliability goal. IEEE Standard 1633 provides guidelines with which
to evaluate reliability by applying software reliability models.3

Recently, researchers have developed several software reliabili-
ty prediction models to quantitatively manage software reliability at
early development phases (the architecture and design phases), on
the basis of system structure and the system usage profile.4 How-
ever, these models are unrealistic owing to a lack of empirical data,
especially for the early development phases. Also, they assume

that each target component’s reliability is known, which isn’t true
for real-world software components. On the other hand, our pro-
posed software reliability validation framework—based on statisti-
cal model checking (see the main article and the other sidebar)—
validates reliability at an early stage without such limitations.

references
 1. M.R. Lyu, “Software Reliability Engineering: A Roadmap,” Proc. Future of

Software Eng. Conf. (FOSE 07), IEEE CS, 2007, pp. 153–170.
 2. J.D. Musa, “Operational Profiles in Software-Reliability Engineering,” IEEE

Software, vol. 10, no. 2, 1993, pp. 14–32.
 3. IEEE Std. 1633, Recommended Practice on Software Reliability, IEEE CS,

2008.
 4. L. Cheung et al., “Early Prediction of Software Component Reliability,”

Proc. ACM/IEEE 30th Int’l Conf. Software Eng. (ICSE 08), IEEE CS, 2008, pp.
111–120.

 May/June 2013 | Ieee Software 39

req F
G EGO EGO

G EGO EGO

:

warmup true

0 || 1

warmup false

0.03 || 0.97

EGO
60

1
out out

25
out out

()

()

= →

¬ < >

 ∧

= →

¬ < >

,

req F G MAP 1MAP
60 0.1

out()()¬ > ,

where Ftf means that f eventually occurs in t seconds, and
Gtf means that f always occurs in t seconds.

Allocating the reliability requirement. Because all the FFCS
components are combined sequentially, we can calculate the
FFCS’s reliability RT by multiplying the reliabilities of the
components of the target Ri′:

R RT i
i

n

1
∏= ′
=

,

where n is a total number of components.
To satisfy the FFCS’s reliability (0.9999), we allocated

the components’ reliability goals via discussion with Formal-
Works experts: 0.99997 for the SFDE, 0.99997 for the air-
flow calculator, and 0.99997 for the fuel calculator.

Calculating each component’s probability. To calculate prob-
ability, we use SMC. (We discuss this in more detail later.)

Validating each component’s reliability. We can calculate the
reliability of Ri′ by assigning a weight to each requirement:

R w P reqi req ijreq REQ ijij
∑ ()()′ = ×∈ ,

where wreqij
 is a weight value for reqij.

Again, through discussion with the experts, we deter-
mined the weight values: wthrottle = 0.11, wspeed = 0.45, wEGO
= 0.09, and wMAP = 0.35. This indicates that the speed and
MAP sensors are more safety-critical than the throttle and
EGO sensors. We will explain how to validate the reliability
of the SFDE in the next section.

SMC Experiments
We performed all experiments on a 64-bit Windows
7 Professional machine with a 3.40-GHz Intel i5 and 8
Gbytes of memory. We used a Simulink/Stateflow FFCS
model in Matlab R2010a. We simulated the model using
the Matlab simulator to generate sample execution traces.
To validate whether the model satisfies the reliability goal
(0.9999), we applied Bayesian interval estimation testing
(BIET), an SMC technique.9 To obtain a precise probabil-
ity result (a goal of 1 – 10-4), we set the SMC precision pa-
rameters to d = 0.00005 and c = 0.9999 for BIET, where
d is a half-size of an estimation interval that will contain
the probability result and c is the coverage goal of the es-
timation interval.

(a)

(b)

Fuel rate control subsystem
Target executable
simulation module

Runtime SMC result
monitoring windowp : current calculated probability

n : current number of samples
x : current successful samples

validate_sample_time

sensors

In1

Data Type Conversion

double
To Workspace

fuel_rate

1 es_i

es_o
sensors

O2_normal

fuel_mode

O2_normal

est_air�ow

fb_correction

est_air�ow

fb_correctionfuel_mode
fuel_rate

1
fuel_rate

est_air�ow

fb_correction fuel_rate

fuel_mode

control_logic

air�ow_calc

fuel_calc

t0: 0 0.899341 t1: 0.899541 p: 0.899441 n: 177 x: 160

t0: 0 0.594344 t1: 0.894541 p: 0.891444 n: 178 x: 160

t0: 0 0.894928 t1: 0.895128 p: 0.895028 n: 179 x: 161

t0: 0 0.895504 t1: 0.895704 p: 0.895804 n: 180 x: 162

figure 3. Screenshots of an SMC experiment on an FFCS. (a) A diagram of the fuel rate control subsystem. (b) Variable values related to

the probability of the sensor failure detector and estimator (SFDE) satisfying reqthrottle. The last line in Figure 3b indicates that 162 of the 180

generated sample traces satisfy reqthrottle so far. That line also indicates that the probability of the SFDE satisfying reqthrottle is 0.895604.

40 Ieee Software | www.coMputer.org/Software

FOCUS: Safety-CritiCal Software

Figure 3 shows a snapshot of an FFCS simulation running
with SMC. In Figure 3a, the three component blocks corre-
spond to the FFCS components in Figure 2 (for example, the
control_logic block corresponds to the SFDE). The sensors block
represents all four sensor inputs; the fuel_rate block represents
the fuel rate output.

In Figure 3b, the SMC tool displays variable values related
to the probability that the SFDE satisfies reqthrottle. Specifi-
cally, p is a calculated probability, n is the number of sample
simulation traces so far, and x is the number of successful
traces so far. For example, the last line in Figure 3b indicates
that 162 of the 180 generated traces satisfy reqthrottle. That
line also indicates that the probability of the SFDE satisfying
reqthrottle is 0.895604 so far.

We built a stochastic environment model that generates
random faults at the sensors. We made a random-fault gen-
erator module and connected it to the sensors. The random
faults are modeled by four independent Poisson processes
with different arrival rates. The mean interarrival fault rate
is 8 for the throttle sensor, 10 for the speed sensor, 9 for the
EGO sensor, and 7 for the MAP sensor. For simplicity, we
assume that all FFCS operations have the same occurrence
rate. For a larger, more complex system, we would have to
consider the operational profile so that the most frequently
used operation would have the most testing.

We implemented the BLTL model checker (as a proof-of-
concept prototype) in 500 lines of Matlab script to evaluate
the eight functional-safety properties. In this case, it evalu-
ates req

throttle, reqspeed, reqEGO, and reqMAP over Matlab/Simu-
link simulation traces.

We implemented the BIET statistical analyzer (http://
pswlab.kaist.ac.kr/tools/SMC) in 50 lines of Matlab script.
The BIET analyzer is independent from the model checker
and functional-safety requirements.

We plan to implement and publicly release a general

model checker that can evaluate arbitrary BLTL formulas
over Matlab/Simulink simulation traces. The BLTL model
checker and the BIET analyzer will be reusable for other tar-
get systems without modification.

Experiment Results
Table 1 lists the results of applying SMC to the SFDE. On the
basis of the probabilities and weight values in the table, we
calculate Ri′ as

R 0.11 0.999889 0.45 0.999989

0.09 0.999933 0.35 0.999989

0.999973

i

�

′ = × + ×
+ × + ×

.

Because the calculated reliability is higher than the goal
(0.99997), we conclude that the SFDE satisfies the goal. In
total, the experiments consumed approximately 377 Mbytes
for simulating the FFCS and 5 Mbytes for BLTL trace check-
ing and BIET analysis.

Generating trace samples consumes 99 percent of the to-
tal verification time (for example, 317.17 out of 318.91 hrs.
for reqthrottle). So, we can significantly reduce the verifica-
tion time by generating sample traces in parallel. Because
the generated random samples are independent from each
other (that is, Bernoulli-independent, identically distrib-
uted random samples), we can run multiple simulators on
multiple machines to accelerate trace generation. This lets
us assess a target component’s reliability within a modest
time frame by running hundreds of simulators on a cloud
computing platform such as Amazon EC2 (Elastic Com-
pute Cloud). For example, with 100 machines, we can cal-
culate a probability for reqthrottle in approximately five hours
(317.17/100 + 0.75 + 0.99).

To further reduce verification time, we plan to apply hy-
brid SMC techniques that are faster than BIET.10

ta
b

l
e

 1 Table 1. The statistical-model-checking results for validating the reliability of the sensor
failure detector and estimator. The component’s reliability was 0.999973.

Require-
ment Weight Probability

No. of
samples

No. of
failed

samples

Trace
generation
time (hrs.)

BLTL model-
checking

time (hrs.)*

BIET
analysis

time (hrs.)*

Total
verification
time (hrs.)

reqthrottle 0.11 0.999889 776,747 85 317.17 0.75 0.99 318.91

reqspeed 0.45 0.999989 92,098 0 37.99 0.19 0.26 38.44

reqEGO 0.09 0.999933 533,735 35 220.91 0.75 1.32 222.23

reqMAP 0.35 0.999989 92,098 0 38.01 0.20 0.26 38.47

* BLTL stands for bounded linear temporal logic; BIET stands for Bayesian interval estimation testing.

 May/June 2013 | Ieee Software 41

M any safety-critical system
domains, such as the auto-
motive or avionics domains,

have adopted model-driven develop-
ment. So, industries in those domains
can incorporate our framework seam-
lessly. Adopting our framework will
increase system reliability and decrease
development costs through early detec-
tion of design faults or incorrect reli-
ability allocation.

acknowledgments
National Research Foundation of Korea
grants 2012046172 and 2010-0014375,
Ministry of Knowledge Economy/Korea
Evaluation Institute of Industrial Technology
grant 10041752, and Dual-Use Technology
Program grant UM11014RD1 in Korea sup-
ported this research.

references
 1. D.S. Herrmann, Software Safety and Reliabil-

ity, IEEE CS, 1999.
 2. IEC 61508, Functional Safety of Electrical/

Electronic/Programmable Electronic Safety-
Related Systems, Int’l Electrotechnical Com-
mission, 2003.

 3. ISO 26262, Road Vehicles—Functional
Safety, Int’l Org. for Standardization, 2011.

 4. System Reliability Toolkit, Reliability Infor-
mation Analysis Center, 2005.

 5. J. Lauber, T.M. Guerra, and M. Dambrine,
“Air-Fuel Ratio Control in a Gasoline En-
gine,” Int’l J. Systems Science, vol. 42, no. 2,
2011, pp. 277–286.

 6. M.H. Halstead, Elements of Software Science,
Elsevier, 1977.

 7. A. Stellman and J. Greene, Applied Software
Project Management, O’Reilly Media, 2005.

 8. W.S. Humphrey, PSP: A Self-Improvement
Process for Software Engineers, Addison-
Wesley Professional, 2005.

 9. P. Zuliani, A. Platzer, and E.M. Clarke,
“Bayesian Statistical Model Checking with
Application to Stateflow/Simulink Verifica-
tion,” Proc. 13th ACM Int’l Conf. Hybrid
Systems: Computation and Control (HSCC
10), ACM, 2010, pp. 243–252.

 10. Y. Kim and M. Kim, “Hybrid Statistical
Model Checking Technique for Reliable Safety
Critical Systems,” Proc. IEEE Int’l Symp.
Software Reliability Eng. (ISSRE 12), IEEE
CS, 2012; http://pswlab.kaist.ac.kr/
publications/issre2012_yjkim.pdf.

youngjoo kiM is a full-time researcher at S-Core. Her research
interests include automated software testing and statistical model
checking. Kim received an MS in computer science from the Korea
Advanced Institute of Science and Technology. Contact her at jerry88.
kim@gmail.com.

okjoo Choi is a research assistant professor at the Korea Advanced
Institute of Science and Technology’s Department of Computer Science.
Her research interests include software process, software safety, and
reliability. Choi received a PhD in computer science from Sookmyung
Women’s University. Contact her at okjoo.choi@kaist.ac.kr.

Moonzoo kiM is an associate professor at the Korea Advanced
Institute of Science and Technology’s Department of Computer Science.
His research interests include automated software testing and verifica-
tion, concurrent program testing, and formal analysis of embedded
software. Kim received a PhD in computer and information science
from the University of Pennsylvania. He’s a member of IEEE and ACM.
Contact him at moonzoo@cs.kaist.ac.kr.

jongMoon baik is an associate professor at the Korea Advanced
Institute of Science and Technology’s Department of Computer Science.
His research interests include software process modeling, software
economics, software reliability engineering, and software Six Sigma.
Baik received a PhD in computer science from the University of South-
ern California. He’s a member of IEEE and ACM. Contact him at jbaik@
kaist.ac.kr.

tai-hyo kiM is the CEO of FormalWorks. His research interests
include formal methods and worst-case execution time analysis. Kim
received a PhD in computer science from the Korea Advanced Institute
of Science and Technology. Contact him at taihyo.kim@formalworks.
com.

a
b

o
u

t
 t

h
e

 a
u

t
h

o
r

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

www.computer.org/software

