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 Abstract – Typical robot development requires that 
hardware be mostly functional before significant software 
development begins.  Utilizing virtual prototype of hardware 
and its environment can reduce development time and 
manufacturing cost.  Virtual prototyping is, however, a highly 
challenging task requiring in-depth knowledge in many 
disciplines.  Few of simulation tools developed to alleviate this 
difficulty fully manage the complexity caused by the fact that 
developer must design and manage form (physical shape), 
function, and behavior altogether incrementally.  Also, such 
simulation tools often do not support co-development of the 
target software and its test environment from requirements 
analysis to implementation. 
 In this paper, we present our experience of developing a 
virtual prototype of Samsung Home Robot (SHR) with 
Samsung Advanced Institute of Technology (SAIT) using 
ASADAL/OBJ. Virtual prototyping in ASADAL/OBJ enables 
incremental co-development of both target system and its test 
environment in an object-oriented way.  Furthermore 
ASADAL/OBJ facilitates concurrent development of form, 
behavior, and function.  These features increase productivity as 
well as confidence through incremental refinement and 
validation.  We give a brief background on the ASADAL/OBJ 
framework, then illuminate our experience of developing a 
virtual prototype of SHR.  
 Index Terms – virtual prototyping, 3D simulation, 
incremental validation, object-oriented development 
 

I.  INTRODUCTION 

 Typical development of a robot consists of two often 
sequential, but distinct processes – developing hardware 
components and then software application. Thus, most  
significant application development is delayed until the 
hardware is mostly functional. Also, prototype hardware is 
manufactured in very small quantity because prototype 
should go through several major revisions until final mass 
production.  The lack of available physical HW leads to 
lengthening the application development time.  
 Virtual prototyping of hardware using a software 
simulator allows much of the application to be developed 
without physical hardware. This technique gives several 
benefits [1,2]. First, development time can be significantly 
reduced.  Building a proof of concept virtual prototype takes 
much less time than building a physical prototype.  Thus, 
software development can start much earlier.  Second, the 
hardware design flaws can be detected through validation of 
a virtual prototype before manufacturing prototype 
hardware.  Third, debugging/testing an application can be 
more productive in a virtual environment than in a hardware 
environment.  Without a virtual prototype of a robot, robot 
application developers and testers should wait for their turn 

to use available physical prototypes, which may be of very 
limited quantity.  Furthermore, when software and hardware 
are still in development, available prototypes become further 
limited because prototypes tend to be damaged or 
disassembled frequently.  Last, the virtual prototype can be 
utilized as an educational tool for human operators of the 
machine or as a tele-operation application[3]. 
 Virtual prototyping requires, however, in-depth 
knowledge in many disciplines such as stereoscopic display, 
multimodal interaction and processing, computer graphics, 
dynamics and physical simulation. There exist various 
simulation tools for alleviating these difficulties.  Physics 
engines including Player/Stage[4], Webots[5], and Open 
Dynamics Engine [6] provide a virtual reality environment 
supporting physical laws such as collision and friction in 
varying degrees [7].  AdeptRapid[8], CM-Labs Vortex[9], 
and DELMIA IGRIP[10] provide more sophisticated 
simulation but not real-time performance.  All of the above 
works demonstrate realistic 3D visualization of a robot and 
its environment, and ease of building 3D models by 
abstracting away low-level details and providing easy-to-use 
APIs. 

The main difficulty of virtual prototyping lies in the 
management of complexity; developers must design and 
manage three interrelated facets at the same time - form (3D 
shape of virtual objects and its physical properties), function 
(what virtual objects do), and behavior (how individual 
virtual objects carry out functions) as illustrated in Fig 1. 

 

 
 

Figure 1.  Specification of form, function, and behaviour 
 

Furthermore, construction of a virtual world often 
requires many revisions. Changing one aspect of a virtual 
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world will undoubtedly affect other aspects. For instance, 
different shapes and configurations can result in different 
dynamic behaviors (e.g. two different robot manipulators 
differing in size may have different work volumes and 
capabilities).  If virtual prototypes are developed in 
sequence of form design, then function/behavior 
programming separately, it easily leads to spaghetti-like 
code through iterative revisions.  As a consequence, 
information regarding function, behavior, and constraints 
among them may lose consistency. 
 In this paper, we present our experience of developing a 
virtual prototype of Samsung Home Robot (SHR) with 
Samsung Advanced Institute of Technology (SAIT). We 
used ASADAL/OBJ[11] to develop a 3D visual model in 
Form Specification Language (FSL), and behavior 
specifications in Statechart [12] formalism.  We briefly 
explain the overview of ASADAL/OBJ, and then illustrate 
our experimental results from the project 

II. OVERVIEW OF ASADAL/OBJ FRAMEWORK 

ASADAL/OBJ is a 3D virtual prototyping extension of 
ASADAL[13] which is a real-time specification, validation, 
and verification toolset. With similar goals, SIMAN[14], 
SIMSCRIPT[15], and SLAM II[16] facilitate accurate 
description of systems based on  Statechart formalism.  
They, however, are limited to passive visualization of spatial 
components. 

The main modelling philosophy of ASADAL/OBJ is 
incremental co-development of a target system and its 
environment. The incremental co-development allows a 
target system and its environment to be developed, 
validated, and delivered together in stages, not separately as 
illustrated in Fig 2.  Incremental co-development reduces 
development risks by breaking a project into series of 
smaller subprojects. In addition, it increases progress 
visibility by developing and validating finished operational 
pieces of a target system against its (testing) environment. 
Testing environment is also developed incrementally 
together with the target system, long before the complete 
target system is operational.  The object-oriented nature of 
ASADAL/OBJ facilitates further this incremental co-
development.  

 

 
 

Figure 2.  Incremental co-development and continuous validation 
 
Physical properties and configuration of an object 

(form) should evolve incrementally together with its 
behavior and function. Form is expressed in FSL describing 

physical properties/relationships/constraints among physical 
objects (e.g. a robot body follows its wheels). The behavior 
and function specification are constructed using Statechart 
and Data Flow Diagram (DFD) respectively. Spatial 
movement of an object is coupled with corresponding 
behavior and function specifications of the object.  In other 
words, a FSL specification may contain spatial properties in 
terms of control data updated by DFD functions, which are 
invoked in Statechart behavioral model.  

III. MODELING/VALIDATION PROCESS OF ASADAL/OBJ 

A. Form Specification 
 
A physical object of a virtual prototype is represented 

by an object created by instantiating the corresponding form 
class.   A form class is created by either drawing 3D shape 
using a CAD-like drawing tool in ASADAL/OBJ or 
importing CAD or 3D-MAX data directly. There are several 
meta-classes that abstract various spatial and behavioral 
characteristics of objects as shown in Fig 3.  From these 
meta-classes, physical characteristics can be simply 
inherited.  

 
 

Figure 3.  Meta-classes of spatial objects 
 

Every form class inherits Spatial class which 
contains common physical attributes such as volume, 
position, orientation, and related methods such as 
getPosition() and getOrientation().  Spatial 
class has four direct child classes – Active, Inactive, 
Dynamic, and Static. Active class represents 
objects such as motors and joints that have ability to move 
other objects.  Inactive class represents objects without 
such ability.   Dynamic class means objects which can be 
moved by other objects.  Static, on the contrary, stands 
for objects which can not be moved. ActiveDynamic, 
InactiveDynamic, ActiveStatic, and 
InactiveStatic classes are created as combinations of 
these four classes. Spontaneous class represents objects 
which can move autonomously without force outside. 

An Active object has a list of its passive objects and 
defines acceleration and velocity applied to its passive 
children. More specifically, for each moving object, 
acc<x> (acceleration), vel<x> (velocity), and transVal 
(moving distance) are defined for linear movement, and 
aacc<x>, avel<x>, and rotVal (rotating angle) are 
defined for angular movement where <x> is x, y, or z axis. 

Besides movement, physical primitive relations between 
objects, such as interfere, contact, above, and 
below, can be defined abstractly.  For example, 
interfere is established between objects when the 
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intersection of their volume is nonempty. Contact is 
established when two objects do not interfere with each 
other but the shortest distance between two objects is 
smaller than the predefined contact distance.  Additional 
relations can be defined based on the pre-defined primitive 
relations.  When a relation starts to be true or false, a 
notification event is generated.  This event is used by the 
functional or behavioral specification.  For example, when a 
robot A is about to collide with a sofa B, a relation 
collision (A,B) defined as below becomes true. 

 
collision(A, B) :-  
 instanceOf(A,CollisionA*), 
 instanceOf(B,Sofa),  

    interfere(A,B). 
 

Then, an event notifying that collision(A,B)becomes 
true is generated. Behavioral specification of the 
actuator receives this event and invokes a procedure for 
collision avoidance (PCA) defined in function specification 
(see Fig 1).   

 
B. Behavior and Function Specifications 
 

When we define a form, at the same time, we may 
specify intended behavior and functional structure using 
Statechart and DFD. Statechart specifies when processes in 
DFD are activated as states change. The rounded rectangles 
in Statechart represent states and dotted lines divide a state 
into concurrent states. The computations that processes 
(represented as circles) in DFD carry out are specified using 
Computation Specification Language (CSL) which is a 
simplified C-like language.  

For example, Fig 1 shows specifications of form, 
behavior, and function of an actuator component of a home 
service robot.  A composite state Actuator located at the 
top right corner of Fig 1 has two concurrent behaviors.  Also, 
bottom part of Fig 1 describes three functional processes 
Collision Avoidance, Normal Move and 
Standstill.  These behavioral and functional 
specifications are responsible for moving a robot safely 
without colliding into obstacles.   

The collision avoidance mechanism in Fig 1 is refined 
as described in Fig 4 and Fig 5. The sub-state Collision 
Avoiding of Statechart in Fig 1 is refined into three sub-
states Rotating for Avoidance, Translating 
for Avoidance, and Adjusting in Fig 4.  
Accordingly, the Collision Avoidance process of 
DFD in Fig 1 is refined into two processes Collision 
Avoidance Move and Processing Adjustment 
as depicted in Fig 5.  

 

                                                           
* CollisionA is an imaginary object attached to the robot used for 
collision detection by a structured light sensor (see Sec IV.A and bottom 
part of Fig 1) 

 
Figure 4. Refined behavioral specification of actuator 

 
 

 
Figure 5.  Refined functional specification for actuator 

 
C. Validation Framework 

 
Once form, behavior, and function specifications of 

objects are developed, logical consistency, correctness, and 
the timing properties of the specification can be analyzed. 
The simulator engine of ASADAL/OBJ can visualize 
operations of a robot based on these form/behavior/function 
specifications. The simulator, in addition, is capable of 
performing stochastic data flow analysis, reachability 
analysis, and non-determinism analysis.  The form simulator 
(implemented using Jun for Java [17]) visualizes 
transformation of dynamic objects, while updating relations 
between the objects. Using attribute values of objects (e.g. 
position or velocity) and primitive spatial relations, the 
inference engine of ASADAL/OBJ checks constraints on 
the relations.  At the same time, the inference engine logs 
violations in a simulation log file, or prompts to a user for 
remedial actions. This simulation driven validation process 
is continued in an incremental fashion. 

IV. BACKGROUND OF SHR100 

SHR is a prototype of home service robot for various 
daily home services such as vacuum cleaning and 
controlling home appliances, etc.  
 
A. Components of SHR100 

 
SHR100 has a single board computer (Pentium IV with 

512MB memory running embedded WindowsXP) 
controlling peripherals as depicted in Fig 6. 
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Figure 6.  Components of SHR100 
 

 Input peripherals 
– 1 ceiling camera for building a map (640x480 
resolution) 
– 1 front camera for recognizing users and remote 
surveillance (320x240 resolution and 15 frames/s) 
– 8 microphones for speaker localization and speech 
recognition (8 Khz sampling rate) 
– 1 structured light sensor for obstacle detection 

 Output peripherals 
– 1 LCD display for information display 
– 1 speaker for speech generation 
– 2 actuators for right and left wheels 

 Input/output peripheral 
– Wireless LAN for communicating to a home server. 

 
B. Services of SHR100 
 

SHR100 provides various services including the 
following primitive services: 

1) Call and Come (CC) 
This service first analyzes audio data sampled from the 

eight microphones, which are attached to the surface of the 
robot, to detect predefined sound patterns (e.g., hand clap or 
voice command). There are two commands “come” and 
“stop”  Once a “come” command is recognized, the robot 
tries to detect the direction of sound source by comparing 
the strength of sound captured by the eight microphones 
using MUSIC algorithm[18]. Then, the robot rotates to the 
direction of sound source and tries to recognize a human 
face by analyzing video data captured by the front camera. If 
the caller’s face is detected, the robot moves forward until it 
reaches within 1 meter from the caller.  A “stop” command 
makes the robot stop.  If any of command recognition, 
sound source detection, or face recognition fails, CC resets 
to the initial state. CC is preemptible, i.e., while CC is 
executed, newly recognized command makes the robot 
ignore a previous command and follow the new one. 

2) User Following (UF) 
UF is triggered from the CC service when the robot 

reaches the user within 1 meter range.  The robot constantly 
checks vision data from the front camera to recognize the 
color of human skin, and sensor data from the structured 
light sensor for locating the user and keeps following the 
user within 1 meter range. If the robot misses the user, the 
robot notifies the user by speaking “I lost you” and UF turns 
into CC. Then, the user may make a “come” command to let 
the robot recognize her and restart UF.  UF is a preemptible 
service. 

3) Security Monitoring (SM) 
The robot patrols around a house using the map 

generated by the simultaneous localization and map building 
(SLAM) module for surveillance. Intrusions or accidents are 
defined as patterns recognizable from vision and sound data. 
For example, an intrusion can be detected by watching 
images and monitoring sound from doors and windows. 
Once such an event is detected, the robot notifies a user 
directly via an alarm or indirectly through a home server. 

4) Tele-presence (TP) 
A remote user can control a robot using a PDA. The 

robot sends periodically a map of the house generated by the 
SLAM module to the PDA. The user can command the 
robot to move to a specific position in the map displayed on 
the PDA. In addition, the robot can send images obtained 
from the front camera to the remote PDA for surveillance 
purpose. While the user is out of house, the robot can 
communicate with the user through a home server.  

V. PROTOTYPING SHR100 WITH ASADAL/OBJ 

A. Development History  
 
SHR100 is a successor of SHR50 and SHR00.  

Development of SHR00 started in 2002 by four separate 
teams consisting of 13 people working on speech 
recognition, vision recognition, map building, and actuator 
control.  SHR50 as well as SHR00, however, often exhibited 
unstable behaviors such as missing user commands and 
stuttered movement although each part had worked 
successfully when not integrated (this kind of failure is not 
uncommon, see [19]).  As a consequence, SAIT gave up 
SHR50 and SHR00 and developed both hardware and 
software of SHR100 from scratch.  After ten months into the 
new development (when hardware of SHR was mostly 
working), POSTECH joined the project and reviewed the 
hardware and software requirement specifications and built 
a virtual prototype of SHR100 for validation of software 
applications. 
  
B. Modeling Physical Hardware 
 
 Currently, the overall virtual environment is represented 
as a room consisting of a floor on which all other objects 
exist: a SHR100, a human who gives commands to the 
SHR100, and a sofa which is an obstacle (see Fig 11). We 
modeled a body and a power switch of the SHR100 first, 
then added actuators, a front camera, and so on 
incrementally. The components of SHR100 we modeled are 
depicted in Fig 8. 

 
Figure 7.  Subcomponents of SHR100 
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 Each component has corresponding behavioral 
specification as well as functional specification. The 
assumption we made for modeling hardware components 
are as follows. We modeled a front camera as an ideal one in 
that the camera detects human without failure within view 
angle of 60 degrees and within 4 meter range.  Similarly, 8 
channel microphones always detect the direction of sound 
and recognize commands of the user correctly regardless of 
the distance from the human. Furthermore, the actuator does 
not fail to rotate a given rotation of angle.  Therefore, once a 
user gives a “stop” command or a “come” command, the 
robot does not fail to follow the command. These simplified 
assumptions are beneficial for rapid prototyping of hardware 
and for validating the software controller quickly.  Once we 
validate the software controller, we can refine these devices 
with more realistic physical characteristics and then refine 
software controller accordingly.  
 
C. Modeling Software Controller 
 
 The overall software architecture of SHR100 is depicted 
in Fig 8. Each of the service components such as CC  and 
UF controls the computational components such as Vision 
Manger and Audio Manager. The Mode Manager 
component defines the system modes (e.g., initialization, 
termination, and power saving modes) and the interaction 
policy (e.g., priority, concurrency) between the service 
components.  
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& Come
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Control
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Navigation User 
Interface

Vision 
Manager

Audio 
ManagerSLAM

Data 
Repository

Mode
Manager

Event FlowData Flow

NameName Computational 
Component

Legend

Name Service 
Component

 
 

Figure 8. Software architecture of SHR100 
 
 The input data from the sensors (e.g., the 8-channel 
microphones, the front camera, etc) are gathered and 
processed by the computational components, and the results 
are stored in the Data Repository. For example, the SLAM 
component generates map and current position data, and the 
Navigation component uses the data to determine the next 
destination of the robot. Also, the computational 
components send events (e.g., user’s voice commands such 
as “stop” or “come” recognized by Audio Manager) to 
Mode Manager. The events are processed by Mode Manager 
to determine the global state of the robot, and then they are 
delivered to relevant service components. (More details of 
the software architecture can be found in [20].) 

The service components are developed separately but 
interactions between them are specified in Mode Manager. 

For instance, Fig 9 shows which events activate the CC or 
UF services. Note that the active service is switched from 
UF to CC, when a “User Lost” event is reported from Vision 
Manager. As a result, the UF service is suspended until the 
CC service relocates the user and generates a “Resume UF” 
event (See Fig 10 for the behavior specification of UF). 
  

Current Service

No Service

UF Service
Activated

CC Service
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Stop Cmd / 
Deactivate

Service Activated
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Activate UF

CC Cmd /
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CC Done
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Figure 9. Behavioral specification of Mode Manager 
 

UF Ready

Activate UF

Deactivate
Suspend UFResume UF

UF Suspended

User Following

Deactivate

 
 

Figure 10. Behavioral specification of UF 
 

D. Simulation Results 
 

It took less than a week to develop a virtual prototype of 
SHR100 and its environment by a graduate student who had 
no prior experience with ASADAL/OBJ.  Fig 11 illustrates a 
snapshot of the visual simulation of SHR100 using 
ASADAL/OBJ.  In the room, a sofa,  SHR100, and a person 
exist.  An ASADAL/OBJ user can move each object via 
drag-and-drop.  Simulation starts by generating an event to 
power on SHR100.  Then, the user moves the person to a 
specific place such as behind the sofa.  Finally, the user 
generates a command (e.g. “come” or “stop”) by clicking an 
input event from a list of possible input events.  As a 
reaction to the command, SHR100 rotates and moves 
towards the person by moving around the sofa.  While the 
SHR100 is operational, current states of the components are 
indicated with red color in the Statechart window as in Fig 
11. 

We tried two different collision avoidance algorithms.  
The first one was a simple algorithm – when an obstacle is 
detected, the robot turns 90 degree in clockwise direction 
and moves 2 meters forward, then moves towards the 
destination again.  The second one was more sophisticated 
one: it estimates the size of the obstacle and finds the 
shortest de-tour path using trigonometric functions. This 
change was easily incorporated into the robot by simply 
modifying the function specification for collision avoidance 
(see Fig 5).  We could see that the second algorithm showed 
better movement. 
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Another notable result during the simulation was that 
we observed that SHR100 sometimes ignored a “stop” 
command and did not stop.  This problem turned out to be a 
feature interaction problem [21] between UF and CC.  
Basically, UF was designed to track a user only with vision 
data, not with audio data. Therefore, when UF fails to locate 
the user the robot was following, UF requests CC to locate 
the user by detecting the direction of the sound source. At 
this point, the feature interaction occurred when the user 
gave a “stop” command; the CC service sent the direction of 
sound source to UF and UF resumed moving the robot to the 
direction of the user without stopping the robot.  After 
modifying CC, UF, and Mode Manger appropriately, we 
could solve the problem. 

 
VI. CONCLUSION 

 
We have described our experience of building a virtual 

prototype of SHR100 using ASADAL/OBJ.  With support 
for incremental co-development of a target system as well as 
its environment, developing and validating the virtual 
prototype was not an intimidating task. We started building 
the virtual prototype of SHR100 by creating a body. Then, 
we added components and their behaviors/functions to the 
body one by one.  At the same time, we built a test 
environment including a sofa and a person so that we could 
validate the prototype incrementally.  As a result, a graduate 
student without prior experience with ASADAL/OBJ could 
build and validate the prototype in a week. In addition, 
through 3D visual simulation of the prototype, we could 
detect a problem of ignoring “stop” command due to a 
feature interaction between CC and UF services. Also, we 
could validate visually the effectiveness of refined collision 
avoidance algorithm compared to the original one.   

As a future work, we plan to add more service features 
to the prototype and refine the prototype so that we can have 
a more realistic virtual prototype of SHR100.  
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