
Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Yunho Kim
CS Dept. KAIST

South Korea
Email: kimyunho@kaist.ac.kr

Youil Kim, Taeksu Kim, Gunwoo Lee, Yoonkyu Jang
Samsung Electronics

South Korea
Email:{youil.kim,taeksu.kim,gunman.lee,yoonkyu.jang}

@samsung.com

Moonzoo Kim
CS Dept. KAIST

South Korea
Email: moonzoo@cs.kaist.ac.kr

Abstract—Current testing practice in industry is often in-
effective and slow to detect bugs, since most projects utilize
manually generated test cases. Concolic testing alleviates this
problem by automatically generating test cases that achieve
high coverage. However, specialized execution platforms and
resource constraints of embedded software hinder application
of concolic testing to embedded software. To overcome these
limitations, we have developed CONcrete and symBOLic (CON-
BOL) testing framework to unit test large size industrial em-
bedded software automatically. To address the aforementioned
limitations, CONBOL tests target units on a host PC platform
by generating symbolic unit testing drivers/stubs automatically
and applying heuristics to reduce false alarms caused by the
imprecise drivers/stubs. We have applied CONBOL to four
million lines long industrial embedded software and detected 24
new crash bugs. Furthermore, the development team of the target
software adopted CONBOL to their development process to apply
CONBOL to the revised target software regularly.

I. INTRODUCTION

Software testing is a de facto standard method to assess
the quality of software. However, current testing practice in
industry often fails to detect bugs in target programs, because it
is difficult for human engineers to manually write effective test
cases to explore specific execution paths that trigger hidden
bugs. Also, manually writing effective test cases is a time-
consuming task and it is difficult to write sufficient number of
test cases in a limited project time.

To solve these problems, we have applied concolic (CON-
Crete + symbOLIC) testing techniques to industrial software
projects. Concolic testing [32] (also known as dynamic sym-
bolic execution [34] and white-box fuzzing [12]) combines
concrete dynamic analysis and static symbolic analysis to
automatically generate test cases to explore various execution
paths of a target program. We have applied concolic testing to
several industrial projects (e.g., flash memory device driver [14],
mobile phone software [15], and libexif library which
manipulates image meta data [18]) and confirmed that concolic
testing is effective for detecting bugs in industrial software
with modest effort.

However, since concolic testing depends on a target execution
environment, specialized execution platforms and resource
constraints of embedded software hinder application of concolic
testing to embedded software due to the following challenges:

• A concolic testing tool should be ported to a target
embedded OS (VxWorks, QNX, etc), since most concolic
testing tools are developed to run on Linux or Windows.
In addition, libraries that concolic testing tools utilize
(e.g., parsers and SMT solvers) should be ported, too.
Furthermore, source code of concolic testing tools and
relevant libraries may not be available, which even disables
porting.

• Concolic testing can generate millions of test cases to
explore many possible execution paths of target embedded
software. Running a large number of test cases and
solving corresponding symbolic path formulas on resource-
constrained embedded hardware may take a large amount
of time which is unacceptable in industrial projects.

• For concolic testing tools targeting source-code such as
CREST-BV [18], concolic testing depends on a target code
build environment. Embedded programs often contain non-
standard programming language extensions and require a
specific compiler/linker for a target embedded platform,
which may not be supported by concolic testing tools.

To address the aforementioned challenges, we have devel-
oped CONcrete and symBOLic (CONBOL) testing framework
that generates symbolic unit testing drivers/stubs and performs
concolic testing on a host PC automatically. Conventional
unit testing assumes that the developers who have built target
units perform unit testing and they can make unit testing
drivers/stubs correctly and specify requirement properties based
on their knowledge of the target units [27]. However, this
assumption is often not true in industrial projects where
developers have difficulty to perform unit test due to tight
project schedule (for example, smartphone products are often
developed in less than six months due to heavy market
competition). CONBOL handles the aforementioned tasks (i.e.,
to make unit testing driver/stub code and specify assertions)
automatically. CONBOL has additional benefits for testing
embedded software by applying concolic testing at unit level
since unit testing has less dependency on the target hardware
platform by building/utilizing testing driver/stubs [20].

CONBOL targets crash bugs (i.e., null pointer dereferences,
illegal memory accesses, and divide-by-zero bugs), because
these crash bugs can cause entire software to fail and, thus,

978-1-4799-0215-6/13/$31.00 c© 2013 IEEE ASE 2013, Palo Alto, USA
Experience Track

519

can be of important concern to developers. In addition,
oracles/assertions for these bugs are readily available without
user-specified assertions and can be checked automatically. In
addition, CONBOL generates symbolic unit test drivers and
stubs automatically, which enable automated unit testing of
embedded software and save a large amount of human effort.
Furthermore, CONBOL applies several heuristics to reduce
false alarms caused by the imprecise test driver/stubs (see
Sections III-B– III-D). 1

We have applied CONBOL to four million lines long
industrial embedded software for smartphones (calling it
‘project S’ in this paper), which contains around 49,000
functions. After filtering out false alarms, CONBOL detected 24
new crash bugs which had not been detected by manual testing
nor static analysis tools such as Coverity Prevent. Furthermore,
the development team of the project S recognized the practical
usefulness of CONBOL and decided to adopt CONBOL in
their development process to apply CONBOL to the revised
code regularly. To our knowledge, this is the first case study
that demonstrates the practicality of concolic testing as an
automated crash bug detection technique for multi-million
lines long industrial embedded software.

The remainder of this paper is organized as follows. Sec-
tion II explains the CONBOL framework. Section III explains
the heuristics used to improve the effectiveness and precision of
bug detection. Section IV describes the case study of applying
CONBOL to the large industrial embedded software project of
Samsung Electronics. Section V reports the testing results
and Section VI discusses lessons learned from this study.
Section VII explains related work and, finally, Section VIII
summarizes the paper and discusses future work.

II. CONBOL FRAMEWORK

A. CONBOL Overview

Figure 1 shows the overall structure of the CONBOL
framework. CONBOL is developed based on a concolic
testing tool CREST-BV [18], and consists of the following
six components - CONBOL Trim, CONBOL Gen, CONBOL
Pre-processor, CONBOL Instrumentor, CONBOL Library, and
CONBOL Run. The first three components are newly developed
modules from scratch and the last three components are the
extension of CREST-BV. The CONBOL framework consists of
5500 LOC in the Ruby scripting language, 5600 LOC in Ocaml
for additional instrumentation, and about 8500 LOC in C/C++
to implement CONBOL main engine and modify CREST-BV’s
symbolic execution engine to support symbolic array index
dereference by using memory model [9]. CONBOL has been
developed by three Samsung engineers for five months.

The work-flow of CONBOL is as follows. Given target C
code written for an embedded platform is transformed to GCC
compatible C code by CONBOL Trim. Then, by analyzing this
GCC compatible target C code, CONBOL Gen generates unit

1For example, CONBOL may report a null-pointer dereference bug
for a pointer parameter pt in a target unit void f(int *pt) { ...
if(*pt==10) ...}. However, if f() is always invoked with pt as a
non-null value in the target program, this bug report becomes a false alarm.

test driver/stub code for a target unit function. At the same time,
CONBOL Pre-processor inserts assert() to detect crash
bugs more effectively and constraints to satisfy pre-conditions
of a target unit to reduce false alarms. This pre-processed GCC
compatible target C file is instrumented and compiled with
the unit test driver/stub code and the CONBOL library by
gcc. Finally, the generated Linux binary file is executed by
CONBOL Run to explore various execution paths and report
violated assertions having high scores at run time. From the
run time execution information, CONBOL reports crash bug
detected and branch coverage achieved so far.

B. CONBOL Trim: Automated Porting of Unit Functions
Written for an Embedded Platform

CONBOL Trim removes the target functions that cannot be
ported to a host PC or modifies the unit functions of the target
embedded software so that the unit functions can be compiled
and executed at the host PC.

1) Removal of Unportable Functions: First, CONBOL Trim
identifies functions that cannot be ported to a host PC. Then,
these functions are replaced with the corresponding symbolic
stub functions that return unconstrained symbolic values. Main
causes that make a function unable to run on a host PC are inline
assembly code, hardware-dependent code such as dereference
of absolute memory address, and extensions of RVCT (RealView
Compilation Tools) [29] that are not compatible with GCC.

• Inline assembly code:
Embedded programs often contain inline assembly code
to control the target embedded hardware directly. The
target functions that contain inline ARM assembly code
(the project S runs on the ARM hardware) are removed,
since they cannot run on a host PC of x86 architecture.

• Hardware dependent code:
Embedded software often uses memory-mapped I/Os that
map hardware control registers to the absolute memory
addresses. The target functions that contain memory-
mapped I/O code are removed, since they cannot run
on a host PC correctly (memory mapped I/Os do not
work on different hardware configurations).

• RVCT compiler extensions:
RVCT compiler allows various extensions in target C code
to produce optimized executable binary files for target
hardware. Some RVCT extensions can be ignored or can
be translated to corresponding GCC extensions. If RVCT
extensions in a function cannot be translated to GCC
compatible code, CONBOL removes the function.

2) Translation of Target Functions: The project S is devel-
oped for the ARM architecture and uses RVCT as a compiler. A
problem is that RVCT is not fully compatible with GCC on an
x86 host PC. In addition, CIL (C Intermediate Language) [21]
which is an instrumentation tool that is used by CONBOL
Instrumentor does not support RVCT extensions nor GCC-
incompatible syntax. Thus, CONBOL modifies the target unit
code to be compatible with GCC and CIL as follows:

520

Fig. 1. Overview of the CONBOL framework

• Translation of the RVCT compiler extensions:
If RVCT extensions declare properties of a function but
do not impact a target function semantics, CONBOL Trim
simply removes the extensions. If RVCT extensions have
corresponding GCC extensions, we translate the RVCT
extensions to the corresponding GCC extensions. For ex-
ample, __align(8) extension for RVCT (which aligns a
data structure in 8 bytes) can be translated to an equivalent
GCC extension __attribute__((aligned(8)).

• Resolving type inconsistency:
RVCT does not check type strongly between function
declaration and corresponding function definition, if they
are in separate files (this situation occurs frequently in
large software such as the project S). For example, RVCT
allows type inconsistency between the types of parameters
in function declaration and the types of parameters in
function definition, if the declaration and the definition
are in different files. CONBOL Trim modifies the function
definitions to be type-consistent with the corresponding
function declaration and reports this modification to a
user.

C. CONBOL Gen: Automated Generation of Unit Test Drivers
and Stubs

The CONBOL Gen component automatically generates unit
test drivers that specify symbolic input variables for target
units and generates stub functions for the functions removed
by CONBOL Trim. A generated unit test driver specifies all
parameters of the target unit and all global variables that are
used by the target unit as symbolic inputs. CONBOL Gen
specifies a symbolic input for each variable according to its
type as follows:
• Primitive integer types:

If a given parameter variable x or a given global variable
y is a primitive integer type such as int and char,
CONBOL specifies the variable as a symbolic input

by using the CONBOL declaration functions such as
CONBOL_int(x), CONBOL_char(y), etc. CONBOL
does not support floating point symbolic variables, since
most SMT solvers do not fully support floating point
arithmetics.

• Array types:
If a given variable is an array, CONBOL specifies each
array element as a symbolic variable according to the type
of the array element. To avoid performance degradation
due to too many symbolic variables, a user can specify
an upper bound n such that CONBOL specifies only the
first n elements of an array as symbolic variables.

• Structure types:
If a given variable s is a structure type, CONBOL specifies
every primitive field variable of s as a symbolic variable
recursively (i.e., if s contains a structure t, the primitive
field variables of t are declared symbolically). To reduce
the complexity of concolic testing, the pointer variables
of a structure are not declared symbolically and these
pointer variables are assigned with NULL.

• Pointer types:
If a given variable pt is a pointer to a variable of a type
T, CONBOL allocates memory space whose size is equal
to the size of T and assigns the address of the allocated
memory to pt (i.e., pt = malloc(sizeof(T))). If
T is a primitive type, CONBOL declares the allocated
memory as symbolic by using CONBOL_int(), etc. If
T is not a primitive type (i.e., a structure), the allocated
memory space is declared as symbolic, following the way
to specify variables of ‘Structure types’ symbolically.

Figure 2 shows an example of unit test driver code generated
by CONBOL Gen. Node (lines 1-4) is a structure type that rep-
resents a linked list node which contains a character value. The
target unit function is add_last(v)(lines 7-10) which takes
a character v as an input and adds a new node containing v to
the end of the global linked list. add_last() uses a global

521

01:typedef struct Node_{
02: char c;
03: struct Node_ *next;
04:} Node;
05:Node *head;
06:// Target unit-under-test
07:void add_last(char v){
08: // add a new node containing v
09: // to the end of the linked list
10: ...}
11:// Test driver for the target unit
12:void test_add_last(){
13: char v1;
14: head = malloc(sizeof(Node));
15: CONBOL_char(head->c);
16: head->next = NULL;
17: CONBOL_char(v1);
18: add_last(v1); }

Fig. 2. An example of an automatically generated unit test driver

pointer variable head (line 5). test_add_last()(lines
12-18) is test driver code for add_last().

CONBOL Gen sets all global variables used by the target unit
as symbolic inputs. Since the target unit add_last() uses
head, the driver allocates memory space to head (line 14).
Next, the driver declares all fields of the structure pointed
by head (except pointer variables) as symbolic variables.
In other words, the driver sets head->c as a symbolic
character variable (line 15) and head->next as NULL,
because head->next is a pointer variable of the structure.
After the driver finishes setting symbolic global variables, the
driver declares function parameters symbolically (line 17). After
the driver finishes symbolic input setting, it invokes the target
unit function with the symbolic parameters (line 18).

This way of declaring symbolic inputs may declare many
symbolic variables. However, a large number of declared
symbolic variables does not necessarily generate complex
symbolic path formulas, because each execution of a target
program often accesses only a small subset of symbolic
variables of large data structure [18]. For example, in the
case study on the project S, each execution of the target unit
generates a symbolic path formula that includes less than 14
symbolic variables on average.

In addition, CONBOL generates symbolic stubs for sub-
functions called by a target function. These symbolic stub
functions simply return symbolic values according to their
return types without considering global variable updates. The
symbolic return values are constructed in the same way to
construct symbolic inputs. Finally, CONBOL replaces the sub-
functions of a target function with the symbolic stub functions.

III. HEURISTICS TO IMPROVE THE EFFECTIVENESS AND
PRECISION OF BUG DETECTION

To improve the effectiveness and precision of bug detection,
CONBOL utilizes the following heuristics which are imple-
mented in CONBOL Pre-processor (PP):
• To detect more bugs (see Section III-A):

CONBOL PP inserts assert(expr) to detect more
bugs automatically, where expr is a condition to sat-
isfy for correct execution (e.g., pt != NULL). Inserted
assert(expr) can increase a chance of detecting bugs
that violate expr, since concolic testing generates input
values to make each branching expression (i.e., expr) true
and false.

• To reduce false alarms (see Sections III-B– III-D):
First, since the imprecise driver code that violates
necessary precondition of a target function can cause
false alarms 2, CONBOL PP tries to guarantee a
precondition expr′ of a target unit by inserting
CONBOL_assume(expr′), which enforces symbolic val-
ues to satisfy expr′. Second, CONBOL scores every
violated assertion and reports only ones with high scores.
Finally, after a developer filters out a false alarm, CON-
BOL inserts an annotation at the false alarm location to
avoid the same false alarm in later executions.

A. Inserting assert() Statements

CONBOL PP automatically inserts assert() statements
to detect the following run-time crash bugs. Since a main
goal of CONBOL is fully automated testing in a scalable way,
CONBOL targets run-time crash bugs which do not require
human developers to specify properties to check.
• Out-of-bound memory access bugs (OOB):

CONBOL inserts assert(0<=idx_expr && idx_expr<
size) right before the statements that contain array
read/write operations, where size is obtained from the
corresponding array declaration statement in the target
code. Note that such assertion can increase the probability
of detecting an out-of-bound bug, because CONBOL
tries to generate test inputs that make idx_expr become
negative or greater than the upper bound to explore a false
branch of the assertion.

• Divide-by-zero bugs (DBZ):
CONBOL inserts assert(denominator!=0) right
before the statements containing division operators whose
denominators are not constants. Similar to the out-of-
bound memory assertions, this assertion can increase the
probability of detecting a divide-by-zero bug by enforcing
CONBOL to generate test inputs that make denominator
zero to exercise a false branch of the assertion.

• Null-pointer-dereference bugs (NPD):
CONBOL inserts assert(pointer!=NULL) right be-
fore statements that contain pointer dereference operations.
This NPD assertion does not increase a chance to detect a

2For example, if an unsorted array is given to a binary search function, the
function may cause an error, even when the function is correctly implemented.

522

01:int array[10];
02:void get_ith_element(int i){
03: return array[i];
04:}
05:// Test driver for get_ith_element()
06:void test_get_ith_element(){
07: int i, idx;
08: for(i=0; i<10; i++){
09: CONBOL_int(array[i]);
10: }
11: CONBOL_int(idx);
12: //CONBOL_assume(0<=idx && idx<10);
13: get_ith_element(idx);
14:}

Fig. 3. Test driver with preconditions

NPD bug, since CONBOL does not analyze pointer vari-
ables symbolically. Now CONBOL inserts NPD assertions
for information gathering purpose, but we plan to improve
CONBOL to analyze pointer variables symbolically in
near future.

B. Inserting Constraints to Satisfy Preconditions

CONBOL may generate false alarms due to the imprecise
unit test driver that violates preconditions of a target unit
under test. Figure 3 shows an example of such false alarm.
The target unit get_ith_element()(lines 2-4) receives
an index to an element of array declared at line 1 and
returns the element of array at the index. The test driver
test_get_ith_element() sets all elements of array
as symbolic variables (lines 8–10) and idx as a symbolic
variable (line 11), and executes get_ith_element(idx)
(line 13). Note that test_get_ith_element() (lines 6–
14) can crash get_ith_element() due to the out-of-bound
array access, since idx is declared as a symbolic variable and
it can be larger than the array size. However, this violation
can be a false alarm, if get_ith_element(idx) is always
invoked with idx between 0 and 9 in the target program.

Developers often write a unit function based on the assump-
tion that the unit will be called with ‘valid’ parameters. Thus, to
reduce false alarms, it is important to insert constraints to satisfy
such preconditions of a target unit. 3 CONBOL PP inserts
such constraints of target functions automatically by using
CONBOL_assume(expr). 4 In the above example where
a precondition of get_ith_element(idx) is 0<=idx
&& idx<10, the unit test driver should generate symbolic

3Constraints to satisfy such preconditions may cause false negatives, if
a developer has incorrect assumption. However, utilizing the constraints to
reduce false alarms even at the cost of false negatives can be a good strategy,
because it can be more important to reduce false alarms than to reduce false
negatives in industry targeting smartphone market (see Section VI-B).

4CONBOL_assume(expr) is a macro of if(!expr) exit(0);. If a
current test case tc violates a given precondition (i.e., expr becomes false),
CONBOL immediately terminates a target unit execution with tc and removes
tc, since tc can raise a false alarm.

input values that satisfy the precondition, which is enforced
by CONBOL_assume(0<=idx && idx<10) at line 12.

Currently, CONBOL PP inserts the following three types of
constraints:
• Preconditions for array indexes:

To avoid false alarms due to infeasible out-of-array
indexes, CONBOL PP inserts CONBOL_assume(0<=
idx_expr && idx_expr <size) before the invocation
of a target function as a precondition to satisfy for array
accesses through idx_expr in the target function, where
size is obtained from the corresponding array declaration
statement in the target code. However, to keep the chance
of detecting array out-of-index bugs, CONBOL PP inserts
constraints on idx_expr only if idx_expr satisfies all of
the following conditions:

1) idx_expr should be a form of x + a where x is a
symbolic integer variable and a is an integer constant
(i.e., a[x-1] = ...).

2) x should not be updated in the target function.
3) The target function should not check the value of x

(e.g., if(x<=10+y)...).
• Preconditions for constant parameters:

Developers often write a function whose parameter should
have one of the pre-defined constant values. For example,
the third parameter of fseek() C standard function
should be one of the three constant values SEEK_SET,
SEEK_CUR and SEEK_END. Any values other than these
three constants are invalid values and can cause false
alarms when fseek() is tested. Thus, CONBOL PP
inserts constraints to generate a symbolic value that is
one of the valid constant parameters for a target unit.
CONBOL PP identifies such a function f() whose
parameter should have one of predefined constant values
by looking at the function invocation statements. If all
statements that invoke f() in the target code pass a
constant as a parameter of f(), CONBOL PP inserts
constraints to generate only such constant values for the
parameter.

• Preconditions for enum values:
When an enum variable is declared symbolically, this
variable is declared as a symbolic integer variable. To
prevent false alarms due to undefined enum values,
CONBOL PP inserts constraints to generate only integer
values defined in the corresponding enum type for an
enum variable.

C. Scoring of Alarms
To reduce false alarms, CONBOL assigns a score to each

violated assertion that CONBOL inserts (see Section III-A)
and reports only violated assertions with scores larger than
a threshold. Main scoring rules for violated assertions are as
follows and CONBOL reports only violated assertions whose
scores are six or higher: 5

5CONBOL has 13 scoring rules based on the target code and runtime
execution information. The other 10 scoring rules were not effective to filter
out false alarms, and not applied in this case study.

523

1) Every violated assertion gets 5 as a default score.
2) For each violated assertion which contains a variable

x, if the target function containing the assertion checks
the value of x (e.g., if(x < y+1)...), the score of the
assertion increases by 1. A rationale for this rule is that
an explicit check of x in the target function indicates
that the developer of the function considers x important
and the assertion on x is important consequently.

3) For each violated assertion assert(expr), the score
of the assertion decreases by 1, if expr appears five or
more times in other violated assertions in the entire target
software. A rationale for this rule is the assumption that
a developer writes code correctly most of time so that
target code does not have a same bug that appears many
times in different locations of the target program.

D. Annotation Mechanism to Utilize User Feedback

CONBOL PP utilizes a user feedback through annotations
in a target code. CONBOL annotation is specified as a
comment starting with /*CBL. A user can guide CONBOL
through this annotation mechanism to reduce false alarms. For
example, if a developer identifies a false alarm located at line
l, CONBOL inserts the following annotation at line l:
/*CBL action=suppress,object=none,log=false...

By using this annotation, the identified false alarms will be
suppressed for later executions.

IV. CASE STUDY ON SAMSUNG PROJECT S

The goal of this case study is to evaluate the effectiveness
(in terms of a number of detected bugs) and efficiency (in
terms of testing time and false alarm ratio) of CONBOL for
large-scale industrial embedded software. For this purpose, we
have applied CONBOL to four million lines long embedded
software developed by Samsung Electronics (calling it project
S in this paper).

A. Target Project Description

The project S has been developed for smartphones. The
rough statistics on the structure of the project S (written in
mainly C) is as follows: 6

• Total number of directories: 3123
• Total number of source files: 7243
• Total number of header files: 10401
• Total number of functions: 48743

– Total number of functions having more than one
branch: 29324

• Total number of branches: 397854
• Total lines of code: four million lines of C codes
Project S targets ARM platform and uses RVCT compiler

infrastructure. We chose the project S as our target program,
because it is important software for commercial smartphones.
In addition, the project S had suffered subtle bugs, which
consumed a large amount of developer time and resource.

6To secure the intellectual property rights of Samsung Electronics, detailed
information on the project S is not written in this paper.

B. Experimental Setup

Unit testing has several advantages to improve software
quality such as early detection of bugs and corner case bug
detection [28]. Unit testing has additional benefits for embedded
software, since unit testing has less dependency on the target
embedded platform by building testing driver/stubs [20]. Thus,
we decided to apply CONBOL to the project S in unit level.

CONBOL uses reverse depth-first search strategy [5] to
explore execution paths of the target unit and increase branch
coverage fast. Unit testing of a target unit terminates when
• An assertion to detect a crash bug is violated, or
• All possible execution paths are explored, or
• All test executions of a target unit spend 30 seconds

(Timeout1).
In addition, we enforce Timeout2 by which a single test
execution of a target unit terminates when the execution takes
15 seconds.

The experiments were performed on a machine that has Intel
i5 3570K (3.4GHz) and with 4GB RAM, running Debian 6.0.4
32bit version.

V. CASE STUDY RESULTS ON THE PROJECT S

A. Results of CONBOL Trim, CONBOL Gen, and CONBOL
PP

CONBOL Trim removed unportable functions of the project
S and the number of final target functions is 25425 out of
the 29324 functions that have more than one branch. Among
3899 (=29324-25425) removed functions, 2825 functions
were removed due to ARM inline assembly, 806 functions
were removed due to hardware dependent code, and 268
functions were removed due to RVCT compiler extension
(see Section II-B). As a result, 86.7% (=25425/29324) of the
target functions were tested by CONBOL.

The size of symbolic setting portions generated by CONBOL
Gen is 60.8 lines long on average, declaring 58.9 symbolic
variables and containing 9.51 symbolic stub sub-functions
on average. CONBOL PP inserted 14.3 assertions in each
target function on average (i.e., 8.0 NPD assertions, 6.2 OOB
assertions, and 0.1 DBZ assertions on average). CONBOL PP
also inserted 2.3 precondition constraints in each target function
on average (i.e., 1.4, 0.6, and 0.3 precondition constraints
for enum variables, array indexes 7, and constant parameters,
respectively).

B. Result on Detected Bugs

After testing the 25425 target functions and applying the false
alarm reduction techniques, CONBOL reported 277 alarms.

We filtered out false alarms by reviewing the relevant
target source code, especially the calling context of the target
functions. Interestingly, similar alarms occurred repeatedly
so that we could remove most of the alarms without much
difficulty. For example, we observed many violations of
similar assert conditions in similar context. In addition, many

7The average number of inserted precondition constraints for array indexes
is small (i.e., 0.6) due to the three strict conditions (Section III-B).

524

alarms regarding specific variables were false alarms due
to imprecise environments. For example, all violations of
assert(gd[i].f!=0) were false alarms, since all target
functions that access gd are called only after the initialization
function init_gd() that assigns all fields of the elements of
gd correctly (i.e., init_gd() assigns gd[i].f with non-
zero for all possible i’s in real executions). Two authors of
Samsung without prior knowledge on the project S spent a
week to remove false alarms. Finally, we reported 50 alarms to
the original developers and the following 24 crash bugs among
these 50 alarms were confirmed by the original developers of
the project S.
• 13 array out-of-index bugs:

More than a half of detected bugs are OOB bugs, since the
project S utilizes complex data structures containing arrays.
Eight OOB bugs are made, because the index checking
statement (line 4) is located after the array access (line
3) as shown below:
1:void foo(u8 index) {
2: ...
3: g[index-1] = ...;
4: if((index==0)||(index>10)) return;
5: ...}
Note that CONBOL does not insert a precondition
constraint for such code, since the code checks the range
of index at line 4 (see Section III-B). The other bugs
are due to incomplete checking of the values of index
variables.

• 6 divide-by-zero bugs:
Two of the detected divide-by-zero bugs are as following:
1:u32 foo(u32 t, ...) {
2: ...
3: if (t != 0) { ...
4: if(size < 2) {z=z/(t/10);}
5: else if (size < 3) {z=z/(t/100);}
6: else z=z/(t/1000);}
7: ... }
Lines 4–6 will raise divide-by-zero errors in spite of line
3 that checks a value of the denominator t due to integer
division, if an unsigned 32-bit integer t is less than 10,
100, and 1000, respectively. The other four bugs are due
to missing tests to check if denominator values are zero.

• 5 null-pointer dereference bugs:
Although CONBOL does not support symbolic pointer
varaibles, CONBOL detected five null-pointer derefer-
ence bugs, because symbolic test drivers generated by
CONBOL set a pointer variable in a structure as NULL
(Section II-C).

C. Coverage and Time Costs
Table I describes a number of generated test cases, branch

coverage, and time cost of CONBOL for the 25425 target
functions. CONBOL covered 59.6% of the target branches
with 0.8 million test cases in 15.8 hours. After removing the
time cost caused by the target functions that reached timeout1
or timeout2, CONBOL spent 9.0 hours.

TABLE I
BRANCH COVERAGES AND TIME COSTS

Total # of test cases generated 0.8 ×106

Branch coverage(%) 59.6
Total time spent (hour) 15.8
of functions that reached timeout1 742 (TO:30s)
of functions that reached timeout2 134 (TO:15s)
Time cost w/o timeout (hour) 9.0

TABLE II
EFFECTIVENESS OF FALSE ALARM REDUCTION TECHNIQUES

of reported alarms OOB NPD DBZ Sum
Total # 3235 2588 61 5884
W/ precondition constraints 2486 2511 58 5055
W/ scoring rules 220 42 15 277

Regarding the branch coverage result, we found the following
reasons for the uncovered 40.4% (=100%-59.6%) of the
branches. 8 First, a test execution terminated at an assertion
violation and no further branches were covered in the execution
(see Section IV-B), which makes 10.8% of the target branches
uncovered. Second, functions that reach timeout were not
covered completely, which makes 9.3% of the branches
uncovered. 9 The remaining 20.3% of the branches were not
covered due to the limitations of CONBOL such as lack
of symbolic pointer support, setting pointers as NULL in
a symbolic struct input, no support for floating pointer
arithmetic, external libraries, etc. 10

D. Effectiveness of the False Alarm Reduction Techniques

Without applying any false alarm reduction techniques (i.e.,
without precondition constraints, nor scoring rules), CONBOL
generated 5884 (=3235+2588+61) alarms (the second row of
Table II).

By inserting the precondition constraints (Section III-B),
14.1% (= 5884−5055

5884) of alarms were removed (see the third
row of the table). Note that OOB alarms were reduced
23.2% (= 3235−2486

3235) on average, respectively mainly due to
the precondition constraints for array indexes.

Finally, after applying the scoring rules (Section III-C),
94.5% (= 5055−277

5055) of the alarms were removed (the fourth
row of the table). For example, 54.3% of the alarms have score
4 due to the rules 1) and 3), 36.8% of the alarms have score 5
due to the rules 1), 2) and 3) together, and 3.5% of the alarms
have score 5 due to the rule 1) only.

8CONBOL Instrumentor transforms a target program to an equivalent
extended version whose branches contain only one atomic condition per
branch. Thus, the branch coverage achieved on the original program is much
higher than the coverage data in Table I on the extended target program.

9In the exploratory experiments, increased timeouts did not improve the
coverage much.

1010.8% and 9.3% were calculated by simply counting the uncovered
branches of the target units which raised an alarm or reached timeout
(Section IV-B). Thus, we think that more than 20.3 % of the target branches
were uncovered due to the limitations of CONBOL.

525

VI. LESSONS LEARNED

A. Effectiveness and Efficiency of the CONBOL Framework

Through the case study on the project S, we could confirm
that CONBOL is an effective framework by detecting 24
crash bugs in large embedded software (see Section V-B).
A main reason why these 24 bugs had not been detected
by the developers is that the bugs can be triggered only in
corner-case scenarios, which are hard to imagine by human
engineers. Concolic testing technique, as demonstrated in the
other industrial case studies [14], [15], [18], have strengths
in exploring corner-case scenarios and detect subtle bugs. In
addition, CONBOL spent less than one day to detect those
crash bugs, which is affordable time cost in industrial setting.
To our knowledge, this case study is the first industrial case
study that demonstrates the practicality of concolic testing
technique on multi million lines long industrial embedded
software.

Another interesting observation is that the project S had
been regularly checked by using static analysis tools such as
Coverity Prevent. 11 These 24 crash bugs reported by CONBOL
had not been detected by those static analysis tools, since static
analysis tools often perform only simple analysis for fast bug
detection and report alarms only when the scores of the alarms
are higher than some threshold to reduce false alarms. Although
both static analysis tools and CONBOL target crash bugs, it
is a good idea to apply static analysis tools and CONBOL
together, since they can complement each other.

B. Issues for Successful Technology Transfer to Industry

The development team of the project S decided to incorporate
CONBOL in their development process after a series of
discussions with us regarding the needs of the developers
and the detailed information of CONBOL. Main issues of the
discussions are as follows;

1) Trade-off between Software Quality and Time-to-Market:
We found that the developers were not concerned much for
the detected crash bugs, since most of the bugs cause errors
in corner-case scenarios (i.e., they think that a user would
experience the corresponding errors very rarely in daily use),
but concerned for extra overhead caused by adopting CONBOL
(i.e., steep learning curve, manual steps required to apply
CONBOL, long testing time, reviewing many alarms, etc.),
since time-to-market is critical for a smartphone market.

We understood the viewpoint of the developers for a smart-
phone market and responded as follows. First, we had designed
CONBOL to satisfy such viewpoint of the developers by
increasing the degree of automation of unit testing by generating
driver/stubs automatically (Section II-C) and reducing false
alarms (Sections III-B–III-D). Second, regarding the concern of
steep learning curve, we made seminars to help the developer
understand CONBOL and concolic testing. Third, we made it
clear that the execution time of CONBOL could be reduced

11The original developers said that Coverity Prevent had reported less than
100 alarms on average. Five engineers spent one day to review these alarms
on average.

significantly by distributing target units to multiple testing
machines, since CONBOL tests every unit independently.
Finally, we explained that reviewing of alarms might not
consume a large amount of time, since many of the detected
alarms showed similar patterns and, thus, many alarms could
be removed together. Furthermore, this manual effort to review
the alarms is one-time cost for the initial version of target
software. For subsequent revisions of the target software, only
a small number of new alarms will be reported, since the false
alarms detected in the previous version are suppressed by the
annotation (Section III-D).

2) Delivering Confidence in the Advanced Testing Tech-
niques: Although CONBOL detected new crash bugs, the
developers were uncertain about the benefit of using CONBOL
due to their negative preconception on automated testing tools
(most developers had tried and found several automated testing
tools working for demo cases, but not really working for their
previous projects). In other words, they did not understand
the underlying concolic testing techniques and, thus, thought
CONBOL as just yet-another automated testing tool based on
ad-hoc heuristics.

To give confidence in the benefit of using CONBOL, we
delivered a detailed report on the CONBOL experiment on the
project S. In addition, we made a series of seminars to help
the developers understand both strengths and limitations of
concolic testing techniques. As a result, the developers started
to admit that CONBOL can generate test cases systematically
and at modest cost to detect bugs that are hard to find by using
random testing or manual testing.

3) Improving Tool Maturity of CONBOL: Initially, the
developers concerned about hidden manual cost to apply
CONBOL to their project, such as modification of target
source building scripts, lack of GUI that costs more labor
to analyze bug reports, lack of integration with existing test
case management tools, etc.

We persuaded the developers that most of these issues are
implementation issues and can be solved so that CONBOL
can be grown to a fully usable automated tool by investing
tool implementation effort and satisfying the needs of the
developers. This is possible because CONBOL was an in-house
tool developed by the Samsung engineers.

C. Technical Challenges for Concolic Unit Testing

Although the case study on the project S was successful, we
observed the following technical challenges to solve:

• Support for Complex Symbolic Data Structure:
As shown in Section V-C, one of the main reasons for
low branch coverage was lack of support for complex sym-
bolic data structure. Large industrial software often utilizes
complex recursive data structure and bugs are frequently
introduced to routines that handle the data structure. Thus, it
is necessary to analyze complex data structure symbolically,
which requires support for symbolic pointer arithmetic and
memory operations as well as efficient algorithm to generate
complex data structure [22].

526

• Necessity of Branch-oriented Search Strategy:
Another reason for the low branch coverage was due to
the timeout problems, which are often caused by a large
number of test executions due to symbolic variable dependent
loops. Although several search strategies (pathcrawler [36],
Godefroid et al. [13], Saxena et al. [31]) were proposed
to achieve high branch coverage fast by handling loop
efficiently, they often fail to achieve the goal in practice. As
branch coverage is a standard metric to measure quality of
testing in industry, improving branch-oriented search strategy
for concolic testing can be an important research direction.

• Automated Generation of Effective and Efficient Unit Test
Driver/Stubs:
The current method of CONBOL to build test driver/stubs
is simple and can be refined further to improve precision
of unit testing and to save testing cost at the same time.
For example, a unit testing driver can include sub-functions
that are ‘closely’ related to the target function and have low
‘cost’ to include. It will be an interesting research direction
to define proper ‘closeness’ and ‘cost’ metrics for effective
and efficient concolic unit testing.

• Tool Assistance for Test Oracle Specification:
Although CONBOL detected dozens of crash bugs, the
project S may still have functional bugs. The developers of
the project S recognized the importance of user-specified
functional assertions, but they were too busy to specify
meaningful functional assertions. Although we can utilize
automated invariant generation techniques to specify test
oracles, they are not mature enough to generate meaningful
assertions for large industrial software. Instead, as the first
step toward (semi) automated test oracle generation, it will
be more practical to develop a tool to support a developer to
specify assertions fast and conveniently by providing inferred
information on program segment visually.

VII. RELATED WORK

A. Automated Unit Testing Techniques

There has been active research on automated unit test
techniques. Among them, the simplest but most popular
technique is random testing [7], [23], [24]. Random testing
generates a large number of concrete test cases by using random
values in short time. Random testing, however, often fail to
achieve high coverage even with a large amount of test cases.

Other techniques generate test cases based on the systematic
reasoning of a target source code. Beyer et al. [4] use predicate
abstraction-based model checking, and Visser et al. [35] use
explicit-state model checking to generate concrete test cases
based on the generated counter examples. Csallner et al. [8] use
static analysis to detect candidate bugs and generate concrete
test cases to invoke the bugs actually. A drawback of these
systematic techniques is low accuracy caused by the incomplete
reasoning engines such as underlying constraint solvers when
applied to complex real-world programs. For example, predicate
abstraction-based model checking [4] does not handle program
code that uses complex data structure that uses complex pointer
arithmetic [16].

In addition, it is an important issue to how to build environ-
ment/driver/stub, as shown in this paper. Thummalapenta et
al. [33] describes a systematic guideline to build a symbolic
environment model from an existing manual unit testing
environment. Zhang et al. [19] describes how to model a
symbolic environment for cloud applications to generate test
case automatically by using Pex [34], where they achieved
76.8% block coverage of PhluffyFotos (photo gallery software).

B. Concolic Testing Tools

Since DART [11] and CUTE [32] were developed in 2005,
various concolic testing tools [5], [34], [6], [18], [17] have been
developed, Among these concolic testing tools, CUTE [32] and
PEX [34] explicitly claim that they target unit tests. Garg et
al. [26] extends RANDOOP [24] which is a feedback-guided
automated testing tool by adopting concolic testing techniques
for C/C++ programs. CONBOL is a concolic testing framework
specialized to unit test embedded software in a sense that it
provides several functionalities which are not supported by
other concolic testing tools such as porting of unit source
codes (CONBOL Trim), unit test driver generation (CONBOL
Gen), and improved bug detection and false alarm reduction
(CONBOL PP).

C. Concolic Testing of Embedded Software

Concolic testing has been applied to various application
domains such as sensor networks [30], web applications [1],
database applications [10], [25], etc. However, only few case
studies have been conducted to apply concolic testing to
embedded software due to the challenges aforementioned in
Section I. For example, Kim et al. applied an open-source
concolic testing tool CREST to flash memory device driver
code [14] and mobile phone software [15], where the target
programs were relatively easy to port to a host PC, which is very
different from the application of the CONBOL framework to the
project S reported in this paper. As an another example, Bardin
and Herrmann [2], [3] applied concolic testing to embedded
software running on microprocessors. They translated machine
code into intermediate representation to apply concolic testing.
They applied this approach to string functions in C library and
unit functions of industrial embedded software such as aircraft
engined power controller. This approach is not suitable for the
project S, because we have to develop a tool for machine code
analysis, which will cause unacceptable development overhead
in industrial setting.

VIII. CONCLUSION AND FUTURE WORK

We have presented the CONBOL testing framework to unit
test large size embedded software automatically. CONBOL tests
target units on a host PC platform by generating symbolic unit
testing drivers/stubs and test cases to explore a large number of
possible execution paths systematically. In addition, CONBOL
utilizes several heuristics to reduce false alarms caused by the
imprecise drivers. We have demonstrated that CONBOL is a
practically effective testing framework through the case study
on four million lines long industrial embedded software. In this

527

study, CONBOL detected 24 new crash bugs that had not been
detected by manual testing nor by static analysis tools. We
plan to refine CONBOL to support symbolic pointer variables
and to generate a more accurate unit testing driver by inserting
constraints based on clustering of false alarm feedbacks by
developers through data mining techniques. Finally, we will
apply the CONBOL framework to other large scale industrial
embedded projects to evaluate the advantages and weaknesses
of the framework in more detail.

ACKNOWLEDGMENT

This work was supported by the DMC department of
Samsung Electronics, Mid-career Researcher Program through
NRF grant funded by MSIP (No. 2012046172), the IT R&D
program of MKE/KEIT [10041752, Research and Development
of Dual Operating System Architecture with High-Reliable
RTOS and High-Performance OS], and the MSIP, Korea in the
ICT R&D Program 2013.

REFERENCES

[1] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst.
Finding bugs in dynamic web applications. In International Symposium
on Software Testing and Analysis (ISSTA), 2008.

[2] S. Bardin and P. Herrmann. Structural testing of executables. In
International Conference on Software Testing, Verification and Validation
(ICST), 2008.

[3] S. Bardin and P. Herrmann. Osmose: automatic structural testing of
executables. Journal of Software Testing, Verification, and Reliability
(STVR), 21(1):29–54, 2011.

[4] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majumdar.
Generating test from counterexamples. In International Conference
on Software Engineering (ICSE), 2004.

[5] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ASE ’08, pages 443–446, 2008.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Operating System Design and Implementation (OSDI), 2008.

[7] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness tester
for java. Software-Practice and Experience (SPE), 34(11):1025–1050,
Sept 2004.

[8] C. Csallner and Y. Smaragdakis. Check ’n’ crash: Combining static check-
ing and testing. In International Conference on Software Engineering
(ICSE), 2005.

[9] B. Elkarablieh, R. Godefroid, and M. Levin. Precise pointer reasoning
for dynamic test generation. In ISSTA, 2009.

[10] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for
database applications. In International Symposium on Software Testing
and Analysis (ISSTA), 2007.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Programming Language Design and Implementation
(PLDI), 2005.

[12] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symposium (NDSS),
2008.

[13] P. Godefroid and D. Luchaup. Automatic partial loop summarization
in dynamic test generation. In International Symposium on Software
Testing and Analysis (ISSTA), 2011.

[14] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-sector
read operation for flash storage platform software. Formal Aspects of
Computing (FAC), 24(2), 2012.

[15] M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic testing
on embedded software: Case studies. In International Conference on
Software Testing, Verification and Validation (ICST), 2012.

[16] M. Kim, Y. Kim, and H. Kim. Comparative study on software model
checkers as unit testing tools: An industrial case study. IEEE Transactions
on Software Engineering (TSE), 37(2):146–160, March 2011.

[17] M. Kim, Y. Kim, and G. Rothermel. A scalable distributed concolic
testing approach: An empirical evaluation. In International Conference
on Software Testing, Verification and Validation (ICST), 2012.

[18] Y. Kim, M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic
testing approach: A case study on libexif by using CREST-BV and
KLEE. In International Conference on Software Engineering (ICSE),
2012. SEiP track.

[19] L.Zhang, T.Xie, N.Tillmann, P.Halleux, X.Ma, and J.Lv. Environment
modeling for automated testing of cloud applications. IEEE Software,
29, 2012.

[20] M.Kucharski. Making unit testing practical for embedded development.
In Electronic Design, Nov 2011. http://electronicdesign.com/article/
embedded/Making-Unit-Testing-Practical-for-Embedded-Development.

[21] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of c programs. In
Compiler Construction (CC), 2002.

[22] R. Nokhbeh Zaeem and S. Khurshid. Test input generation using dynamic
programming. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages
34:1–34:11, New York, NY, USA, 2012. ACM.

[23] C. Pacheco and M. Ernst. Eclat: Automatic generation and classification
of test inputs. In European Conference on Object-Oriented Programming
(ECOOP), 2005.

[24] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed random
test generation. In International Conference on Software Engineering
(ICSE), 2007.

[25] K. Pan, X. Wu, and T. Xie. Generating program inputs for database
application testing. In Automated Software Engineering (ASE), 2011.

[26] P.Garg, F.Ivancic, G.Balakrishnan, N.Maeda, and A.Gupta. Feedback-
directed unit test generation for C/C++ using concolic execution. In
International Conference on Software Engineering (ICSE), 2013.

[27] P.Runeson. A survey of unit testing practices. IEEE Software, July/Aug
2006.

[28] R.Osherove. The Art of Unit Testing. Manning Publications, 2009.
[29] Realview compilation tools. http://www.arm.com/products/tools/

software-tools/rvds/arm-compiler.php.
[30] R. Sasnauskas, O. Landsiedel, M. h. Alizai, C. Weise, S. Kowalewski, and

K. Wehrle. KleeNet: Discovering insidious interaction bugs in wireless
sensor networks before deployment. In International Conference on
Information Processing in Sensor Networks (IPSN), 2010.

[31] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In International Symposium on
Software Testing and Analysis (ISSTA), 2009.

[32] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE), 2005.

[33] S.Thummalapenta, M.Marri, T.Xie, N.Tillmann, and J.Halleux.
Retrofitting unit tests for parameterized unit testing. 2011.

[34] N. Tillmann and W. Schulte. Parameterized unit tests. In European
Software Engineering Conference/Foundations of Software Engineering
(ESEC/FSE), 2005.

[35] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with
Java PathFinder. In International Symposium on Software Testing and
Analysis (ISSTA), 2004.

[36] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: automatic
generation of path tests by combining static and dynamic analysis. In
EDCC, 2005.

528

