
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007 285

Using Formal Modeling With an Automated Analysis
Tool to Design and Parametrically Analyze a

Multirobot Coordination Protocol: A Case Study
Joel M. Esposito and Moonzoo Kim

Abstract—Many robot systems employ logic-based or reactive
controllers, making them hybrid systems (i.e., mixed discrete con-
tinuous). However, designing such control laws in a systematic
manner remains a challenging task. In this paper, we apply the
formal modeling paradigm to a team of mobile robots. The linear
hybrid automata modeling framework is used to describe the high-
level design, and the verification software HYTECH is used for
symbolic analysis of the description. The goal is to symbolically
quantify system-level performance as a function of the design
parameters, for the purpose of optimizing and synthesizing design
parameters, verifying safe operation, and quantitatively exploring
tradeoff issues. In order to make the analysis tractable, a series of
restrictive assumptions and simplifications must be made—some
dictated by the linear hybrid automata model and others necessi-
tated by computational cost. We comment on the restrictiveness of
these assumptions and the overall utility of this automated analysis
approach in designing complex robotic systems.

Index Terms—Automata, design automation, formal languages,
mobile robots.

I. INTRODUCTION

DUE TO THE proliferation of small but powerful em-
bedded microprocessors, most mobile robot systems rely

on some form of logic-based or reactive control schemes. In
addition, these processors often are used to fuse information
from a variety of sensors, and communicate with other robots.
As such, most robot systems can be considered hybrid systems,
which typically consist of a collection of digital programs
that interact with each other and with an analog environment.
Other examples of hybrid systems include manufacturing con-
trollers, automotive and flight controllers, medical equipment,
and microelectromechanical systems. It is well known that the
interaction between the discrete and continuous time dynamics
of such system can produce rich and unexpected behavior.
Unfortunately, designing reliable hybrid control systems is a
challenging task. Control theoretic methods are quite limited
and vary on a case-by-case basis.

In this paper, we explore the application of formal modeling
and analysis to the design of a multirobot coordination and
control protocol. This problem is inspired by our experience

Manuscript received March 24, 2005; revised October 5, 2005. This paper
was recommended by Associate Editor G. C. Calafiore.

J. M. Esposito is with the Department of Systems Engineering, U.S. Naval
Academy, Annapolis, MD 21402 USA (e-mail: esposito@usna.edu).

M. Kim is with the Department of Computer Science, Korea Advanced Insti-
tute of Science and Technology, Daejeon 305-701, Korea (e-mail: moonzoo@
cs.kaist.ac.kr).

Digital Object Identifier 10.1109/TSMCA.2006.886378

with our own experimental testbed of a system of autonomous
mobile robots [14]. We consider a task that involves exploring
a room with obstacles while navigating to a goal position. The
task is motivated by military applications (scouting, reconnais-
sance, and surveillance). Typically, the sensory capabilities of
each robot yield only imperfect information about the world,
and in particular, each robot has only estimates about the posi-
tions of the obstacles. When there are multiple robots that can
communicate with one another, they can share knowledge about
the world. The challenge then is to design communication pro-
tocols, in conjunction with control strategies, so that the team
of robots achieves its goal in a coordinated and optimal manner.

Inspired by the success of automated formal methods in dis-
covering subtle errors in hardware designs (cf. [12]), a current
trend is to investigate if these techniques can be generalized
to obtain design aids for hybrid systems. The methodology
advocated by formal approaches to system design requires con-
struction of a high-level description or a (mathematical) model
of the system. The model can then be subjected to a variety
of mathematical analyses such as simulation, model checking,
and performance evaluation. Such modeling and analysis can be
performed in early stages of the design, and offers the promise
of a more systematic approach and greater automation during
the design phase. Unfortunately, the algorithmic analysis of
hybrid systems is a challenging problem, and even the simplest
analysis problems turn out to be undecidable. However, a useful
analysis can be performed for a class of hybrid systems called
linear hybrid automata. The analysis procedure involves sym-
bolic fix-point computation over state sets that are represented
by linear constraints over system variables, and can be imple-
mented using routines to manipulate convex polyhedra. The
procedure has been implemented in the tool HYTECH [3], [16],
and has been applied to case studies such as an audio-control
protocol [19] and a steam boiler [18].

In the case of our multirobot coordination problem, possible
design parameters include the number of robots, the initial posi-
tions of the robots, the frequency of communication, the cost of
communication (e.g., time required to process messages), and
the positions of obstacles and target. Traditional simulation, us-
ing a tool like MATLAB (see www.mathworks.com), requires
that all parameters remain fixed. The parameters could be sam-
pled at discrete values in the range of interest and the simulation
repeated to give the designer some intuition about their impact
on performance. However, there is no guarantee or insight about
how the system will behave at off-sample points. On the other

1083-4427/$25.00 © 2007 IEEE

286 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007

hand, when using verification tools such as KRONOS [13], and
UPPAAL [22], these parameters are set and the tools are used
to detect logical errors by checking whether a high-level model
satisfies a temporal logic requirement. In this paper, however,
these parameters can be left unspecified, and the HYTECH tool
performs an exhaustive symbolic search for all possible settings
of the parameters. The information computed by the tool, then,
can be used to understand the various tradeoffs and ultimately
synthesize parameter values.

This paper contains contributions of interest to two parties:
1) potential users of automated analysis tools especially within
the robotics application area; and 2) designers of the next
generation of automated analysis and formal methods tools.

From a user’s point of view, it illustrates the applica-
tion of a relatively new technology to the area of robotics.
The system considered attempts to model several nontrivial
facets of robotics including sensor uncertainty and multirobot
communication—explaining how certain restrictions can be
met or worked around. More importantly, while previous case
studies of formal methods in other application areas have
focused on verifying safety properties, we are employing reach-
ability analysis to compare and synthesize design alternatives in
a novel way.

From the point of view of the designers of such tools, the
negative outcomes of study might provide a useful feedback
for the design of the next generation of analysis tools. It turns
out that restrictions on the modeling approach, along with
computational considerations, necessitated, making a variety of
simplifying assumptions—the most restrictive of which was the
lack of a Euclidian metric. Ultimately, we were only able to
verify rather simplistic scenarios. Moreover, the extension of
the results computed using the reduced model to the original
problem proved to be quite difficult. Hopefully, the outlined
scenario will serve as a challenge problem to guide the research
in formal verification of hybrid systems, by illustrating the
need for tools which can operate on more general types of
mathematical models.

The outline of this paper is as follows. After reviewing the
basics of formal verification and the definition of linear hybrid
automata in Section III, we explain the multirobot scenario we
wish to verify in Section IV. The main effort in this paper
concerns modeling the application scenario using the linear
hybrid automata. The modeling assumptions, required to fit the
linear hybrid automata paradigm and to ensure the analysis is
tractable, are discussed in detail in Section V. The results of
the analysis experiments are reported in Section VI. Since the
analysis is computationally expensive, we could successfully
analyze only special cases of the original multirobot scenario.
In particular, for two robots and one obstacle, HYTECH was
able to synthesize the region of the possible positions of the
target for which communication reduces the total distance
traveled. While modest, this experiment does yield information
that is computed automatically by a general-purpose tool. In
Section VII, the limitations of this analysis and the impact
of the modeling assumptions are discussed in some detail.
Section VIII discusses the lessons learned and points to crit-
ical areas for improvement for the next generation of formal
modeling and analysis tools.

II. RELATED WORKS

Several nice algorithmic approaches to verification exist
[5], [10], [11], [25], but the set of actual automated parametric
design tools is rather limited. While nonlinear switching con-
trollers have been designed for systems with several modes of
operation (see [7], [31], and [32]), the techniques are generally
only applicable for simple systems with relatively few modes.
Another approach is to carefully partition the state space into
different regions, each with its own specialized control law,
variations on this theme can be found in the literature on
variable structure systems [31] and on multimodal systems [27].
By selecting the state-space partitions so that regions of interest
overlap and by designing controllers with stable equilibrium
points which lie in the overlap, it is possible to control the
transition from mode to mode with predictable performance.
However, requiring stable equilibria to lie in the given regions
is difficult in all, but the simplest topological spaces. A game-
theoretic approach to designing controllers for hybrid systems
with a hierarchical structure is shown to be applicable to
automated highway systems [24], [30]. Threaded petri nets [20]
and backchaining [9] can be used to synthesize high-level
controllers of systems when there is a palette of tunable
controllers available. There is, however, little in the way of
generally applicable automated design tools (the proceedings
of the workshops on hybrid systems provide an excellent survey
of various trends [6], [26]).

Here, we examine the most closely related work on applying
formal methods to problems in robotics. In [15] and [33], the
authors apply the linear temporal logic (LTL) formalism and
some popular model checking tools for such systems to the
problem of robot motion planning and control. They manually
apply a rigorous discrete abstraction procedure; cast the robot’s
objective in the LTL framework; apply an LTL model checking
tool to synthesize a sequence of discrete maneuvers to solve
the resulting motion planning problem; and then devise a series
of controllers that can implement these discrete maneuvers in
continuous time. In [21] and also in [4] and [29], the authors
apply a similar approach using timed automata and correspond-
ing analysis tools (ORCCAD and UPPAAL, respectively) to
synthesize a sequence of discrete transitions to solve a motion
planning problem with moving obstacles.

Both of these sets of works are meritous and appear to have
promising outcomes. However, it is important to distinguish
them from the work presented here. First they examine the
application of LTL and timed automata to area of robotics,
while this paper examines a different modeling framework,
linear hybrid automata. Second, through a series of abstrac-
tions, both works ultimately perform a synthesis on discrete
systems; while this paper explicitly considers continuous dy-
namics (albeit simplified ones) and is able to synthesize optimal
values of a continuous parameter. Finally, while the problems
they consider are interesting applications of formal methods,
many of them are essentially solved problems in robotics
(e.g., motion planning on a grid in the plane). In contrast, we
seek to address more complex systems, with no known unified
solution framework, involving multiple robots, imperfect sens-
ing, and communication. In doing so, we expose limitations of
the framework and automated tool.

ESPOSITO AND KIM: USING FORMAL MODELING WITH AN AUTOMATED ANALYSIS TOOL 287

Regardless, the theme of this paper is still supported by those
works: Automated formal method are promising, but currently
of limited utility in robotics. For example, in [15] and [33],
they are constrained to linear logic; and the discrete abstraction
procedure hinges on a variety of embedded assumptions that
may limit its application to more general problems in robotics.
They also note that currently, model checking programs do
not support design (augmentation was required). In [21], they
comment on the computational complexity of verifying even
modest robotic examples. These themes echo our observations
that current frameworks are limited by expressiveness and tools
are limited by computational complexity.

III. MODELING AND VERIFICATION OF HYBRID SYSTEMS

Before defining a linear hybrid automata, we begin with a
more general description. A hybrid automation [1] is a formal
model to describe reactive systems with discrete and continuous
components. Formally, a hybrid automation H consists of the
following components.

1) A finite directed multigraph (V,E). The vertices are
called the control modes while the edges are called the
control switches.

2) A finite set of real-valued variables X . A valuation ν is a
function that assigns a real value ν(x) to each variable
x ∈ X . The set of all valuations is denoted as ΣX .
A state q is a pair (v, ν) consisting of a mode v and a
valuation ν. The set of all states is denoted as Σ. A region
is a subset of Σ.

3) A function init, assigns to each mode v, a set init(v) ⊆
ΣX of valuations. This describes the initialization of the
system: A state (v, ν) is initial if ν ∈ init(v). The region
containing all initial states is denoted as σI .

4) A function flow, assigns to each mode v, a set flow(v) of
C∞-functions from R+ → ΣX [i.e., a solution to a dif-
ferential equation, x(t)]. This describes the way variables
evolve in a mode.

5) A function inv, that assigns to each mode v, a set inv(v) ⊆
ΣX of valuations. The system can stay in mode v only as
long as the state is within inv(v), and a switch must be
taken before the invariant gets violated.

6) A function jump, assigns to each switch e, a set
jump(e) ⊆ ΣX × ΣX . This describes the enabling con-
dition for a switch, together with the discrete update of
the variables as a result of the switch.

7) A function syn, assigns to each switch e, a label syn(e)
from a set of labels (names). When different components
of a complex system are described individually by hybrid
automata, the event labels on switches of different com-
ponents are used for synchronization.

The hybrid automation H starts in an initial state. During its
execution, its state can change in one of two ways. A discrete
change causes the automation to change both its control mode
and the values of its variables. Otherwise, a continuous activity
causes only the values of variables to change according to the
specified flows while maintaining the invariants.

The operational semantics of the hybrid automation are
captured by defining transition relations over the state space Σ.

Fig. 1. Mobile robot automation which tracks the perimeter of a 4 × 5 room.

For a switch e=(v, v′), we write (v, ν)→e (v′, ν ′) if (ν, ν ′)∈
jump(e). For a mode v and a time increment δ∈R+, we write
(v, ν)→δ (v, ν ′) if there exists a function f ∈flow(v) such that
f(0)=ν, f(δ)=ν ′, and f(δ′)∈ inv(v) for all 0≤δ′ ≤δ. The
transition relations→e capture the discrete dynamics, while the
transition relations→δ capture the continuous dynamics.

As an elementary example, consider Fig. 1 which shows
a hybrid automation of a simple mobile robot which moves
in four directions—up, down, right, and left. The robot is
programmed to follow the wall. Correspondingly, the robot
has four modes: moving_up, moving_down, moving_right, and
moving_left. The mobile robot moves around a room whose
depth is 4 units and whose width is 5 units. Initially, the robot
is in the moving_up mode and located at (0,0). While the robot
is in the moving_up mode, the robot moves up at the rate of
y + 1 units per minute. When the robot reaches the end of
the room (i.e., y becomes four), the robot turns right via the
turn_right transition. Then, the robot changes its mode to the
moving_right mode and moves right at the rate of 2x+ 1. Note
that the transition condition asserts when a mode transition
may occur. In order to force the mode transitions, we add
invariants to modes: the system can remain in a mode only as
long as the corresponding invariant condition is satisfied. Thus,
the invariant condition 0 ≤ y ≤ 4 of the moving_up mode
prescribes that a mode transition must occur before the robot
hits the wall of the room.

The central challenge in algorithmic formal verification of
hybrid systems is to compute the set of reachable states of
a given hybrid automation. In general, this is quite difficult,
however, for a special class of automata, called linear hybrid
automata, the analysis becomes tractable. A hybrid automation
H = (V,E,X, init,flow, jump, syn) is called linear [1], [3].

1) For each mode v, the sets init(v) and inv(v) are described
by Boolean combinations of linear inequalities over the
variables X .

2) For each switch e, jump(e) is described by a Boolean
combination of linear inequalities over the variables X ∪
X ′, where the primed variables X ′ refer to the values of
the variables in X after the switch.

3) For each mode v, allowed flows at a mode v are specified
by a conjunction of linear inequalities over the set Ẋ of
dotted variables representing the first derivatives of the
corresponding variables in X . That is, a C∞-function f
belongs to flow(v) iff the first derivative ḟ of f with
respect to time satisfies each linear inequality for all times
δ ∈ R+.

288 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007

Algorithms for symbolic reachability analysis of hybrid
automata manipulate regions. Let σ be a region of H . The
successor region of σ, denoted post(σ), contains states q′ such
that q →e q

′ for some q ∈ σ and some switch e, or q →δ q
′ for

some q ∈ σ and some δ ∈ R+. A state q is said to be reachable
if q ∈ posti(σI) for some natural number i, where posti

denotes the post operator composed with itself i times. In other
words, the set of all reachable states of a hybrid automation can
be computed by repeatedly applying post to the initial region.
The set of reachable states of a hybrid automationH is denoted
as reach(H).

The above requirements for linear hybrid automata ensure
that for each i, the set posti(σI) can be described by a Boolean
combination of linear inequalities [1]. Furthermore, such sets
can be computed effectively. Fig. 1 is not a linear hybrid
automation because the differential equations contain x and y,
and therefore, the resulting flows are not described by a set of
Boolean inequalities.

The software HYTECH [3], [16]1 supports model checking of
hybrid systems based on the above principles. The implementa-
tion is based on routines to manipulate convex polyhedra. The
input of HYTECH consists of two parts: a system description
section and an analysis section. The system description section
has a textual representation of the linear hybrid automata. The
user describes a system as the composition of a collection of
components. The analysis section verifies the system against
user-defined properties. Properties are checked by applying
reachability tests to regions. For example, to verify a property
that a robot never collides with obstacles, we define a region
of collision states. Then, we show this region is not reachable
from the initial region.

The input to HYTECH can include design parameters-
symbolic constants with unknown, but fixed values. Such
parameters are treated just like any other system variables.
Given a correctness requirement, HYTECH uses the symbolic
computation to determine necessary and sufficient constraints
on the parameters under which violations of the requirement
cannot occur. This feature of parametric analysis is central to
our application as discussed later in Section VI.

IV. MULTIROBOT COORDINATION

The multirobot scenario we consider is motivated by a mil-
itary search and rescue application. We consider a scenario
with two robots, two static convex obstacles, and a goal target
position for both robots as shown in Fig. 2. This scene could
represent the floor plan of a typical indoor mission. Each of the
obstacles can represent furniture for example. The target might
be a door that the robots must reach and travel through. Each
robot is autonomous, in the sense that each robot does its own
sensing, planning, and control—there is no designated “leader.”
We assume the environment is two dimensional, and each
mobile robot has the ability to determine its own position and
orientation. This ability may come from a GPS sensor or from
using a camera to determine landmarks in the environment.
Each robot follows a continuous control law, which attempts to

1http://www-cad.eecs.berkeley.edu/~tah HYTECH.

Fig. 2. Simple scenario that illustrates how cooperation between two robots
can improve the performance of the team in locating and reaching a target
in a partially known environment. Solid ovals are obstacles; dotted ovals are
robot’s successive perceptions. The dot-dash path is pure open loop based on
initial perception. The dashed path is based on robots updating their information
using sensors periodically. The solid path is generated using both sensors and
communication between the robots.

guide it to the goal based on its knowledge about its own loca-
tion and the environment. There is only a single control mode.

Each robot is equipped with a camera that allows it to identify
other robots, obstacles, and the target. The camera has errors
in estimating the position of objects (obstacles, targets, and
other robots) that decrease as the robot approaches the object.
Referring to Fig. 2, the dark ovals indicate the actual obstacle
location while the larger dotted ovals indicate the observed
obstacle geometry, as seen by the robots at the starting config-
uration. Note that in the initial model, the two obstacles appear
to overlap.

If an open-loop control was used for each robot, solely
based on the initial estimate of the obstacles, without any
communication or further sensing, the robot would follow the
dot-dashed paths called the open loop. However, when each
robot gets sensory information from its camera and refines its
world model, we get discrete changes in the path as shown
by the dashed lines. This is called sensor-based or closed-loop
control. Now, the robot controllers are hybrid controllers. The
performance, judged by the length of the path, has improved but
not significantly. There is still no interaction between the robots.

In addition, our robots are able to communicate over a
wireless local area network. However, because of the bandwidth
limitations and the possible clandestine nature of the mission,
the communication either may not be possible or may be
limited to sporadic broadcast of a small volume of data. In this
scenario, the two robots exchange information about their world
models at discrete intervals. The corresponding paths followed
by the robots are labeled solid black lines and are referred to as
“sensor based with communication.” Because the robots pool
their information, the path followed is more efficient—they
are able to take advantage of the narrow opening between the
two obstacles while avoiding collisions.

Robots are in many ways true hybrid systems. In this
scenario, each robot is driven by actuators that are intrinsically
continuous. The dynamics are derived from laws of physics and
are represented by continuous mathematics. Therefore, the ro-
bot motion is continuous. However, this behavior changes, pos-
sibly discontinuously, as new information becomes available

ESPOSITO AND KIM: USING FORMAL MODELING WITH AN AUTOMATED ANALYSIS TOOL 289

through sensing or communication. Furthermore, many of the
aspects of robot operation are inherently algorithmic, such as
path planning, sensing, and localization, and therefore evolve
in a discrete time fashion.

V. MODELING

All formal methods require the system to be expressed in
some standard high-level formalism. HYTECH in particular
requires the system to be described as a linear hybrid automata
[1]—a finite automation augmented with a finite number of
real-valued variables that change continuously, as specified by
constant differential equations/inclusions and linear algebraic
inequalities. A primary challenge in applying a tool such as
HYTECH, or any formal method, is to model a complex non-
linear and stochastic system such as a mobile robot in this rigid
modeling framework. It is worth noting that in previous case
studies in formal verification of hybrid systems, the challenge in
modeling was approximating complex dynamics by rectangular
inclusions. For us, the continuous dynamics can be reasonably
simplified, but a significant approximation is required to make
guard conditions and update rules linear. For instance, we
model obstacles and their estimates as rectangles, approximate
Euclidean distance by Manhattan distance, and require the
robot to move only along horizontal or vertical directions.

In this section, we discuss various aspects of the modeling
process. It is important to emphasize that the modeling effort
was iterative. Frequently, a working model of the system would
be developed, only to realize that for one reason or another, it
was too complex. The final model is presented below. In partic-
ular, we examine the various simplifying assumptions that were
made. They are categorized as follows:

1) simplifying assumptions which are typical in the robotics
literature;

2) further simplifications which were dictated by the lin-
ear hybrid automata modeling framework, required by
HYTECH;

3) alterations to aspects of the model that, although permit-
ted in the modeling framework, proved to be too complex
in practice to be verified with limited computational
resources.

A. Robots

First, as consistent with the scenario outlined earlier in
Section IV, we restrict our attention to mobile robots operating
in planar environments. The robots are referred to as R1, R2,
and R3. Due to computational costs, we were limited to a
scenario with three robots.

Robots are modeled as points in 	2, and therefore have no
size. We also ignore the orientation of the robot. Note that if the
robot is symmetrical (e.g., cylindrically shaped as many mobile
robots are), the point robot assumption is easily dealt with by
simply expanding the size of the obstacles by an amount equal
to the radius of the robot. This technique is quite standard in the
robotics literature; the resulting system resides in what is called
the “configuration space.”

Most mobile robots travel on wheels or tanklike treads. Many
such systems possess nonholonomic (differential) constraints
that may limit the robots’ direction of motion (e.g., no sideslip
on wheeled vehicles). Such systems have notoriously nonlinear
continuous dynamics, involving sine or cosine functions. Since
such systems are not permitted in the linear hybrid automata
framework, we assume that there are no such differential mo-
tion constraints in effect (holonomic robots).

Furthermore, we assume the continuous dynamics are first
order, (i.e., kinematic) as opposed to the full Newtonian second-
order dynamics. This limits the dimension of the continuous
state space to two (x−y positions) per robot as opposed to a
four-dimensional state space (two positions and two velocities)
per robot. This assumption makes the computations signifi-
cantly simpler. While dictated by the modeling paradigm and
computational considerations, assuming a system is kinematic
and holonomic is a reasonable assumption commonly seen in
the robotics literature. Therefore, we will model the dynamics
by a set of first-order differential equations: ẋ=ux and ẏ=uy ,
where (x, y) are the coordinates of a robot and (ux, uy) are the
control inputs, in this case, speeds in the x and y directions,
respectively.

B. Control

Note that the dynamics contain the undetermined input func-
tions ux and uy . These functions must be assigned so that the
robot tracks the desired path. In order to be a linear hybrid
automata, the right-hand side of the differential equations must
be a constant within each mode. To that end, the control law
was designed to have four modes:

right : ẋ = vmax ẏ = 0

left : ẋ = −vmax ẏ = 0

forward : ẋ = 0 ẏ = vmax

back : ẋ = 0 ẏ = −vmax (1)

where vmax is the robot’s maximum speed.
While control laws in robotics do often have several modes,

this particular selection is not very realistic. Control laws
are often quite complex and frequently are functions of the
continuous state. These four modes represent the minimum
number of control modes required for system to reach any point
in the plane. However, arbitrary point-to-point straight-line
paths are not possible and must be approximated by “stair
case”-like motions consisting of an alternating series of
left/right and forward/back steps. Note that the linear hybrid
automata model does not prohibit the definition of successively
finer directional discretizations (such as adding four diagonal
modes); however, the addition of more modes increases the
computational complexity of the verification problem. Note that
since we are primarily concerned with optimal motions (least
time or shortest path), the restriction of the speed to vmax does
not create any limitations.

290 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007

Fig. 3. Rectangle provides a reasonable approximation to most convex poly-
gons, as compared to a circle.

C. Obstacles and Workspace

We assume that the work space is a bounded subset of 	2,
called W and that the environment is populated with multiple
polygonal obstaclesOj , for j = 1, . . . ,M which occupy closed
sets in 	2. These obstacles are assumed to be in fixed positions.
The collision free space through which the robot is permitted
to move is F = W −∪jOj . These assumptions again are very
typical in the robotics literature in general and are certainly
representative of our search and rescue application.

To reduce the required computation, the obstacles are as-
sumed to be rectangles which are aligned with the coordinate
axes rather than arbitrary polygons. Each rectangle can be
completely described using only four parameters. In addition,
certain geometric operations that we are concerned with, such
as shrinking, growing, and intersection, can be performed on
rectangles using strictly linear functions. The importance of
these operations will be described later.

This assumption is not common in robotics; however, as
shown in Fig. 3, most general polygons can be reasonably
approximated by a rectangle. Note that nonconvex obstacles can
be approximated using multiple overlapping rectangles.

D. Sensor Model

We assume that all sensing occurs at discrete intervals.
Therefore, the robot only gets new information about its own
position, and the world around them every δT seconds. Real
sensors possess such sampling rates—for example, most cam-
eras only update 30 times/s. Since the robot will not change the
control modes without getting new information, this assump-
tion has the effect of forcing the robots to essentially travel on a
grid with spacing δT · vmax. Note that this is not explicit in the
model, rather it follows from the selection of the control modes
and sensor update rate. Also note that the vertices of the actual
obstacles or estimates are not required to lie on a “grid point.”

It is assumed that the information about a robot’s own posi-
tion is accurate. However, a robot’s knowledge of the geometry
of the obstacles is prone to error. Each robot is assumed to have
some prior qualitatively correct knowledge of the workspace
(e.g., provided by satellite imagery or a human user). The infor-
mation is qualitatively correct, in that, it accurately reflects the
number of obstacles in the environment and their general shape;
however, their exact position, size, or geometry is uncertain.
In other words, we assume that it is possible to parameterize
the uncertainties, and the unknown information is limited to the
value of certain parameters. Further, we assume that the robot

sensor allows the estimation of these unknown parameters, and
the estimates improve as the distance between the robot and the
obstacle decreases.

Let Y i
j be a map from the robot’s position (x, y) to a closed

set in the plane which represents the ith robot’s estimate of
the jth obstacle. In order to remove the type of stochastic
uncertainty exhibited by the sensors, we make the assumption
that the robot possesses an estimation algorithm which returns
the worst case estimate of the obstacle’s geometry, although
we do not model the algorithms’ operation. In other words,
the uncertainty in a given estimate is bounded in such a way
that Y i

j (x, y) ⊇ Oj ,∀x, y. Although it is not known where Oj

lies in Y i
j (x, y), it is certain that Oj ∩ (¬Y i

j (x, y)) = ∅. As a
consequence of the bounded uncertainty assumption, robots can
always determine if a new estimate is better than a previous one
by comparing the area of the two, the estimate enclosing the
smaller area being superior.

The sensor also has the property that its estimation of the
obstacles improves as the distance from the robot to the obsta-
cles decreases. In the limit, as the robot touches the obstacle,
Y i

j −→ Oj .
Such uncertainty models, while idealized, are reasonable

approximations of sensor systems where errors are primarily
geometric in origin. Furthermore, many statistical algorithms
are able to estimate worst case noise. For example, in vision
applications in a two-dimensional world without occlusions
and problems due to segmentation, the accuracy is limited by
a charge-coupled device resolution, especially at long ranges,
and the estimates improve as the distance to target decreases.
The bounded uncertainty can be computed by finding the worst
case error.

Allowing all four parameters of the rectangular obstacle
to vary proved to be too computationally expensive, so the
x coordinates of the right and left sides of the obstacle were
taken to be the only information subject to uncertainty. This
model was abstracted in HYTECH as

xo
l (t) =xa

l + (xo
l (0) − xa

l)
d

d0︸ ︷︷ ︸
error

(2)

xo
r (t) =xa

r + (xo
r (0) − xa

r)
d

d0︸ ︷︷ ︸
error

. (3)

Here, xl and xr denote the x coordinates of the left and right
sides of the rectangle, superscripts o and a indicate observed
and actual quantities, respectively. The distance at which the
measurement is taken is d, and d0 refers to the maximum
possible distance from the robot to the obstacle within W ,
resulting in the worst case estimate.

While the model does not capture the nonlinear behavior of
most sensors, similar phenomenon occurs when using sonar
sensors. In Fig. 4, a mobile robot (black circle) is shown with a
sonar array with a rectangular obstacle (shown in gray). Here,
we have a situation where the robot has reasonably accurate
information about some of the obstacle’s parameters, while
information about the other parameters is subject to a consid-
erable amount of uncertainty. The sonar readings only indicate

ESPOSITO AND KIM: USING FORMAL MODELING WITH AN AUTOMATED ANALYSIS TOOL 291

Fig. 4. Overhead view of a mobile robot equipped with sonar arrays detecting
a rectangular obstacle. The sonars return the closest distance to an object which
lies somewhere within the ensonification cone. At greater distances (left figure),
the uncertainty can be rather large since the robot only knows that something
lies within cones 2 and 3, while cones 1 and 4 are free. As the robot approaches
the obstacle (right), however, its estimates get better.

that there is an object within ensonification cones 2 and 3 at
a certain distance, while cones 1 and 4 are empty. The robot’s
worst case approximation is shown as a dashed rectangle. As
the robot approaches the object and the distance between them
decreases, the uncertainty in the measurement also decreases.

A more serious limitation is due to the lack of an acceptable
distance function. Since robots must negotiate spatial envi-
ronments, a critical quantity to be computed is the distance
between the robot and an obstacle or its goal. Unfortunately,
the classical Euclidian distance function is highly nonlinear
d =

√
x2 + y2. Instead, we use the so-called Manhattan metric

or theL1 norm to measure the distance between two points. The
Manhattan distance dm from Point A to Point B is simply

dm(A,B) = |xa − xb| + |ya − yb| (4)

which can be divided into four separate linear functions based
on the signs of the two differences. Thus, even the distance
computation is “hybrid,” this addition of four “submodes”
significantly complicates the model. An even more serious limi-
tation of this assumption is that a sensor reading taken at a point
whose true distance to the obstacle is small may be no different
from a reading taken further away if the distances are deemed
equal in the Manhattan sense. Thus, it is possible that the robot’s
estimate will not strictly improve as the robot approaches
an obstacle along certain paths. This is viewed as the most
serious and detrimental limitation imposed by the linear hybrid
automata model.

E. Path Planning

The term path planning is used here in reference to a mapping
from the currently available information to a collision-free kine-
matic trajectory. The planning algorithm used here is essentially
an exact cell decomposition approach. A complete explanation
of the algorithm can be found in [23]. For this scenario, the
workspace decomposition used is shown in Fig. 5.

For the considerably simplified scenario of a point robot
navigating amid rectangular obstacles, only two separate cases

Fig. 5. Illustration of the exact cell decomposition planning method. The dark
rectangle represents the obstacle while the numbered regions are free cells in
the workspace.

need to be considered. First, suppose the robot is currently in
cell 1 (the cases for cells 3, 5, or 7 follow by symmetry). When
the goal is in any adjacent cell (8, 1, or 2), no special planning
is needed since adjacency guarantees that a collision-free path
exists. If the goal lies in cells 7 or 6 (or 3 or 4), a temporary goal
T1A (or T1B) is set. From that point, a collision-free path to the
target exists. However, if the goal resides in region 5, the robot
first proceeds to T1A (or T1B), then it sets a new temporary
goal T2A (T2B) based on which intermediate point will result in
the shortest overall path. Once it reaches T2A (or T2B), it can
proceed to region 5 unobstructed.

The second case occurs when the robot is initially in a corner
cell such as 8 (2, 4, or 6). In this case, collision-free paths exist
when the goal lies in cells 6, 7, 1, or 2. Paths to regions 5 or 3
are determined, similar to the previous case, by setting tem-
porary goals in cells 6 or 2, respectively. The degenerate case
occurs when the goal lies in the corner cell opposite to the
robot’s starting position, cell 4 in this case. Due to the lack of
Euclidean metric and the fact that the robot may only move in
four directions, the clockwise and anticlockwise paths around
the obstacle will always be of the same Manhattan distance. In
this case, the robot chooses the path nondeterministically. This
cell decomposition algorithm is optimal because it compares
various choices of paths based on the length and selects the
shortest one.2

Other than the ambiguity due to the Manhattan distance in
the degenerate case mentioned above, this is essentially the
same algorithm that might be used in a real robotic system. In
addition, it is important to point out that the planning algorithm
would be significantly more complex without the previous
assumption that the obstacles are rectangular. Another ramifi-
cation of our assumptions is that the robot can only reach goal
points or temporary goal points that lie on the “grid” imposed
by the sensor update rate. Therefore, care must be taken to
select temporary goal points at the nearest grid point outside of
the obstacle estimate.

2This cell decomposition algorithm is optimal in the Manhattan metric, not
in the Euclidean metric.

292 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007

F. Coordination and Communication

At discrete time intervals, robot Ri may send its current map
of the environment to robot Rk.3 Robot Rk must then fuse that
information with its own representation of the obstacles. Again,
as a consequence of the bounded uncertainty assumption, this
fusion is accomplished by, for all obstacles j:

Y k
j new = Y i

j ∩ Y k
j . (5)

Rk’s resulting estimate of obstacle j, Y k
j new, will naturally

have an area less than or equal to Rk’s previous estimate
making it at least as accurate. This new estimate is also guaran-
teed to completely contain the obstacle. While this is certainly
idealized, it follows from our sensor model. For the sake of
simplicity in robot modeling and verification, we assume that
there is no stochastic process involved in message transmission,
such as noise or packet drop out. For similar reasons, we also
assume that robots have unlimited communication ranges.

G. Cost Model

As mentioned in the previous section, the robots attempt to
choose behaviors which minimize some type of cost function.
In this case, the cost is the total time required to reach the goal.
It is also assumed that communication is a potentially expensive
operation, either due to the computational cost of processing the
information, bandwidth limitations, or for security reasons. To
reflect this, a time penalty ρcomm is added to the overall cost
function each time a message is sent over the network.

In this model, the cost function is the sum of the time taken
to travel a path and the time taken to communicate. If f is the
frequency of communication, the overall performance index J i

which indicates a total time for Ri to reach the goal can be
expressed as

J i =
Di

M

vmax
+ ρcomm · f · D

i
M

vmax
(6)

where Di
M is a total distance traveled by Ri in the sense of the

Manhattan metric and vmax is the speed of Ri.
Again, the most serious limitation placed upon this cost

estimate by the linearity requirement comes from the use of
the Manhattan distance. Given a Manhattan distanceDM, upper
and lower bounds,Du andDl, can be placed on the correspond-
ing Euclidean distance. As shown in Fig. 6, these bounds can be
expressed as

Dl =
√

2
2
DM ≤ DE ≤ DM = Du (7)

where DE is the Euclidean distance. Note that
√

2/2 ≈ 0.707,
which implies that the Manhattan distance, at most, overesti-
mates the actual distance by approximately 41%. This can be
a large discrepancy which can result in rather severe overesti-
mates of the true cost.

3In our experiments, Ri sends only estimates of obstacles to Rk [two values
per obstacle—xo

l (t) and xo
r (t) defined in (2) and (3)].

Fig. 6. Diamond-shaped line represents the set of points equidistant from X ,
in the Manhattan metric. The circles indicate the upper and lower bounds on
the actual distance measured in the Euclidean sense.

It is also worth noting that the shortest path between two
points is not unique when using the Manhattan distance even in
the absence of obstacles. Recall that due to the fact that sensor
and communication information are only updated at discrete
intervals and that the robot’s speed is constant, it turns out that
the robot essentially travels on an equispaced grid. In this case,
when traveling from grid point (xa, ya) to grid point (xb, yb),
there are ((N +M)!)/(N ! ·M !) distinct shortest paths, pro-
vided there are no obstacles in the region [xa, xb] × [ya, yb].
Here, N and M are positive integers indicating the number of
grid points, or steps, between point A and point B in theX and
Y directions, respectively.

VI. RESULTS

Recall that our goal is to answer questions about the role of
communication in aiding the robots to reach their goal with a
lower cost. In this section, we detail the specific scenario we
explored, we then report the results of our experiences using
HYTECH. We use HYTECH first as a design tool by performing
a symbolic parametric analysis, letting the goal position and
the communication frequency be symbolic unknowns. We then
verify some safety properties of the control strategy.

A. Example

A high-level description of the robot’s behavioral algorithm
as a finite state machine appears in Fig. 7. The behavior can be
sketched as follows.

while (reachedGoal == False) {
1. Use sensors to update the map of the world
2. Send or Process communication if appropriate
3. Plan a path
4. Travel for time period

}

The robot model description is around 1700 lines.4 We veri-
fied this description using Sun Enterprize 3000 (4 × 250 Mhz
UltraSPARC) with 1-GB physical memory.

Our scenario contains three identical robots (R1, R2,
and R3), one fixed obstacle and one fixed goal (see Fig. 8).

4Corresponding HYTECH source codes and analysis results can be down-
loaded at http://www.postech.ac.kr/~moonzoo/robot.zip.

ESPOSITO AND KIM: USING FORMAL MODELING WITH AN AUTOMATED ANALYSIS TOOL 293

Fig. 7. Robot’s behavioral algorithm as a finite state machine.

Fig. 8. Scenario analyzed with HYTECH.

R1 and R2 collaborate via communication, while R3 works by
itself. The initial positions of R1 and R3 are the same. Initially,
R1 and R3 are located at (20,0). R2 is located at (60,10). The
obstacle is located somewhere within the region whose corner
points are (20,20) and (60,40). Let us call the x position of
left end of the obstacle x1, and the x position of right end
of the obstacle x2. Similarly, y1 is the y position of bottom
end of the obstacle and y2 is the y position of top end of the
obstacle. R1 and R3 estimate x1 as 10 and x2 as 120 initially.
R2 estimates x1 as −30 and x2 as 70 initially. In other words,
R1 and R3 estimate the obstacle to be far larger toward the
right-hand side, but R2 estimates the obstacle far larger toward
the left-hand side. All robots estimate y1 as 20 and y2 as 40
initially (i.e., all robots have correct values for y1 and y2).
The direction of movement is determined at the end of each

iteration. A robot moves for one time unit once a direction
is determined (see Fig. 7). Each robot’s vmax = 10. Com-
munication has a cost of 0.1 time unit. Thus, unnecessarily
frequent communication may increase the time to reach the
goal. For verification purposes, the work space was restricted
to a bounded rectangle with dimensions of 150 by 160 units.
Since optimal motions are of primary concern, all paths can be
expected to lie within the bounded region.

B. Parametric Analysis

Our first experiment attempted to determine if indeed com-
munication helpedR1 reach the goal faster, with the help ofR2,
than R3; and if so, what goal positions could be reached with
a lower cost if R1 and R2 communicate every time unit. To
that end, setting x and y positions of the goal as parameters, we
computed the geometric region which R1 reaches faster than
R3 with the help of communication (see Fig. 8).

For example, referring to Fig. 8, the solid black robot paths
help to illustrate one scenario when the target is located at
(80,50). Initially,R3 sets up a temporary goal as (0,10), because
the estimated length of left path toward the goal is shorter than
the length of right path. However, R1 gets a good estimation
of x2 by communicating with R2. It sets a temporary goal
at (80,10), then chooses the right path. R3 takes 13 time
units to reach the goal (80,50), whereas R1 takes 12.1 time
units including communication overhead; it is verified that the
collaboration between R1 and R2 helps R1 to reach the goal
faster than R3 in this scenario.

Since the x and y positions of the goal are free symbolic
parameters, we can answer such questions for any goal position
within the free workspace. It turns out that for most regions
in the workspace, no savings occur. The shaded region in the
upper right part of Fig. 8 shows the set of goal regions for which
communication is helpful. Not surprisingly, this is the region
in the workspace for which it is necessary to circumnavigate
the obstacle so the additional information R2 supplies is quite
helpful. Furthermore, we classify the region by how much
R1 reaches faster than R3 as seen by the legend on the right
of Fig. 8. Note that the region has a stairlike shape because,
R1 constantly communicates with R2 and this communication
overhead accumulates so that this overhead cancels out the
saving after 20 movements.

Our second symbolic parametric analysis experiment was to
determine the optimal frequency of communication for reach-
ing the goal with minimal cost. In this experiment, the goal
was fixed at (80,50) and we set the period of communication
as a parameter. Note that the domain of period is finite because
the period should be positive and be less than time for robots
to reach the goal. The optimal scenario is when R1 and R2

communicate once in two time units, R1 takes 11.5 time units
to reach the goal.

In addition to the parametric studies, two safety properties
for the robot controller are verified. First, a robot never col-
lides with the obstacle while it navigates to reach any valid
goal position, which is any position outside of the initially
estimated obstacle. This was accomplished by adding a monitor
automation to the description so that the monitor can check

294 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007

whether a position of a robot overlapped with the estimate of the
obstacle. Second, the verification establishes that a robot does
reach any valid goal position in the work space. Together, these
two criteria indicate that the control strategy is a valid one to
complete the mission. These two verification results may seem
obvious at first glance, because the path-planning algorithm is
known to be correct. However, proving the correctness of the
robot controller is useful for determining if the implementation
of the algorithm is correct. Formal verification technique is very
useful for detecting and debugging errors which are difficult to
find manually.

VII. LIMITATIONS OF THE ANALYSIS

A. Computational Limitations

The impact of the computational restrictions was that the
complexity of the scenarios we could verify was significantly
reduced. We had to make several simplifications in order to
make the analysis tractable. Computational restrictions mani-
fested themselves in two varieties: “memory overflow” errors
and “library overflow” errors.

Memory overflow errors restricted the number of modes the
model could posses. This for example limited the number of
robots in our scenarios to three. It also limited the number
of continuous variables. For example, we had to model only
one obstacle in the scenario because when we modeled two
obstacles, HYTECH generated a memory overflow error. Also,
only two parameters of the obstacle’s geometry were estimated
by the sensor in our model due to similar limitations. We
limited the range of x between −30 and 120 and the range
of y between 0 and 160. Furthermore, to make the analysis
tractable, we divided this region into 21 partitions such as P1 =
{(x, y)| − 30 ≤ x < 0 and 0 ≤ y < 30}, P2 = {(x, y)|0 ≤
x < 30 and 0 ≤ y < 30}, and so on. Then, we set Pi as
possible range of goal position and performed the parametric
analysis; we performed 21 experiments on all 21 partitions
P1, P2, . . . , P21. Most significantly, though, it constrained us
to only examining the effect of two free parameters simulta-
neously. We were unable to examine the effect of communica-
tion frequency while allowing the goal position to vary. Hence,
we performed the two experiments in sequence while fixing
some of the parameters. This severely limited the generality of
the conclusions we were able to draw from the model. Despite
this myriad of simplifications, verifying each partition took up
to 1.3-GB memory space and 1 h.

Another computational limitation is the internal arithmetic
overflow error that can occur when HYTECH manipulates
reachable regions. A reachable region is defined by a set of
linear constraints—effectively a polyhedra. At each iteration,
these polyhedral regions are manipulated by growing, intersect-
ing, and joining operations. Eventually, the number of vertices
of these high-dimensional polyhedra can grow too large for
HYTECH’s symbolic manipulation library to handle, generating
a “library overflow error”. Therefore, we have to be careful
to make the linear equations as simple as possible. This for
example motivated the modeling of the obstacles as rectangles.
Note that a “library overflow” error can occur with plenty of
free memory available.

Fig. 9. Numerical simulation was used to compute the set of goal points which
R1 is able to reach with a lower cost than R3. The shading scheme shows how
much faster R1 reaches the point as a percentage using the formula (J3 −
J1)/J3 where J1 and J3 are the cost functions of R1 and R3. The solid lines
are an example of a path taken by R1 and R3 as computed by the approximate
model (HYTECH), and the dashed-dotted lines are the paths selected by the
exact model.

B. Modeling Limitations

Throughout the experiment, various approximations were
made to comply with HYTECH’s strict linearity requirements,
in addition to the model simplifications introduced to reduce the
computation time. Since no engineer would actually implement
a robot system with these restrictions, the ultimate success
or failure of the HYTECH experiment hinges on determining
exactly what the results of the verification for the approximate
system imply about the performance of the original system.
Due to the complex nature of the system, it is impossible
to analytically determine the affect of approximation, hence
numerical simulation was used to determine the performance
of the original system. While simulation is never exact and
therefore cannot be used to verify a model, it nevertheless
remains the primary tool of system designers. Fig. 9 shows
the simulation results. The figure was generated using the
exact same scenario (starting conditions, obstacle and estimate
geometries, cost function, etc.) as was used in the HYTECH

simulation. In addition, robots are simulated using similar
behavioral algorithms as used in the verification procedure;
the primary difference being that many of the approximations
of the HYTECH experiment have been removed, including:
1) Robots may move in arbitrary directions, instead of being
constrained to left, right, forward, and back; 2) the Euclidean
distance function, rather than the Manhattan distance, is used to
compute the shortest path to the goal and for updating the sensor
estimates; and 3) sensing occurs continuously. This results in a
more realistic situation. Note that the communication protocol
was not changed in any way. The simulation results were
created by sampling 40 000 equispaced goal positions. For each
goal position, the behavior of the robots was simulated and the
difference in the cost functions for R1 and R3 was computed.

It is apparent from Fig. 9 that the region HYTECH computed
is neither a proper overapproximation nor underapproximation

ESPOSITO AND KIM: USING FORMAL MODELING WITH AN AUTOMATED ANALYSIS TOOL 295

Fig. 10. Example of the approximate model falsely identifying a goal point
where R1 reaches the goal first. The solid lines are the path taken by R1 and
R3 as computed by the approximate model (HYTECH), and the dashed-dotted
lines are the paths selected by the exact model (numerical simulation).

of the true region where communication improves the team
performance. The shading scheme indicates how much faster
(expressed as a percentage) the team was able to reach a given
goal configuration. In certain regions, the difference between
the HYTECH and simulation results can be attributed to partic-
ular approximations. For example in the simulated region, the
protrusion on the lower right part of the region, resembling a
quarter circle, is the set of points where bothR1 andR3 proceed
around the right side of the obstacle; however, R1 is able to
reach the point faster since its additional information enables
it to take a “straighter” path to the goal. HYTECH was unable
to capture this behavior since the robots are not permitted to
move in arbitrary (i.e., diagonal) directions. In this area, the
difference in path costs for R1 and R3 was small (less than
4%). Also note that the remainder of the region generated by
simulation, which is swept to the right and tapered to a point
at the upper right extreme, looks quite different from the region
computed by HYTECH. In this part of the figure,R1 andR3 take
qualitatively different routes to the goal. R3 travels around the
left side of the obstacle while R1 is able to recognize a shorter
path on the right. The selection between the left/right handed
path is based on length considerations and is naturally heavily
dependent on the choice of metric. Hence, the main source of
discrepancy between the simulation and HYTECH result in this
region is the use of the Euclidean versus Manhattan distance
function.

Figs. 9 and 10 illustrate the differences between the robot
behavior when using the original model as compared with the
model used in the verification for a few goal points. They
help one get a feel for why the regions are shaped as they
are. In Fig. 9, one can see a case where HYTECH failed to
identify a point where communication helped. The solid lines
(overlapping) indicate the paths the HYTECH model chose,
where both R1 and R3 compute identical paths despite the
additional information available to R1. The dashed-dot line
shows the paths result from simulating the original model.
R3 selects the path around the left side of the obstacle rather

than the path around the right side. Here, R3’s shortest path
is 203.5 units while R1’s path length is 181.9 units. Despite
the communication penalty of 18.19 units, R1 is still able
to reach the goal faster. Fig. 10 illustrates a goal position
which the HYTECH model falsely identifies as a position R1

reaches first as a result of communication. The solid lines show
the behavior of the robots in the approximated model. R1’s
path is 175 units plus a communication penalty of 17.5 units
resulting in a cost of 192.5. R3 selects the path around the
left side of the obstacle resulting a cost of 195 units. HYTECH

indicates the goal point as one which R1 is able to reach
sooner. However, the dash dot shows that in the full model,
R1 and R3 select paths of nearly equal length (130.8 and
133.2, respectively), once the communication cost is taken into
account,R1 is no longer able to reach the point sooner thanR3.

VIII. CONCLUSION

We have reported a case study in applying formal modeling
and analysis aimed at exploring alternatives in the design of
multirobot communication and coordination strategies. Simul-
taneous design of control strategies and coordination protocols
for interacting dynamical systems is a significant challenge.
The gist of our approach is to describe the system as interact-
ing hybrid automata, and then employ a symbolic analysis to
compute the constraints among various parameters for a given
objective.

While earlier case studies focused on verifying safety prop-
erties, we use parametric analysis to explore design alternatives
to enhance the performance (in addition to verifying safety
properties).

In order to apply HYTECH to this problem, we had to
make many simplifying assumptions. These simplifications fall
into two categories: those that reduce computation time; and
those that are required by the linear hybrid automata frame-
work. In order to keep the computation time reasonable, we
were forced to consider a very simple scenario with only
one obstacle, limited uncertainty and three robots. While the
results were interesting, most designers might be able to gather
intuitively what might happen in such basic scenarios. The
true benefit in applying formal methods would be in problems
which are too complex for human judgment. The assump-
tions made to adhere to the linearity requirements made it
difficult to extrapolate the results of the verification on the
simplified model to the original problem. In comparing the
results from HYTECH to those from repeated simulation, it was
noted that they neither strictly over- nor underapproximated
each other.

Even though we have reported only modest success in the
goals of the exercise, we hope that it illustrates the possible
potential of the approach. We were able both to vet our imple-
mentation of the algorithm and determine the optimal values of
certain design parameters. Note the generality of this symbolic
method compared to prevalent methods in simulation in which
either the parameters need to be set to specific values and little
can be said about off-sample points.

However, we feel that the most instructive aspect of this
paper is to suggest the guidelines and focus areas for work

296 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 3, MAY 2007

on the next generation of formal modeling and verification
tools. In light of our experiences detailed in Section V, it
should come as no surprise that significant advances in the
formal verification technology are needed for it to be applicable
to our problem in its full generality. Two specific obstacles
were found. Computational requirements: All the parameters
had to be scaled down to be able to get a feedback from
HYTECH. Improving the efficiency of polyhedra-based analysis
remains a significant challenge. Expressiveness: The linearity
requirement forces us to apply a variety of approximations.
Interestingly, the issue of approximating complex dynamics
proved to be less of an issue than approximating transition rules.
Robotics is an inherently geometric field and the lack of sine,
cosine and, most importantly, Euclidian metric functions seem
to pose the most significant obstacles. This problem suggests
directions for further research and tool development for more
general classes of problems.

In recent years, there has been significant progress in enhanc-
ing the scope of verification tools for hybrid systems. In partic-
ular, Hypertech [17] employs interval computations to improve
robustness of computations with polyhedra, Checkmate [10],
[11] allows specification of more complex dynamics and over-
approximates the set of reachable states using polyhedral slices,
d/dt [5] uses orthogonal polyhedra to analyze systems with
complex dynamics, in [25], level set methods are employed and
Charon [2] allows verification of hybrid systems with linear
dynamics by combining the flow-pipe approximations with
predicate abstraction. While these tools allow more general
dynamics than linear hybrid automata, the guard conditions
remain linear and scalability is still a problem. Thus, continued
progress will be required to meet the challenges identified in
this paper.

ACKNOWLEDGMENT

The authors would like to thank R. Alur, I. Lee, and V. Kumar
for their valuable discussions and advice.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analy-
sis of hybrid systems,” Theor. Comput. Sci., vol. 138, no. 1, pp. 3–34,
Feb. 1995.

[2] R. Alur, T. Dang, J. M. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee,
P. Mishra, G. J. Pappas, and O. Sokolsky, “Hierarchical modeling and
analysis of embedded systems,” Proc. IEEE, vol. 91, no. 1, pp. 11–28,
Jan. 2003.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic verifica-
tion of embedded systems,” IEEE Trans. Softw. Eng., vol. 22, no. 3,
pp. 181–201, Mar. 1996.

[4] M. S. Andersen, R. S. Jensen, T. Bak, and M. M. Quottrup, “Motion
planning in multi-robot systems using timed automata,” in Proc. 5th
IFAC/EURON Symp. Intell. Auton. Vehicles, 2004, pp. 21–27.

[5] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid
systems,” in Computer Aided Verification. Lecture Notes in Computer
Science, vol. 2404. New York: Springer-Verlag, 2002, pp. 365–370.

[6] R. Alur and G. Pappas, Eds., Hybrid Systems: Computation and Control.
Lecture Notes in Computer Science, vol. 2994. New York: Springer-
Verlag, 2004.

[7] M. S. Branicky, “Studies in hybrid systems: Modeling, analysis, and
control,” Ph.D. dissertation, MIT, Cambridge, MA, 1995.

[8] R. W. Brockett, “Hybrid models for motion control systems,” in Essays in
Control: Perspectives in the Theory and Its Applications, H. L. Trentelman
and J. C. Willems, Eds. Cambridge, MA: Birkhäuser, 1993, pp. 29–53.

[9] R. Burridge, A. Rizzi, and D. E. Koditschek, “Sequential composition of
dynamically dexterous robot behaviors,” Int. J. Rob. Res., vol. 18, no. 6,
pp. 534–555, 1998.

[10] A. Chutinam and B. Krogh, “Verification of polyhedral-invariant hybrid
automata using polygonal flow pipe approximations,” in Hybrid Systems:
Computation and Control. Lecture Notes in Computer Science, vol. 1569.
New York: Springer-Verlag, 1999.

[11] A. Chutinam and B. Krogh, “Verification of infinite state dynamic
systems using approximate quotient transition systems,” IEEE Trans.
Autom. Control, vol. 46, no. 9, pp. 1401–1410, Sep. 2001.

[12] E. M. Clarke and R. P. Kurshan, “Computer-aided verification,” IEEE
Spectr., vol. 33, no. 6, pp. 61–67, Jun. 1996.

[13] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The tool
KRONOS,” in Hybrid Systems III: Verification and Control. Lecture Notes
in Computer Science, vol. 1066. New York: Springer-Verlag, 1996,
pp. 208–219.

[14] R. Fierro, A. Das, J. Spletzer, J. M. Esposito, V. Kumar, J. P. Ostrowski,
G. J. Pappas, C. J. Taylor, Y. Hur, R. Alur, I. Lee, B. Southall, and
G. Grudic, “A framework and architecture for multi-robot coordination,”
Int. J. Robot. Res., vol. 21, no. 10/11, pp. 977–995, Oct. 2002.

[15] G. E. Fainekos, H. K. Gazit, and G. J. Pappas, “Temporal logic plan-
ning for mobile robots,” in Proc. IEEE Conf. Robot. Autom., Apr. 2005,
pp. 2032–2037.

[16] T. A. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A model checker
for hybrid systems,” Int. J. Softw. Tools Technol. Transf., vol. 1, no. 1,
pp. 110–122, 1997.

[17] T. A. Henzinger, B. Horowitz, R. Majumdar, P. Ho, and H. Wong-Toi,
“Beyond HYTECH: Hybrid systems analysis using interval numerical
methods,” in Proc. 3rd Int. Workshop HSCC, pp. 130–144.

[18] T. Henzinger and H. Wong-Toi, “Using HYTECH to synthesize control
parameters for a steam boiler,” in Formal Methods for Industrial Ap-
plications: Specifying and Programming the Steam Boiler Control. Lec-
ture Notes in Computer Science, vol. 1165. New York: Springer-Verlag,
1996, pp. 265–282.

[19] P. H. Ho and H. Wong-Toi, “Automated analysis of an audio control
protocol,” in Proc. 7th Conf. Comput.-Aided Verification. Lecture Notes
in Computer Science, vol. 939, 1995, pp. 381–394.

[20] E. Klavins and D. E. Koditschek, “A formalism for the composition of
concurrent robotic behaviors,” in Proc. IEEE Conf. Robot. Autom., 2000,
pp. 3395–3402.

[21] K. Kapellos, D. Simon, M. Jourdant, and B. Espiau, “Task level specifi-
cation and formal verification of robotics control systems: State of the art
and case study,” Int. J. Syst. Sci., vol. 30, no. 11, pp. 1227–1245, 1999.

[22] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” Int. J. Softw.
Tools Technol. Transf., vol. 1, no. 1, pp. 134–152, 1997.

[23] J. C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[24] J. Lygeros, D. N. Godbole, and S. Sastry, “A game-theoretic approach to

hybrid system design,” in Hybrid Systems III. Verification and Control.
New York: Springer-Verlag, 1995, pp. 1–12.

[25] I. Mitchell and C. Tomlin, “Level set methods for computation in hybrid
systems,” in Hybrid Systems: Computation and Control. Lecture Notes
in Computer Science, vol. 1790. New York: Springer-Verlag, 2000,
pp. 310–323.

[26] M. Morari, L. Thiele, and F. Rossi, Eds., Hybrid Systems: Computation
and Control. Lecture Notes in Computer Science, vol. 3414. New York:
Springer-Verlag, 2005.

[27] K. S. Narendra, J. Balakrishnan, and K. Ciliz, “Adaptation and learning
using multiple models, switching and tuning,” IEEE Control Syst. Mag.,
vol. 15, no. 3, pp. 37–51, Jun. 1995.

[28] R. Olifati and R. Murray, “Distributed cooperative control of multiple
vehicle formations using structured potential functions,” in Proc. IFAC
World Congr., Barcelona, Spain, Jul. 2002, pp. 232–238.

[29] M. M. Quottrup, T. Bak, and R. I. Zamanabadi, “Multi-robot planning: A
timed automata approach,” in Proc. IEEE Int. Conf. Robot. Autom., 2004,
pp. 4417–4422.

[30] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traf-
fic management: A study in multi-agent hybrid systems,” IEEE Trans.
Autom. Control, vol. 43, no. 4, pp. 509–521, Aug. 1997.

[31] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans.
Autom. Control, vol. AC-22, no. 2, pp. 212–222, Apr. 1977.

[32] M. Zefran and J. Burdick, “Stabilization of systems with changing
dynamics,” Hybrid Systems, 1998.

[33] P. Tabuada and G. J. Pappas, “Linear temporal logic control of discrete-
time linear systems,” IEEE Trans. Autom. Control, to be published.

[34] M. Zefran, J. Desai, and V. Kumar, “Continuous motion plans for robotic
systems with changing dynamic behavior,” in Proc. 2nd Int. Workshop
Algorithmic Found. Robot., 1996, pp. 113–128.

ESPOSITO AND KIM: USING FORMAL MODELING WITH AN AUTOMATED ANALYSIS TOOL 297

Joel M. Esposito received the B.S. degree from
Rutgers University, New Brunswick, NJ, and the
M.S. and Ph.D. degrees from the University of
Pennsylvania, Philadelphia.

He is currently an Assistant Professor with the
Department of Systems Engineering, U.S. Naval
Academy, Annapolis, MD. His research interests
include algorithmic and computational design tools
for mobile robots.

Moonzoo Kim received the Ph.D. degree in com-
puter and information science from the University of
Pennsylvania, Philadelphia, in 2001.

After working as a Research Engineer at
Samsung SECUi.COM and Pohang University of
Science and Technology, he joined the faculty of
the Korea Advanced Institute of Science and Tech-
nology, Daejeon, in 2006. He currently focuses on
developing provable software in the domain of em-
bedded systems by using model checking and run-
time verification techniques. His research interests

include the specification and analysis of embedded systems, automated soft-
ware engineering tools, and formal methods.

