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Abstract—Conventional manual testing often misses corner
case bugs in complex embedded software, which can incur large
economic loss. To overcome the weakness of manual testing,
automated program analysis/testing techniques such as software
model checking and concolic testing have been proposed. This
paper makes a detailed report on the application of a SAT-based
bounded software model checking technique using CBMC to
busybox ls which is loaded on a large number of embedded
devices such as smartphones and network equipments. In this
study, CBMC demonstrated its effectiveness by detecting four
bugs of busybox ls, but also showed limitations for the loop
analysis. In addition, we report the importance of calculating
minimum iterations to exit a loop (MIEL) to prevent false
negatives in practice.

I. INTRODUCTION

Although manual testing is a de-facto standard method

to improve the quality of software in industry, conventional

manual testing methods often fail to detect costly corner-case

bugs in target programs. Two main reasons of such deficiency

of manual testing are

• Low effectiveness:
Human engineers are not good at thinking of exceptional

scenarios. Engineers often focus on a few main execu-

tion scenarios and miss numerous exceptional scenarios

caused by complex combination of unexpected condi-

tions.

• Low efficiency:
Human engineers are slow to generate test cases. Thus,

it is difficult to manually generate a large number of test

cases required to test a target program in fine granularity.

These limitations are serious issues in industrial projects, par-

ticularly in embedded system domains where high reliability

is required and product recall for bug-fixing incurs significant

economic loss.

To solve such limitations, several automated software anal-

ysis techniques such as model checking [13], software model

checking [18], and concolic testing (a.k.a., dynamic symbolic

execution or white-box fuzzing) [26], [15] have been devel-

oped. However, such techniques are not frequently applied

to industrial software due to steep learning curve and hidden

costs to apply these techniques to industrial software in prac-

tice. For example, to perform effective and efficient analysis,

a user has to understand and overcome the limitations of

the automated technique being applied, which are often not

clearly described in related technical papers. Consequently,

field engineers hesitate to adopt automated analysis techniques

to their projects.

To transfer automated techniques to industry, thus, it is

essential to conduct exploratory case studies applying the

automated analysis techniques to real-world software since

field engineers need references to estimate the required effort

and the benefit of applying the automated techniques in detail.

Furthermore, concrete applications of such techniques can

also benefit researchers by guiding new research goals and

directions to solve practical limitations observed in the studies.

In this paper, we report our experience of applying SAT-

based bounded software model checking technique using

CBMC [11] to busybox ls [1] (i.e., a tiny version of

unix/linux ls utility to display directory/file information)

which is loaded on a large number of embedded devices such

as smartphones and network equipments [2]. In this study,

we have checked 15 functional requirements of busybox
ls specified in the POSIX standard specification [28] on

ls. CBMC demonstrated its effectiveness by detecting four

bugs of busybox ls, but also showed limitations for the

loop analysis (Section V). In addition, we compare the ad-

vantages and weaknesses of the SAT-based bounded software

model checking technique with those of concolic testing using

CREST [19] (Section VI-D).

The main contribution of this paper is that this case study

can serve as a reference to promote field engineers to adopt

automated software analysis techniques. We have reported the

detailed steps of applying CBMC to real-world embedded

software busybox ls (how we obtained requirement prop-

erties, how we set loop bounds, etc.) and concretely describing

the benefit (i.e., high bug detection capability (Section V-C))

and the limitation of the technique (i.e., the manual cost

for loop bound analysis (Section V-A) and the scalability

problem for loop unwinding (Section V-C)) in practice. Thus,

field engineers can estimate necessary efforts and benefits of

applying CBMC from this case study and utilize the case study

as a reference to apply automated software analysis techniques

to their own projects.

The paper is organized as follows. Section II overviews

a SAT-based bounded model checking technique. Section III

explains the background of this study. Section IV describes the

experiment setting on how we applied CBMC to busybox
ls. Section V shows the model checking results. Section VI

shares the lessons learned from this case study. Section VII de-

scribes other case studies utilizing CBMC and compare those
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studies with our case study. Finally, Section VIII summarizes

this paper with future work.

II. BACKGROUND ON SAT-BASED BOUNDED MODEL

CHECKING

A. Bounded Model Checking

Bounded model checking [6] unwinds the control flow

graph of a target program P for a fixed number of times n and

then checks if an error can be reached within these n steps.

SAT-based bounded model checking [10] unrolls the target

program P n times, transforms this unrolled program into

the SAT formula φP , and then checks whether P can reach

an error within this bound n by checking the satisfiability of

φP [16]. In spite of the NP-complete complexity, structured

Boolean satisfiability (SAT) formulas generated from real

world problems are successfully solved by SAT solvers in

many cases. Modern SAT solvers, such as MiniSAT [14]

and Chaff [24], exploit various heuristics [31] and can solve

some large SAT formulas containing millions of variables and

clauses in modest time [3].

To use a SAT solver as a bounded model checker to

verify whether a given C program P satisfies a requirement

property R, it is necessary to translate both P and R into

Boolean formulas φP and φR, respectively. A SAT solver then

determines whether φP ∧ ¬φR is satisfiable: if the formula is

satisfiable, P violates R; if not, P satisfies R (note that each

satisfying assignment to φP represents a possible execution

trace in P ).

A brief sketch of the translation process follows [11]. We

assume that a given C program is already preprocessed. First,

the C program is transformed into a canonical form, containing

only if, goto, and while statements without side effect

statements such as ++. Then, the loop statements are unwound.

The while loops are unwound using the following transfor-

mation n times (calling n as ULB (Unwinding Loop Bound

for a target loop) in this paper):

while(e) stm ⇒ if(e) {stm; while(e) stm}
After unwinding the loop n times, the remaining while

loop is replaced by an unwinding assertion assert(!e) that

guarantees that the program does not execute more iterations.

The similar procedure is applied to loops containing the

backward goto statements. Function calls are inlined and

recursive function calls and backward goto statements are

unwound in a manner similar to while loops. The trans-

formed C program consists of only nested if, assignments,

assertions, labels, and forward goto statements. Finally, this

C program is transformed into static single assignment (SSA)

form. This SSA program is converted into corresponding bit-

vector equations through combinatorial circuit encoding and

the final Boolean formula is a conjunction of all these bit-

vector equations.

Note that if n (i.e., ULB) is smaller than the minimum

number of loop iterations required to exit the loop (calling

it MIEL (Minimum Iterations to Exit a target Loop) in this

paper), executions after exiting the loop will not be analyzed

and property violations can be missed due to the violation

of the unwinding assertion (i.e., false negatives). For the

following example, suppose that f(a) always assigns the first

three elements of the array a as non-zero values (thus, MIEL

of the loop is 3). If we set n as two (i.e., a number of loop

unwinding is less than MIEL), assert statement at line 4 will

not be reached/analyzed and the assert violation will not be

reported consequently.

1:f(a); // a[]={1,2,3,...}
2:// no break inside the loop body
3:for(i=0; a[i]!=0; i++) {...}
4:assert(0);

Dozens of research papers focus to get loop unwinding

upper bounds to obtain sound bounded model checking result.

However, related papers often fail to recognize the importance

of calculating MIEL to prevent false negatives in practice.

Since a sound loop unwinding upper bound is often too large

to unwind due to lack of memory and CPU time, calculating

MIEL can be more important than calculating sound loop

unwinding upper bound in practice. As far as the authors know,

this paper is the first one to put emphasis on the significance

of MIEL for practical application of bounded model checking

techniques.

Note that bounded model checking is incomplete on in-

finite state systems. Thus, several approaches based on k-

induction [27] or interpolation [22] have been studied to

make SAT-based bounded model checking complete. Although

bounded model checking may be inefficient in the presence of

deep loops, it can be used as an effective verification method

up to small loop bounds.

B. C Bounded Model Checker (CBMC)

CBMC [11] is a bounded model checker for ANSI-C

programs. CBMC receives a C program as its input and

analyzes all C statements (e.g., pointer arithmetic, arrays,

structs, function calls, etc.) with bit-level accuracy and trans-

lates the C program into a SAT formula automatically. A

requirement property is written as an assert statement in a

target C program. The loop unwinding bound nl for loop l can

be given as a command line parameter; for simple loops with

constant upper bounds, CBMC automatically calculates nl. If

φP ∧ ¬φR is satisfiable, CBMC generates a counterexample

that shows a step-by-step execution leading to the violation of

the requirement property.

One distinct feature of the CBMC based analysis, compared

with testing, is its capability of handling non-deterministic
values (i.e., function parameters, uninitialized local variables,

or variables explicitly assigned with non-deterministic values),

which are useful in modeling unconstrained user inputs, a

range of values as a whole, or return values of undefined

functions. Using this feature, CBMC can conveniently analyze

all execution scenarios of a target C program.

For example, if we analyze adder(unsigned char x,
unsigned char y) {...} function, CBMC symboli-
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cally analyzes all 65536(= 2562) possible cases. If we provide

an explicit constraint __CPROVER_assume(x==1), the to-

tal number of cases to analyze is reduced to 256, since only

y has a non-deterministic value ranging from 0 to 255. This

capability of analyzing non-deterministic values helps testing

of C functions by reducing the manual effort to explicitly

generate test cases. 1

III. STUDY BACKGROUND

This section explains the background of the study including

the motivation of the case study and the rationales for apply-

ing CBMC as an automated analysis tool to detect bugs in

busybox ls.

A. Target Software: busybox ls

For the last few years, smartphones have been prevalent in

our society and become essential equipment for our daily life.

Android OS has contributed significantly to the success and

evolution of smartphones. As Android OS is developed based

on the Linux operating system, many unix/linux utilities are

running on Android smartphones. busybox ls is one such

example and the reliability of busybox ls is important

since it is used by many other applications such as app

managers and file managers.

In addition, since busybox ls has clear functional re-

quirements specified in the POSIX specification (IEEE Stan-

dard 1003.1 [28]), it can be convenient to determine whether

busybox ls has a bug. Finally, the size of busybox
ls is not very large (i.e., around 8200 LOC in 28 files

and 63 functions). Thus, we decided to apply automated

software analysis techniques to busybox ls to evaluate the

effectiveness, efficiency and required manual effort of the au-

tomated software analysis techniques. We targeted busybox
ls 1.17.0, which was the latest version when we started to

apply automated analysis techniques to busybox ls.

Furthermore, we could save time and efforts to apply CBMC

to busybox ls by utilizing the 15 assert()s and the

symbolic environment that had been built for our previous

case study of applying a concolic testing technique using

CREST to busybox ls [19]. Furthermore, we can compare

the advantages and weaknesses of CBMC and CREST more

directly by targeting the same software.

B. Target Automated Technique

We decided to apply a SAT-based bounded software model

checking technique using CBMC to detect bugs in busybox
ls for the following reasons:

1) No need to build a target program model:
SAT-based bounded software model checking techniques

can be directly applied to target C code using a tool

like CBMC. In contrast, other model checkers such as

Spin [17], NuSMV [9], or PAT [29] require a user to

build a target model in their own modeling languages,

1A few paragraphs of the background section are excerpted from Kim et
al. [20].

which is not feasible in most industrial projects with

tight project budget/period.

2) High maturity of CBMC:
CBMC can analyze target ANSI C code as it is

and generate sound verification result (modulo user-

given loop upper bounds). In contrast, other software

model checkers targeting C code such as Blast [4] and

CPAChecker [5] have limitations in analyzing complex

target C code in practice (for example, Blast does not

analyze array operations correctly [20]). In addition,

CBMC has been developed more than 10 years and

become more reliable than other research prototype tools

of short development history.

3) Sufficient scalability for busybox ls:
busybox ls is written in 8273 C lines, which is a

modest size to apply SAT-based software model check-

ing from our previous experience [20]. In addition, we

can expect that busybox ls might not suffer limited

loop bounds severely because the main functionality of

busybox ls is to align and display information of

files and directories. Also, we expected that the loops of

busybox ls might not be very complex to analyze

(Section II).

4) The authors have sufficient knowledge of CBMC:
The authors have used CBMC for seven years and have

experience to apply CBMC to low-level device driver

code on flash memory platform [20]. Thus, we decided

to continue to use CBMC since we can configure CBMC

experiments and interpret the analysis results precisely

and conveniently.

IV. EXPERIMENT SETUP

In general, to apply CBMC to detect bugs in a target C

program, a user should do the following tasks:

1) Property specification:
A user specifies requirement properties and writes down

assert() statements to detect violations of the prop-

erties.

2) Symbolic environment setting:
A user specifies which variables of the target program

to have symbolic/non-deterministic values to model var-

ious execution scenarios (and specify constraints on the

symbolic variables if necessary)

3) Loop bound analysis:
A user analyzes loops of the target program to decide

a proper unwinding loop bound (ULB) for each loop

which should be greater or equal to MIEL (Minimum

Iterations to Exit a target Loop (Section II)).

4) Apply CBMC with parameters:
A user executes CBMC with enabling/disabling default

checkers such as a division-by-zero checker. In addition,

a user iteratively executes CBMC with increasing num-
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// if -F is given without -L, the information
// of a target symbolic link file (not a
// referred one) should be printed
assert(

!( (opt & (1<<21)) && !(opt & (1<<23))) ||
(!(all_fmt & FOLLOW_LINKS) && !force_follow)

);

Fig. 1. Assert to check the behavior of busybox ls regarding -F option

bers of ULBs for loops until the memory is exhausted

or a given time limit is reached.

We describe the detail of these steps to analyze busybox
ls in the following subsections.

A. Property Specification

First, we reviewed the POSIX specification (IEEE Standard

1003.1 [28]) on ls utility (around 10 pages long in A4 paper).

The POSIX specification describes the behaviors of ls with

various command-line options and environment conditions.

For example, the POSIX specification requires that, when -F
option is given, ls should print out ‘@’ symbol right after a

name of a symbolic link to indicate a type of the file. Based on

the POSIX specification and our understanding of the target

busybox ls code, we wrote 15 assert() statements to

check if busybox ls satisfies the POSIX specification.

For example, to check the behavior of busybox ls
with the -F option, we inserted the following assert()
statement in my_stat() (line 299 in coreutils/ls.c)

(see Figure 1). Suppose that a user executes busybox ls
-F slnk where slnk is a symbolic link file pointing to

a referred file. opt & (1<<21) and opt & (1<<23)
indicate -F and -L options, respectively. If -L option is given,

ls should show the information for referred. all_fmt
and force_follow are internal variables of busybox ls.

all_fmt indicates how to display the status of file/directory

and FOLLOW_LINKS is a constant mask to show the

status of referred instead of slnk (i.e., !(all_fmt &
FOLLOW_LINKS) means that busybox ls should print

out the information of slnk). force_follow is a flag vari-

able to force busybox ls to utilize the status of referred.

Thus, the above assert() claims that if -F is given without

-L, the information of slnk (not referred) should be printed.

B. Symbolic Environment Setting

Since the main functionality of busybox ls is to show

the status of file/directory according to the format specified

through various command-line options, we sets the variables

that represent command-line options and file/directory status
as symbolic ones (i.e., variables to have non-deterministic

values).

1) Command-line Options: To set the command-line op-

tions as symbolic inputs, we set the three unsigned int
variables opt, tabstops, and terminal_width as sym-

bolic variables, each of which represents enabled command-

line options, a number of spaces between columns of output

entries, and the width of the current terminal in characters,

respectively. busybox ls parses the command-line options

by calling getopt32() which sets the three variables based

on the command-line parameter string given by a user. Instead

of using the values of the three variables set by getopt32(),

we set the three variables as symbolic variables. For ex-

ample, to make opt have a non-deterministic value, we

inserted opt=non_det(); (non_det() returns a non-

deterministic value since non_det() is undefined) right after

the getopt32() is called. Other two variables were set as

symbolic input in the similar manner.

2) File/directory status: To set the file/directory status

as symbolic input, we replaced stat() and lstat()
with sym_stat() and sym_lstat(). After reading status

of a target file/directory from a file system, stat() and

lstat() set stat data structure (defined in sys/stat.h)

that represents the file/directory status (e.g., accessed time,

owner, permission, etc). The stat data structure has 13 field

member variables such as mode_t st_mode representing

type and permission of file/directory and uid_t st_uid
representing a user ID of the owner of file/directory. We wrote

sym_stat() and sym_lstat() functions that set all 13

field member variables of stat data structure as symbolic

input.

C. Loop Bound Analysis

To apply bounded model checking, a user has to decide

how many times each loop of a target program should be

unwound in the analysis (Section II). This task is complex

and requires human effort since the task requires knowledge

of target code (calculating an exact loop upper bound is an

undecidable problem). In addition, the state explosion problem

prohibits a user from using a large unwinding loop bound

value. Thus, a user often disables unwind assertion check (e.g.,

--no-unwinding-assertions in CBMC which change

an unwinding assertion to an unwinding assumption) and

specifies an unwinding loop bound (ULB) as a small number

such as one or two without careful loop analysis hoping that

a bug might be found within the small state space generated

with the small ULBs (see Section VII). However, this way

of setting ULBs often makes a bounded model checker miss

bugs if ULB of a loop is smaller than MIEL of the loop (see

Section II and Section V-C). 2

Thus, to detect bugs of busybox ls effectively, we ana-

lyzed loops of busybox ls. We first drew a static function

call graph from the entry function of busybox ls (i.e.,

ls_main()) to collect a list of functions reachable from

ls_main(). Then, we manually analyzed all 53 loops in

the functions and calculated MIELs of the loops.

D. CBMC Parameter Setting and Experiment Platform

To alleviate the state explosion problem, initially we

configured CBMC to check only user assertions, not other

2CBMC 4.6 provides --partial-loops option to continue the analysis
by removing unwinding assertions/assumptions although the analysis can
be unsound. However, CBMC generated an internal error in our study on
busybox ls and we could not use the option.
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default properties such as array bounds. Once we obtained

the verification results, we enabled default checkers one by

one to check array bounds (--bounds-check), division-

by-zero (--div-by-zero-check), and arithmetic

overflow/underflow (--signed-overflow-check
and --unsigned-overflow-check). In

addition, we disabled unwinding assertions (i.e.,

--no-unwinding-assertions) and set ULBs

of the loops of busybox ls with MIELs+k
using --unwindset where k ∈ {1, 2, 3}. 3

For example, we initially set --unwindset
xrealloc_vector_helper.0:81 (MIEL+1) for

the loop whose id is xrealloc_vector_helper.0
and whose MIEL is 80 (see the last row of Table I).

Then, we re-ran CBMC with --unwindset
xrealloc_vector_helper.0:82 (MIEL+2) and

--unwindset xrealloc_vector_helper.0:83
(MIEL+3).

We performed the experiments on the machines equipped

with Intel Core i5 3570K@3.8GHz and 16 gigabytes memory

running 64bit Debian Linux 6.0.7. We used CBMC 4.6 64bit

version. 4

V. EXPERIMENT RESULT

A. Loop Analysis Result

Among the total 53 loops of busybox ls, we found that

six loops have zero as their MIELs, 34 loops have one as

MIELs, and two loops have three as MIELs, and the remaining

11 loops have four or greater numbers (up to 1320) as MIELs.

Table I shows the list of the 11 loops whose MIELs are four

or greater. The first column shows the loop ID (specified by

CBMC). The second and third columns present a filename

and a line number where the loop is located, respectively. The

fourth column shows MIELs of the loops. The last column

shows the descriptions of the loops. One graduate student spent

three days to analyze all loops of busybox ls.

For example, the loop ls_main.2 (the third row of Ta-

ble I) checks whether or not each of the 26 different command-

line options is enabled by checking a list of option flags. Thus,

this loop iterates at least 26 times and the corresponding MIEL

is 26. 5

B. Detected Bugs

CBMC detected the four bugs in busybox ls regarding

the -F, -n, -i, and -s options, but did not detect any viola-

tion of the default checkers being applied (see Section IV-D).

3We did not use k larger than three since we found that the memory was
already exhausted with k = 3 (Table V).

4We tried to generate SMT formulas using CBMC, expecting to achieve
faster analysis with less memory consumption, but CBMC raised an internal
error.

5CBMC can automatically detect upper bounds of unwinding loops for
simple loops. However, CBMC could detect upper bounds of unwinding loops
for only 18 out of the 53 loops of busybox ls.

1) Bug regarding -F:: -F does not show the status of a

symbolic link itself, but the file the symbolic link points to.

This bug was detected through the violation of the assert()
statement described in Section IV-A. The root cause of the

bug is that the last parameter of my_stat() was incorrect

when ls_main() called my_stat() as follows (in 1151

of coreutils/ls.c).

cur=my_stat(*argv, *argv,
!(all_fmt & (STYLE_LONG|LIST_BLOCKS)));

If -F is given without -L, the last parameter of

my_stat() becomes non-zero (i.e., true in C). This is be-

cause -F does not set all_fmt to indicate STYLE_LONG or

LIST_BLOCKS that indicate to display file/directory informa-

tion in a long format and to display a block size, respectively.

Thus, force_follow which is the last formal parameter of

my_stat() becomes non-zero and my_stat() reads the

status of the referred file instead of the symbolic link, which

violates the POSIX specification.
2) Bug regarding -n:: -n does not show user id and group

id in a numeric format. If -n option is given (i.e., opt &
(1<<7)), ls should display user ID and group ID in a

numeric format. This bug was detected through violation of the

following assert() statement in ls_main() (line 1142 of

coreutils/ls.c).

assert(!(opt & (1<<7)) ||
(all_fmt & LIST_ID_NUMERIC));

The root cause of this bug is that busybox ls misses

setting a bit of all_fmt for LIST_ID_NUMERIC when -n
is given.

3) Bug regarding -i:: -i does not show space be-

tween adjacent two columns. If -i option is given, ls
should display the corresponding inode number of each

file. This bug was detected thorough violation of the

assert() statement in showfiles() function (in line 794

of coreutils/ls.c).

assert(nexttab >= tabstops + column);

nexttab is the start position of the next column,

tabstops is the number of spaces between two columns, and

column is the end position of the current column. The root

cause of this bug is that busybox ls assumes that the inode

number has maximum eight digits when nexttab variable is

updated. Thus, busybox ls -i file1 file2 does not

show a space if file1’s inode number has nine or more

digits.
4) Bug regarding -s:: -s does not show space between

adjacent two columns. If -s option is given, ls should display

the corresponding block size of each file. The root cause of this

bug is similar to the cause of the bug regarding -i. busybox
ls assumes that the size of block has maximum five digits,

but the size of block can have six or more digits, actually.

C. Model Checking Result
Table II summarizes the experimental results. The first

column shows the command-line options regarding which
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TABLE I
11 LOOPS OF busybox ls THAT HAVE FOUR OR GREATER NUMBERS AS MIELS

Loop ID File Line Min. iter. to Description
exit a loop

ls main.0 ls.c 1032 25 The loop in memset() iterates over a global
structure G whose size is 25 bytes

ls main.2 ls.c 1061 26 The loop iterates over an array of 26 options
getopt32.1 getopt32.c 362 1320 The loop in memset() iterates over an array

complementary.
getopt32.3 getopt32.c 373 28 The loop iterates over a string representing

possible busybox ls options
getopt32.4 getopt32.c 465 27 The loop iterates over busybox ls

options to check -T or -w is set
getopt32.5 getopt32.c 501 27 The loop iterates over busybox ls

options to check -T or -w is set
getopt32.6 getopt32.c 492 5 The loop iterates over a string opt_complementary
getopt32.7 getopt32.c 431 5 The loop iterates over a string opt_complementary
getopt32.11 getopt32.c 560 33 The loop iterates over an array complementary
bb verror msg.0 verror msg.c 30 16 The loop exists in strlen()
xrealloc vector helper.0 xrealloc vector.c 43 80 The loop exists in memset()

TABLE II
MODEL CHECKING RESULTS OF busybox ls

Opt. Unwinding Assert Time(s) Mem(MB) SAT formula
loop violated statistics

bound Formula Solving Total # of # of
generation variables clauses

MIEL+1 Y 246.6 101.1 347.7 4300 8142514 33245688
-F MIEL+2 Y 2137.4 8664.4 10801.8 15500 17453685 83456781

MIEL+3 N/A N/A N/A N/A OOM N/A N/A
MIEL+1 Y 240.7 109.7 350.4 4300 8142514 33245688

-n MIEL+2 Y 2478 8543.9 11021.9 15600 17453685 83456781
MIEL+3 N/A N/A N/A N/A OOM N/A N/A
MIEL+1 N 251.0 104.5 355.5 4300 8142514 33245688

-i MIEL+2 Y 2666.9 8211.7 10878.6 15700 17453685 83456781
MIEL+3 N/A N/A N/A N/A OOM N/A N/A
MIEL+1 N 251.0 104.5 355.5 4300 8142514 33245688

-s MIEL+2 Y 2666.9 8211.7 10878.6 15700 17453685 83456781
MIEL+3 N/A N/A N/A N/A OOM N/A N/A

busybox ls has a bug. The second column shows ULBs

used. The third column presents a related bug is detected

or not. The fourth to sixth columns present SAT formula

generation time, SAT solving time, and total execution time

in seconds, respectively. The seventh column shows the total

amount of memory consumed (we mark Out-Of-Memory

(OOM) in the table if the 16 GB memory was exhausted).

The eighth and ninth columns show the number of variables

and the clauses of the generated SAT formula, respectively.

Increasing ULBs makes CBMC consume significantly more

amount of execution time and memory. When we increased

ULBs from MIEL+1 to MIEL+2, CBMC’s execution time

increased almost 10 times to detect bugs (for example, to

detect -F bug, CBMC executed 246.6 and 2137.4 seconds with

ULBs as MIEL+1 and MIEL+2 respectively). Also, memory

consumption increased almost four times (for example, to

detect -F bug, CBMC consumes 4300 MB and 15500 MB

with ULBs as MIEL+1 and MIEL+2 respectively).

CBMC detected the two bugs regarding the -F and -n
options, but did not detect the other two bugs regarding -i
and -s options with ULBs as MIELs+1. 6 When we increased

ULBs as MIELs+2, the bugs regarding -i and -s were also

detected. In other words, if we used a machine with 8 GB

memory, we could not detect the bugs regarding the -i and -s
options because we could not increase ULBs as MIELs+2 due

to the memory exhaustion. Also, we could not increase ULBs

as MIELs+3 since the whole 16 GB memory was exhausted

during the formula generation.

One interesting observation was that CBMC did not detect

any bugs when we simply set ULBs of all loops with one

value uniformly, although the value is as large as 1300 using

--unwind 1300. This is because busybox ls has a loop

6Since the bugs of -i option and -s option are detected by the same
assertion violation, the experimental results of -i and -s are same.
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getopt32.1 whose MIEL is 1320 and the loop is located

near the entry point of busybox ls (see the fourth row of

Table I). Thus, unless we unwind the loop more than 1320

times, CBMC could not analyze the subsequent executions

and could not detect bugs at all.

VI. LESSONS LEARNED

A. Effectiveness of SAT-based Bounded Software Model
Checking

We have shown that a SAT-based bounded model checking

technique is effective to detect the four corner case bugs

(Section V-B), which had not been detected by the manual

testing of the original developers of busybox ls. Since

CBMC detected all four bugs that a concolic testing tool

CREST detected [19] with the same assertions and the same

environment setting, we can conclude that the bug detection

capability of CBMC is as high as that of CREST. However,

CBMC did not detect any new bugs which CREST could

not detect either. Thus, on this case study, we consider the

effectiveness of CBMC and CREST are comparable to each

other.

B. Manual Loop Analysis Effort for Bounded Model Checking

As described in Section II and Section IV-C, we had to an-

alyze loops of busybox ls to improve the effectiveness of

bug detection. In addition to the necessity of calculating sound

loop unwinding upper bounds, we have to calculate MIELs to

prevent false negatives, which can be more important than

calculating the loop upper bounds (see Section II).

For example, as shown in Section V-C, without careful loop

analysis, even a large unwinding loop bound value such as

1300 make CBMC fail to detect a bug in busybox ls. Thus,

although software model checking technique like CBMC can

analyze a target C program automatically, still manual effort

of a user is required for effective model checking. Since a real-

world target program usually has many loops each of which

has different characteristics, loop analysis is unavoidable for

effective bounded model checking. In contrast, CREST usually

does not require manual effort to analyze loops of target code.

C. Limited Scalability of SAT-based Bounded Model Checking

Through the study, we observed that the limited scalabil-

ity of SAT-based bounded model checking regarding loop

unwinding and SAT formula generation is a major obstacle

to apply SAT-based bounded model checking to industrial

embedded software. For example, if we did not have a

machine with large memory (i.e., 16 GB), SAT-based bounded

model checking (i.e.,CBMC) would miss two bugs (i.e., the

bugs regarding -i and -s options) in busybox ls due to

the memory exhaustion during the SAT formula generation

(Section V-C). Thus, to achieve higher effectiveness in terms of

analysis coverage and bug finding, the SAT formula generation

algorithm should be optimized further as the first step to

improve the scalability of SAT-based bounded model checking.

D. Weaknesses of SAT-based Bounded Model Checking for
Real-world Projects

Through the study, we have observed that SAT-based soft-

ware model checking has a few weakness as an analysis tool

for whole program in industrial setting.

First, CBMC requires manual effort to analyze loops of

target code for high bug detection capability (Section VI-B).

Since most field engineers are sensitive to the required manual

effort to adopt a new technique, they might not favor to apply

CBMC to their projects.

Second, CBMC does not report intermediate verification

progress explicitly until the whole verification is completed,

which may take arbitrarily long time and make field engineers

uncomfortable. In industrial projects, it is crucial to measure

the intermediate progress of verification and validation (V&V)

activities to satisfy the quality goal and the project deadline.

Most model checking techniques produces all-or-nothing ver-

ification results. In comparison, concolic testing can be more

suitable for industrial projects since concolic testing gradually

increases the analysis coverage and bug detection capability

and continuously reports intermediate testing results through

generated test cases and their results so far. 7

Finally, software model checking does not utilize a concrete

external environment. For example, busybox ls invokes

14 external functions such as readlink() which accesses

the information of a target file system. We modeled some

external functions such as stat() and lstat() (Sec-

tion IV-B2) but not all of them due to limited project time.

If a user does not explicitly model an external function,

CBMC considers the return value of the external function

like readlink() can be arbitrary (i.e., over-approximation),

which can cause false positives (this case study happened to

escape this problem) and worsen the state explosion problem.

In contrast, concolic testing can invoke external binary library

functions and utilize their concrete return values to analyze a

corresponding execution path and does not raise false alarms

(although testing coverage can be low).

VII. RELATED WORK

CBMC has been applied to various target applications such

as mobile sensor network applications [30], [8], embedded OS

scheduler [21], embedded software for medical devices [12],

automotive systems [23], [25]. Werner and Farago [30] applied

CBMC to verify a mobile sensor network protocol called

ESAWN [7]. Bucur and Kwiatkowska [8] also applied CBMC

to model check sensor network applications to check array

out-of-bounds access and NULL-pointer dereference. Ludwich

and Frohlich [21] used CBMC to verify a process scheduler

in embedded operating system written in C++. Cordeiro et

al. [12] verified embedded software in a medical device using

CBMC and SATABS model checkers. Metta [23] verified

CRC (Cyclic Redundancy Check) computation functions in an

7Concolic testing analyzes execution paths one by one independently and
symbolic analysis of each execution path consumes only a small amount of
memory and computation time.
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automotive system. The author optimized the implementation

and verified that the optimized code is equivalent to the

original code in terms of functionality. Park et al. [25] applied

CBMC to verify OSEK/VDX operating system for automotive

systems. To construct environment model for model checking,

the authors sliced the target program using the variables in

requirement properties.

Most of the above case studies did not perform detailed

loop analysis as we did in this case study. Those case studies

simply/optimistically set unwinding loop bounds for loops in

target code with small values such as one or two and increase

the bounds until computational resource was exhausted or

given time limit was reached. Thus, their case studies might

miss bugs (see Section VI-B). This case study may be the

first one to emphasize the necessity of manual loop analysis to

avoid hidden false negatives due to an unwinding loop bound

(ULB) smaller than the minimum iterations to exit a target

loop (MIEL).

VIII. CONCLUSION

In this project, we applied CBMC that utilizes a SAT-

based bounded model checking technique to detect bugs in

busybox ls. Through the case study, we have confirmed

that an automated software analysis technique such as CBMC

could successfully detect hidden bugs in real-world software

like busybox ls. However, this success can be obtained

only with non-trivial manual effort due to the necessity of

analyzing the loops of a target program. In this study, we

demonstrate the importance of calculating MIELs to prevent

false negatives in practice, which is one of the contributions

of this paper.

As future work, we plan to develop a heuristic to get MIEL

automatically because manual effort required to get MIEL

can be a large obstacle to adopt bounded model checking

techniques in practice.
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