
3D Virtual Prototyping of Home Service Robots
Using ASADAL/OBJ

Kyo Chul Kang, Moonzoo Kim, Jaejoon Lee, Byungkil
Kim Youngjin Hong, Hyoungki Lee, Seokwon Bang

Computer Sciecne and Engineering Department Samsung Advanced Institue of Technology
Pohang, South Korea Suwon, South Korea

{kck,moonzoo,gibman, dayfly}@postech.ac.kr {bhong,twinclee,banggar.bang}@samsung.com

 Abstract – Typical robot development requires that
hardware be mostly functional before significant software
development begins. Utilizing virtual prototype of hardware
and its environment can reduce development time and
manufacturing cost. Virtual prototyping is, however, a highly
challenging task requiring in-depth knowledge in many
disciplines. Few of simulation tools developed to alleviate this
difficulty fully manage the complexity caused by the fact that
developer must design and manage form (physical shape),
function, and behavior altogether incrementally. Also, such
simulation tools often do not support co-development of the
target software and its test environment from requirements
analysis to implementation.
 In this paper, we present our experience of developing a
virtual prototype of Samsung Home Robot (SHR) with
Samsung Advanced Institute of Technology (SAIT) using
ASADAL/OBJ. Virtual prototyping in ASADAL/OBJ enables
incremental co-development of both target system and its test
environment in an object-oriented way. Furthermore
ASADAL/OBJ facilitates concurrent development of form,
behavior, and function. These features increase productivity as
well as confidence through incremental refinement and
validation. We give a brief background on the ASADAL/OBJ
framework, then illuminate our experience of developing a
virtual prototype of SHR.
 Index Terms – virtual prototyping, 3D simulation,
incremental validation, object-oriented development

I. INTRODUCTION

 Typical development of a robot consists of two often
sequential, but distinct processes – developing hardware
components and then software application. Thus, most
significant application development is delayed until the
hardware is mostly functional. Also, prototype hardware is
manufactured in very small quantity because prototype
should go through several major revisions until final mass
production. The lack of available physical HW leads to
lengthening the application development time.
 Virtual prototyping of hardware using a software
simulator allows much of the application to be developed
without physical hardware. This technique gives several
benefits [1,2]. First, development time can be significantly
reduced. Building a proof of concept virtual prototype takes
much less time than building a physical prototype. Thus,
software development can start much earlier. Second, the
hardware design flaws can be detected through validation of
a virtual prototype before manufacturing prototype
hardware. Third, debugging/testing an application can be
more productive in a virtual environment than in a hardware
environment. Without a virtual prototype of a robot, robot
application developers and testers should wait for their turn

to use available physical prototypes, which may be of very
limited quantity. Furthermore, when software and hardware
are still in development, available prototypes become further
limited because prototypes tend to be damaged or
disassembled frequently. Last, the virtual prototype can be
utilized as an educational tool for human operators of the
machine or as a tele-operation application[3].
 Virtual prototyping requires, however, in-depth
knowledge in many disciplines such as stereoscopic display,
multimodal interaction and processing, computer graphics,
dynamics and physical simulation. There exist various
simulation tools for alleviating these difficulties. Physics
engines including Player/Stage[4], Webots[5], and Open
Dynamics Engine [6] provide a virtual reality environment
supporting physical laws such as collision and friction in
varying degrees [7]. AdeptRapid[8], CM-Labs Vortex[9],
and DELMIA IGRIP[10] provide more sophisticated
simulation but not real-time performance. All of the above
works demonstrate realistic 3D visualization of a robot and
its environment, and ease of building 3D models by
abstracting away low-level details and providing easy-to-use
APIs.

The main difficulty of virtual prototyping lies in the
management of complexity; developers must design and
manage three interrelated facets at the same time - form (3D
shape of virtual objects and its physical properties), function
(what virtual objects do), and behavior (how individual
virtual objects carry out functions) as illustrated in Fig 1.

Figure 1. Specification of form, function, and behaviour

Furthermore, construction of a virtual world often
requires many revisions. Changing one aspect of a virtual

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 2903

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:02 from IEEE Xplore. Restrictions apply.

world will undoubtedly affect other aspects. For instance,
different shapes and configurations can result in different
dynamic behaviors (e.g. two different robot manipulators
differing in size may have different work volumes and
capabilities). If virtual prototypes are developed in
sequence of form design, then function/behavior
programming separately, it easily leads to spaghetti-like
code through iterative revisions. As a consequence,
information regarding function, behavior, and constraints
among them may lose consistency.
 In this paper, we present our experience of developing a
virtual prototype of Samsung Home Robot (SHR) with
Samsung Advanced Institute of Technology (SAIT). We
used ASADAL/OBJ[11] to develop a 3D visual model in
Form Specification Language (FSL), and behavior
specifications in Statechart [12] formalism. We briefly
explain the overview of ASADAL/OBJ, and then illustrate
our experimental results from the project

II. OVERVIEW OF ASADAL/OBJ FRAMEWORK

ASADAL/OBJ is a 3D virtual prototyping extension of
ASADAL[13] which is a real-time specification, validation,
and verification toolset. With similar goals, SIMAN[14],
SIMSCRIPT[15], and SLAM II[16] facilitate accurate
description of systems based on Statechart formalism.
They, however, are limited to passive visualization of spatial
components.

The main modelling philosophy of ASADAL/OBJ is
incremental co-development of a target system and its
environment. The incremental co-development allows a
target system and its environment to be developed,
validated, and delivered together in stages, not separately as
illustrated in Fig 2. Incremental co-development reduces
development risks by breaking a project into series of
smaller subprojects. In addition, it increases progress
visibility by developing and validating finished operational
pieces of a target system against its (testing) environment.
Testing environment is also developed incrementally
together with the target system, long before the complete
target system is operational. The object-oriented nature of
ASADAL/OBJ facilitates further this incremental co-
development.

Figure 2. Incremental co-development and continuous validation

Physical properties and configuration of an object

(form) should evolve incrementally together with its
behavior and function. Form is expressed in FSL describing

physical properties/relationships/constraints among physical
objects (e.g. a robot body follows its wheels). The behavior
and function specification are constructed using Statechart
and Data Flow Diagram (DFD) respectively. Spatial
movement of an object is coupled with corresponding
behavior and function specifications of the object. In other
words, a FSL specification may contain spatial properties in
terms of control data updated by DFD functions, which are
invoked in Statechart behavioral model.

III. MODELING/VALIDATION PROCESS OF ASADAL/OBJ

A. Form Specification

A physical object of a virtual prototype is represented

by an object created by instantiating the corresponding form
class. A form class is created by either drawing 3D shape
using a CAD-like drawing tool in ASADAL/OBJ or
importing CAD or 3D-MAX data directly. There are several
meta-classes that abstract various spatial and behavioral
characteristics of objects as shown in Fig 3. From these
meta-classes, physical characteristics can be simply
inherited.

Figure 3. Meta-classes of spatial objects

Every form class inherits Spatial class which
contains common physical attributes such as volume,
position, orientation, and related methods such as
getPosition() and getOrientation(). Spatial
class has four direct child classes – Active, Inactive,
Dynamic, and Static. Active class represents
objects such as motors and joints that have ability to move
other objects. Inactive class represents objects without
such ability. Dynamic class means objects which can be
moved by other objects. Static, on the contrary, stands
for objects which can not be moved. ActiveDynamic,
InactiveDynamic, ActiveStatic, and
InactiveStatic classes are created as combinations of
these four classes. Spontaneous class represents objects
which can move autonomously without force outside.

An Active object has a list of its passive objects and
defines acceleration and velocity applied to its passive
children. More specifically, for each moving object,
acc<x> (acceleration), vel<x> (velocity), and transVal
(moving distance) are defined for linear movement, and
aacc<x>, avel<x>, and rotVal (rotating angle) are
defined for angular movement where <x> is x, y, or z axis.

Besides movement, physical primitive relations between
objects, such as interfere, contact, above, and
below, can be defined abstractly. For example,
interfere is established between objects when the

2904

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:02 from IEEE Xplore. Restrictions apply.

intersection of their volume is nonempty. Contact is
established when two objects do not interfere with each
other but the shortest distance between two objects is
smaller than the predefined contact distance. Additional
relations can be defined based on the pre-defined primitive
relations. When a relation starts to be true or false, a
notification event is generated. This event is used by the
functional or behavioral specification. For example, when a
robot A is about to collide with a sofa B, a relation
collision (A,B) defined as below becomes true.

collision(A, B) :-
 instanceOf(A,CollisionA*),
 instanceOf(B,Sofa),

 interfere(A,B).

Then, an event notifying that collision(A,B)becomes
true is generated. Behavioral specification of the
actuator receives this event and invokes a procedure for
collision avoidance (PCA) defined in function specification
(see Fig 1).

B. Behavior and Function Specifications

When we define a form, at the same time, we may
specify intended behavior and functional structure using
Statechart and DFD. Statechart specifies when processes in
DFD are activated as states change. The rounded rectangles
in Statechart represent states and dotted lines divide a state
into concurrent states. The computations that processes
(represented as circles) in DFD carry out are specified using
Computation Specification Language (CSL) which is a
simplified C-like language.

For example, Fig 1 shows specifications of form,
behavior, and function of an actuator component of a home
service robot. A composite state Actuator located at the
top right corner of Fig 1 has two concurrent behaviors. Also,
bottom part of Fig 1 describes three functional processes
Collision Avoidance, Normal Move and
Standstill. These behavioral and functional
specifications are responsible for moving a robot safely
without colliding into obstacles.

The collision avoidance mechanism in Fig 1 is refined
as described in Fig 4 and Fig 5. The sub-state Collision
Avoiding of Statechart in Fig 1 is refined into three sub-
states Rotating for Avoidance, Translating
for Avoidance, and Adjusting in Fig 4.
Accordingly, the Collision Avoidance process of
DFD in Fig 1 is refined into two processes Collision
Avoidance Move and Processing Adjustment
as depicted in Fig 5.

* CollisionA is an imaginary object attached to the robot used for
collision detection by a structured light sensor (see Sec IV.A and bottom
part of Fig 1)

Figure 4. Refined behavioral specification of actuator

Figure 5. Refined functional specification for actuator

C. Validation Framework

Once form, behavior, and function specifications of

objects are developed, logical consistency, correctness, and
the timing properties of the specification can be analyzed.
The simulator engine of ASADAL/OBJ can visualize
operations of a robot based on these form/behavior/function
specifications. The simulator, in addition, is capable of
performing stochastic data flow analysis, reachability
analysis, and non-determinism analysis. The form simulator
(implemented using Jun for Java [17]) visualizes
transformation of dynamic objects, while updating relations
between the objects. Using attribute values of objects (e.g.
position or velocity) and primitive spatial relations, the
inference engine of ASADAL/OBJ checks constraints on
the relations. At the same time, the inference engine logs
violations in a simulation log file, or prompts to a user for
remedial actions. This simulation driven validation process
is continued in an incremental fashion.

IV. BACKGROUND OF SHR100

SHR is a prototype of home service robot for various
daily home services such as vacuum cleaning and
controlling home appliances, etc.

A. Components of SHR100

SHR100 has a single board computer (Pentium IV with

512MB memory running embedded WindowsXP)
controlling peripherals as depicted in Fig 6.

2905

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:02 from IEEE Xplore. Restrictions apply.

Figure 6. Components of SHR100

 Input peripherals
– 1 ceiling camera for building a map (640x480
resolution)
– 1 front camera for recognizing users and remote
surveillance (320x240 resolution and 15 frames/s)
– 8 microphones for speaker localization and speech
recognition (8 Khz sampling rate)
– 1 structured light sensor for obstacle detection

 Output peripherals
– 1 LCD display for information display
– 1 speaker for speech generation
– 2 actuators for right and left wheels

 Input/output peripheral
– Wireless LAN for communicating to a home server.

B. Services of SHR100

SHR100 provides various services including the
following primitive services:

1) Call and Come (CC)
This service first analyzes audio data sampled from the

eight microphones, which are attached to the surface of the
robot, to detect predefined sound patterns (e.g., hand clap or
voice command). There are two commands “come” and
“stop” Once a “come” command is recognized, the robot
tries to detect the direction of sound source by comparing
the strength of sound captured by the eight microphones
using MUSIC algorithm[18]. Then, the robot rotates to the
direction of sound source and tries to recognize a human
face by analyzing video data captured by the front camera. If
the caller’s face is detected, the robot moves forward until it
reaches within 1 meter from the caller. A “stop” command
makes the robot stop. If any of command recognition,
sound source detection, or face recognition fails, CC resets
to the initial state. CC is preemptible, i.e., while CC is
executed, newly recognized command makes the robot
ignore a previous command and follow the new one.

2) User Following (UF)
UF is triggered from the CC service when the robot

reaches the user within 1 meter range. The robot constantly
checks vision data from the front camera to recognize the
color of human skin, and sensor data from the structured
light sensor for locating the user and keeps following the
user within 1 meter range. If the robot misses the user, the
robot notifies the user by speaking “I lost you” and UF turns
into CC. Then, the user may make a “come” command to let
the robot recognize her and restart UF. UF is a preemptible
service.

3) Security Monitoring (SM)
The robot patrols around a house using the map

generated by the simultaneous localization and map building
(SLAM) module for surveillance. Intrusions or accidents are
defined as patterns recognizable from vision and sound data.
For example, an intrusion can be detected by watching
images and monitoring sound from doors and windows.
Once such an event is detected, the robot notifies a user
directly via an alarm or indirectly through a home server.

4) Tele-presence (TP)
A remote user can control a robot using a PDA. The

robot sends periodically a map of the house generated by the
SLAM module to the PDA. The user can command the
robot to move to a specific position in the map displayed on
the PDA. In addition, the robot can send images obtained
from the front camera to the remote PDA for surveillance
purpose. While the user is out of house, the robot can
communicate with the user through a home server.

V. PROTOTYPING SHR100 WITH ASADAL/OBJ

A. Development History

SHR100 is a successor of SHR50 and SHR00.

Development of SHR00 started in 2002 by four separate
teams consisting of 13 people working on speech
recognition, vision recognition, map building, and actuator
control. SHR50 as well as SHR00, however, often exhibited
unstable behaviors such as missing user commands and
stuttered movement although each part had worked
successfully when not integrated (this kind of failure is not
uncommon, see [19]). As a consequence, SAIT gave up
SHR50 and SHR00 and developed both hardware and
software of SHR100 from scratch. After ten months into the
new development (when hardware of SHR was mostly
working), POSTECH joined the project and reviewed the
hardware and software requirement specifications and built
a virtual prototype of SHR100 for validation of software
applications.

B. Modeling Physical Hardware

 Currently, the overall virtual environment is represented
as a room consisting of a floor on which all other objects
exist: a SHR100, a human who gives commands to the
SHR100, and a sofa which is an obstacle (see Fig 11). We
modeled a body and a power switch of the SHR100 first,
then added actuators, a front camera, and so on
incrementally. The components of SHR100 we modeled are
depicted in Fig 8.

Figure 7. Subcomponents of SHR100

2906

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:02 from IEEE Xplore. Restrictions apply.

 Each component has corresponding behavioral
specification as well as functional specification. The
assumption we made for modeling hardware components
are as follows. We modeled a front camera as an ideal one in
that the camera detects human without failure within view
angle of 60 degrees and within 4 meter range. Similarly, 8
channel microphones always detect the direction of sound
and recognize commands of the user correctly regardless of
the distance from the human. Furthermore, the actuator does
not fail to rotate a given rotation of angle. Therefore, once a
user gives a “stop” command or a “come” command, the
robot does not fail to follow the command. These simplified
assumptions are beneficial for rapid prototyping of hardware
and for validating the software controller quickly. Once we
validate the software controller, we can refine these devices
with more realistic physical characteristics and then refine
software controller accordingly.

C. Modeling Software Controller

 The overall software architecture of SHR100 is depicted
in Fig 8. Each of the service components such as CC and
UF controls the computational components such as Vision
Manger and Audio Manager. The Mode Manager
component defines the system modes (e.g., initialization,
termination, and power saving modes) and the interaction
policy (e.g., priority, concurrency) between the service
components.

Call
& Come

User
Following

Home
Appliance

Control
Tele-

Presence

Navigation User
Interface

Vision
Manager

Audio
ManagerSLAM

Data
Repository

Mode
Manager

Event FlowData Flow

NameName Computational
Component

Legend

Name Service
Component

Figure 8. Software architecture of SHR100

 The input data from the sensors (e.g., the 8-channel
microphones, the front camera, etc) are gathered and
processed by the computational components, and the results
are stored in the Data Repository. For example, the SLAM
component generates map and current position data, and the
Navigation component uses the data to determine the next
destination of the robot. Also, the computational
components send events (e.g., user’s voice commands such
as “stop” or “come” recognized by Audio Manager) to
Mode Manager. The events are processed by Mode Manager
to determine the global state of the robot, and then they are
delivered to relevant service components. (More details of
the software architecture can be found in [20].)

The service components are developed separately but
interactions between them are specified in Mode Manager.

For instance, Fig 9 shows which events activate the CC or
UF services. Note that the active service is switched from
UF to CC, when a “User Lost” event is reported from Vision
Manager. As a result, the UF service is suspended until the
CC service relocates the user and generates a “Resume UF”
event (See Fig 10 for the behavior specification of UF).

Current Service

No Service

UF Service
Activated

CC Service
Activated

Stop Cmd /
Deactivate

Service Activated
UF Cmd /
Activate UF

CC Cmd /
Activate CC

CC Done

User Found
/ Resume UF

User Lost
/ Suspend UF,
Activate CC

Figure 9. Behavioral specification of Mode Manager

UF Ready

Activate UF

Deactivate
Suspend UFResume UF

UF Suspended

User Following

Deactivate

Figure 10. Behavioral specification of UF

D. Simulation Results

It took less than a week to develop a virtual prototype of
SHR100 and its environment by a graduate student who had
no prior experience with ASADAL/OBJ. Fig 11 illustrates a
snapshot of the visual simulation of SHR100 using
ASADAL/OBJ. In the room, a sofa, SHR100, and a person
exist. An ASADAL/OBJ user can move each object via
drag-and-drop. Simulation starts by generating an event to
power on SHR100. Then, the user moves the person to a
specific place such as behind the sofa. Finally, the user
generates a command (e.g. “come” or “stop”) by clicking an
input event from a list of possible input events. As a
reaction to the command, SHR100 rotates and moves
towards the person by moving around the sofa. While the
SHR100 is operational, current states of the components are
indicated with red color in the Statechart window as in Fig
11.

We tried two different collision avoidance algorithms.
The first one was a simple algorithm – when an obstacle is
detected, the robot turns 90 degree in clockwise direction
and moves 2 meters forward, then moves towards the
destination again. The second one was more sophisticated
one: it estimates the size of the obstacle and finds the
shortest de-tour path using trigonometric functions. This
change was easily incorporated into the robot by simply
modifying the function specification for collision avoidance
(see Fig 5). We could see that the second algorithm showed
better movement.

2907

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:02 from IEEE Xplore. Restrictions apply.

Another notable result during the simulation was that
we observed that SHR100 sometimes ignored a “stop”
command and did not stop. This problem turned out to be a
feature interaction problem [21] between UF and CC.
Basically, UF was designed to track a user only with vision
data, not with audio data. Therefore, when UF fails to locate
the user the robot was following, UF requests CC to locate
the user by detecting the direction of the sound source. At
this point, the feature interaction occurred when the user
gave a “stop” command; the CC service sent the direction of
sound source to UF and UF resumed moving the robot to the
direction of the user without stopping the robot. After
modifying CC, UF, and Mode Manger appropriately, we
could solve the problem.

VI. CONCLUSION

We have described our experience of building a virtual

prototype of SHR100 using ASADAL/OBJ. With support
for incremental co-development of a target system as well as
its environment, developing and validating the virtual
prototype was not an intimidating task. We started building
the virtual prototype of SHR100 by creating a body. Then,
we added components and their behaviors/functions to the
body one by one. At the same time, we built a test
environment including a sofa and a person so that we could
validate the prototype incrementally. As a result, a graduate
student without prior experience with ASADAL/OBJ could
build and validate the prototype in a week. In addition,
through 3D visual simulation of the prototype, we could
detect a problem of ignoring “stop” command due to a
feature interaction between CC and UF services. Also, we
could validate visually the effectiveness of refined collision
avoidance algorithm compared to the original one.

As a future work, we plan to add more service features
to the prototype and refine the prototype so that we can have
a more realistic virtual prototype of SHR100.

REFERENCES
[1] R.lumia, G.Starr, J.wood, B.Jones, I.M.Shohet, and E.Ledman “An

Approach to minimize robotics system development and integration
time”, International Conference on Robotics and Automation, 1997

[2] S.P.DiMaio, S.E.Salcudean, C.Reboulet, S.Tafazoli, and K.Hashtrudi-
Zaad,”AVirtual Excavator for Controller Development and

Evacuation”, International Conference on Robotics and Automation,
1998

[3] H.R.Nicholls, J.J.Rowland, and M.G.Taylor, “Using Simulation for
Plant Monitoring in Real Time”, International Conference on Robotics
and Automation, 1997

[4] The Player/Stage Project. http://playerstage.sourceforge.net/
[5] Webots. http://www.cyberbotics.com/
[6] Open Dynamics Engine user manual v 0.5 http://ode.org/ode-latest-

userguide.html
[7] M. Lewis and J.Jacobson, “Game Engines in Research”,

Communications of the Association for Computing Machinery
(CACM), NY: ACM 45(1), 27-48, 2002.

[8] J.J.Craig “Geometric algorithms in AdeptRAPID” Proceedings of the
third workshop on the algorithmic foundations of robotics on Robotics,
1998

[9] Algorithms and Techniques in Vortex by CMlabs
http://www.criticalmasslabs.com/products/vortex/algorithms.php

[10] DELMIA web page, http://www.delmia.com/
[11] J. Lee, H.Kim, and K. Kang, “A Real World Object Modeling Method

for Creating Simulation Environment of Real-Time Systems”, ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2000

[12] D. Harel and E. Gery. “Executable Object Modeling with Statecharts”
Proceedings of the 18th International Conference on Software
Engineering, ACM Press, 246-257, Berlin, Germany, 1996

[13] K.C.Kang, K.W.Lee, J.Y.Lee, and G.J.Kim, ”ASADAL/SIM: An
Incremental Multi-Level Simulation and analysis tool for real-time
software Specifications”, Software: Practice and Experience, Vol. 2 8,
Issue 4, pp.445-462, 1998

[14] C.D.Pegden, R.E.Shannon and R.P.Sadowski, “Introduction to
Simulation Using SIMAN”, 2nd Ed., McGraw Hill, New York, 1995

[15] Building Simulation Models with SIMSCRIPT II.5 at
ftp://ftp.casiasl.com/pub/simscript/docs/zbuildin.pdf CACI Products
Company, 1999

[16] A. Pritsker, “Introduction to Simulation & SLAM II”, John Wiley &
Sons, Inc., New York, 1995

[17] Jun for Java by Software Research Associate, Inc,
http://www.sra.co.jp/people/nisinaka/Jun4Java/index_ja.html

[18] G. Su and M. Morf, “The Signal subspace approach for multiple wide-
band emitter location”, IEEE Transaction on acoustics, speech, and
signal processing, vol. ASSP-31, No 6, Dec 1983

[19] A.C. Dominguez-Brito, D. Hernandez-Sosa, J. Isern-Gonzalez, and J.
Cabrera-Gamez, “Integrating robotics software”, IEEE International
Conference on Robotics and Automation, 2004

[20] M.Kim, J.Lee, K. Kang,Y.Hong, and S.Bang, “Re-engineering
Software Architecture of Home Service Robots: A Case Study”,
submitted to IEEE International Conference on Software Engineering
2005

[21] E.J.Cameron and H.Velthujisen, “Feature interactions in
telecommunications systems”, IEEE Communications
Magazine,31(8):46-51, 1993

Figure 11. Snapshot of 3D visual simulation

2908

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:02 from IEEE Xplore. Restrictions apply.

