
Formal Modeling and Verification of
High-Availability Protocol for Network Security

Appliances

Moonzoo Kim

CS Dept. Korea Advanced Institute of Science and Technology
Daejeon, South Korea

moonzoo@cs.kaist.ac.kr

Abstract. One of the prerequisites for information society is secure and
reliable communication among computing systems. Accordingly, network
security appliances become key components of infrastructure, not only
as security guardians, but also as reliable network components. Thus,
for both fault tolerance and high network throughput, multiple security
appliances are often deployed together in a group and managed via High-
Availability (HA) protocol.

In this paper, we present our experience of formally modeling and ver-
ifying the HA protocol used for commercial network security appliances
through model checking. In addition, we applied a new debugging tech-
nique to detect multiple bugs without modifying/fixing the HA model
by analyzing all counter examples. Throughout these formal analysis, we
could effectively detect several design flaws.

1 Introduction

As more computing systems are deployed in wide functions of our society such
as mobile banking, tele-conferencing, and online stock trading systems, commu-
nication between remote systems becomes essential for ubiquitous computing
society. Internet provides such communication services for a large number of ap-
plications, but at the cost of security and reliability. Therefore, more and more
security appliances such as firewall, VPN, and IDS/IPS are deployed in small to
giant size networks. As security appliances become key components of network,
their reliability, not only as security guardians, but also as network components,
becomes a critical issue. For high-traffic networks, it is convention to deploy
multiple security appliances grouped together for both fault tolerance and high
network throughput. Most high-end security appliances achieve these two goals
via High-Availability (HA) protocol among the appliances.

Despite the importance of HA protocol, HA protocol often causes failures to
network security appliances for the following reasons. First, HA protocol, which
is a fault-tolerant distributed network protocol, is notorious for its high complex-
ity. It is a challenging task to consider all possible communication/coordination
scenarios among the network security appliances in a group. Furthermore, fail-
ure and recovery of each machine in the group should also be considered, which

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 489–500, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

490 M. Kim

adds complexity further. Second, testing high-end network security appliances
requires great efforts due to complex network/machine configurations and a large
number of test scenarios. Also, it is hard to determine whether misbehavior is
due to errors of the HA protocol or due to other factors such as OS/HW failure
and/or misconfiguration of networks, etc. Finally, manufacturers often concen-
trate on developing functions of each security appliance without considering how
these machines should communicate each other through HA protocol. Thus, HA
protocol is often designed and implemented in an ad-hoc way at the last stage of
development, which often creates unexpected behaviors. As a result, it is often
observed that a group of network security appliances exhibits abnormal behav-
iors such as decreased network throughput or dropped normal packets while a
single security appliance works well without a problem. Therefore, it is highly
desirable to formally model and verify HA protocol design as formal method
techniques have been actively applied to enhance reliability of network applica-
tions [7,10,11,9].

This paper presents our experience of formally modeling and verifying the HA
protocol implemented in a commercial network security appliance NXG2000 [1].
We built a HA protocol model of a moderate size and verified the model using
the Spin model checker [2] to check the absence of deadlock in the HA protocol.
In this project, we could overcome the limitation of traditional debugging by
detecting multiple bugs from the all counter examples without modifying/fixing
the HA model as described in Sect. 4.

2 Overview of the HA Protocol of NXG2000

NXG2000 [1] is an integrated network security appliance consisting of firewall,
VPN, and IDS targeted for gigabit networks. NXG2000 provides upto 1 million
concurrent sessions (maximum 2 Gbps throughput) via six gigabit ports. In
addition, NXG2000 has a 100 Mbps HA port dedicated to the HA protocol.

Network equipments located at the gateway must achieve high reliability as
well as fast recovery lest the whole internal network cannot be operational. Thus,
multiple network security appliances are deployed in a group for both fault tol-
erance and increased network throughput. For this purpose, machines of a group
cooperate with each other to perform several tasks such as session synchroniza-
tion and group management through the HA protocol.

In order to manage a group of network security appliances, one security appli-
ance in the group is designated as a master to manage the other slaves. Initially,
a master is statically designated by a network administrator. Although a mas-
ter performs various jobs such as synchronizing sessions, configuring network,
and creating event logs, we focus on the core management tasks of a master as
follows.

1. Addition of slaves (see Fig. 1.a))
When a slave becomes operational, the slave broadcasts join request mes-
sages every second until it receives a join permit message from a master.

Formal Modeling and Verification of HA Protocol 491

Fig. 1. Message sequences regarding the HA activities

Once the master allows the slave to join the group by sending a join permit
message to the slave, the master broadcasts new information to the group.
Following this, the master sends all session information to the slave.

2. Deletion of slaves (see Fig. 1.b))
A master constantly checks the status of slaves by receiving s alive from
every slave each second. If a master does not receive s alive from a slave
for three seconds, the master erases the slave from the group. If the erased
slave is a backup master, the master elects another slave as a backup master
and sends bkup m assign to the slave.

3. Assignment of a backup master (see Fig. 1.b))
To prepare for a case in which a master crashes, the master assigns a slave
as a backup master that will become a master when the master crashes. For
backup master assignment, a master sends an assignment message
bkup m assign to a slave that is elected as a backup master.

A backup master constantly checks whether or not a master is operational by
receiving m alive, which is broadcasted by a master every second (see Fig. 1.c)).
If a backup master does not receive m alive for three seconds, the backup master
sends query m alive three times to the master. If the backup master does not
receive a response from the master, the backup master becomes a master and
broadcasts its new status. The backup master then assigns another slave as a
new backup master by sending bkup m assign and starts broadcasting m alive
messages. A security appliance starts working as a slave when it recovers from
failure. An exception is that machine 0, which is statically designated as a master
by a network administrator, will work as a master if there is no master when it
recovers from a failure.

492 M. Kim

3 The HA protocol Model

We model the HA protocol in Promela [2]. Each machine, regardless of whether
it is a master or a slave, is modeled as a process. The overall execution of each
machine is depicted in Fig. 2.

Fig. 2. Overview of the HA protocol model

Each machine starts from machine init state (located at the left end of
Fig. 2). Initially, machine 0 (whose process id is 0) is statically designated as a
master and the machine moves to mst init state to become a master. Then, the
machine is working at mst acting state that is the core of the master procedure.
A master performs the following tasks at mst acting.

– To add a slave to the group (add slave state)
– To assign a slave as a backup master (bkupmst assign state)
– To delete a slave from the group if the slave is found dead (del slave state)
– To exhibit a crash (mst dead state)

Note that there exists only one crash point for master in this model; a master
can fail/crash only at mst dead state. Thus, this model does not exhibit failure
while a master is adding/deleting a slave or assigning a slave as a backup master.
This simplified failure model abstracts out the need of cleanup procedures in a
case of failure, which reduces complexity of the HA model significantly.

Once a machine is determined as a slave, the machine moves to slv init state
to initialize settings to become a slave. Then, the slave moves to join group state
where the slave requests a permission to join the group from a master. Once the
slave receives the permission from the master, the slave moves to slv acting
state performing the following tasks.

– To become a backup master (become bkupmst state)
– To become a master if it is a backup master and there exists no master (a

transition to mst init state)
– To exhibit a crash (slv dead state)

Formal Modeling and Verification of HA Protocol 493

4 A New Debugging Technique to Detect Multiple Bugs

Model checking techniques are effectively used as a means to improve the reli-
ability of computing systems by detecting bugs of formal system models [8,15].
The traditional way of debugging a formal model is as follows: First, a human
engineer identifies a bug in a counter example. The bug is then fixed by mod-
ifying the model. Once the bug is fixed, the modified model is verified again
in order to detect the next bug, if one exists, in a new counter example. This
debugging process is repeated until there no more bugs are found. This approach
toward debugging has the following limitations:

– There are cases where it is not feasible to fix a bug for several reasons. In
such cases, no further debugging progress can be made.

– Fixing a bug may introduce other bugs so that the traditional debugging
iterations may continue indefinitely, or never terminate in the worst cases.

– When a model is modified to fix one bug, all requirement properties must be
verified once again. Considering that real-world applications often have sev-
eral hundred properties to check, these repeated fix-and-verify trials consume
considerable project time.

Therefore, we propose a new debugging technique to identify multiple bugs
without modification of a model by analyzing all counter examples generated
by model checker. There have been researches on analysis of counter examples
with various goals such as model refinement and localization of bugs [6,16,3,4].
Our focus, which is orthogonal to these related works, is to provide an auto-
mated process to detect as many bugs as possible by analyzing multiple counter
examples without modification of a model.

4.1 An Automated Process to Detect Multiple Bugs

First, we describe an automated process that detects multiple bugs that vio-
late the requirement property φ without modification to the target model. A
key point of the process is to construct a set of formulas ψi’s each of which
captures/describes a bug bi revealed in a subset of counter example traces.1 Fol-
lowing this, the traces that satisfy/conform to ψi’s are automatically detected,
i.e., those that violate φ due to ψi. For this automatic trace analysis, it is nec-
essary to formally specify ψi’s in a formal specification language such as Meta
Event Definition Language (MEDL)(see Sect. 4.3). Notations are defined before
describing this debugging process formally.

– Tφ is the set of all counter example traces of a requirement property φ such
that Tφ = {ti| ti is a counter example of φ}.

– Bφ is a set of formulas of the bugs that violate φ, i.e., Bφ = {ψi| ψi is a
formula of a bug that violates φ}.

1 A bug bi is identified through manual analysis as in the traditional debugging.

494 M. Kim

– t |=φ ψ where t ∈ Tφ and ψ ∈ Bφ signifies that a counter example trace t
satisfies ψ that is a cause of the violation of φ (i.e., t violates φ due to ψ).

– tφ : Bφ → P(Tφ) is a function such that tφ(ψ) = {ti ∈ Tφ| ti |=φ ψ}.

An algorithm that detects multiple bugs without modifying the target model
is described in Fig. 3. This algorithm is guaranteed to terminate if evaluation
of a trace at Step 3 is decidable (which is true in most practical cases) as Tφ is
finite in a finite state model. All steps of the algorithm can be automated except
Step 2, which still requires human ingenuity to identify a bug and specify the
bug as ψ in a formal specification language.

1. Set T with Tφ.
2. Select the smallest trace tinit ∈ T . Then a user analyzes tinit to identify a bug b

that violates φ and specifies the bug b as ψ.
3. Obtain tφ(ψ) by checking all traces of T with ψ.
4. Set a new set of traces T ′ with T−tφ(ψ) and select the new smallest trace t′

init ∈ T ′.
5. Set T with T ′ and tinit with t′

init, then repeat from Step 2 until T becomes ∅.

Fig. 3. An algorithm to detect multiple bugs that violate φ

Fig. 4 illustrates the algorithm. Initially, the smallest trace t0 that violates φ
is manually analyzed and the bug b0 revealed in t0 is described as ψ0. Following
this, tφ(ψ0) is obtained, and the smallest trace t1 ∈ (Tφ − tφ(ψ0)) is found. This
process is repeated until ψ0, ψ1, and ψ2 that cover Tφ completely are found (i.e.,
tφ(ψ0)∪tφ(ψ1)∪tφ(ψ2) = Tφ). Note that the algorithm of Fig. 3 does not strictly
require a collection of tφ(ψi) to be pairwise disjoint. It is possible that tφ(ψi)
overlaps tφ(ψj), which, however, does not affect a result of the algorithm.

Fig. 4. A process of detecting bugs that violate a requirement property φ

4.2 Overview of the MacDebugger Framework

The MacDebugger framework [13] (see Fig. 5), which is an extension of the MaC
framework [12], is a general framework for analyzing a large volume of counter

Formal Modeling and Verification of HA Protocol 495

Fig. 5. Overview of the MacDebugger framework

example traces. MacDebugger is designed to work with any model checker that
can generate multiple counter examples. As a prototype, however, it was imple-
mented to work with the Spin model checker [8]. MacDebugger consists of the
following three components - a model checker, an event recognizer, and a checker.

MacDebugger aims to analyze a large number of counter examples efficiently.
Thus, performance of storing and analyzing counter examples is a critical issue,
as even a simple model can generate hundreds of gigabytes of counter examples.
For that purpose, we modified the Spin model checker to generate counter exam-
ples in a compact format. An event recognizer (an oval in the middle of Fig. 5)
extracts sequences of primitive events and conditions from counter examples
generated from a model checker and generates event traces which contain these
sequences. A checker (an oval in the right of Fig. 5) receives a list of the event
traces to analyze, for example lin, and a bug description written in MEDL, in
this example ψi, as its inputs. The checker analyzes all event traces in lin with
respect to ψi and returns a list of event traces, in this example lout, which do
not satisfy ψi. Following this, a human engineer investigates the shortest event
trace in lout and identifies a new bug ψi+1 from the trace. The checker then
repeats this debugging process using lout and ψi+1 as new inputs until all event
traces/counter examples are covered by ψ0...ψn as described in Sect. 4.1.

4.3 Meta Event Definition Language

MEDL is based on an extension of linear temporal logic with auxiliary variables
to record history of the event trace. MEDL distinguishes between two kinds of
data that make up the trace of an execution - events and conditions. Events
occur instantaneously during the system execution, whereas conditions repre-
sent information that holds for a duration of time [5]. A checker assumes that
truth values of all conditions remain unchanged between updates from the event
recognizer. For events, a checker makes the dual assumption, namely, that no
events (of interest) happen between updates. Based on this distinction between

496 M. Kim

Table 1. The syntax of conditions, events, and guards

E ::= e | start(C) | end(C) | E&&E | E||E | E when C
C ::= c | defined(C) | [E,E) | !C | C&&C | C||C | C⇒C
G ::= E → {statements}

events and conditions, we have a simple two-sorted logic that constitutes MEDL.
The syntax of events (E), conditions (C), and guards (G) is given in Table 1.

Here e refers to primitive events that are reported in the trace by the event
recognizer; c is either a primitive condition reported in the trace or it is a boolean
condition defined on the auxiliary variables. Guards (G) are used to update aux-
iliary variables. The semantics for boolean operations over conditions and events
is defined naturally. There are some natural events associated with conditions,
namely, the instant when the condition becomes true (start(c)), and the instant
when the condition becomes false (end(c)). Also, any pair of events define an
interval of time, so forms a condition [e1, e2) that is true from event e1 until
event e2. The event (e when c) is present if e occurs at a time when condition c is
true. Finally, a guard e → {statements} updates auxiliary variables according
to the assignments given in statements when e happens.

A MEDL script defines a requirement property as a special event, called alarm.
To check whether an alarm occurs or not, a checker evaluates the events and
conditions defined in the script whenever it reads an element from the trace. For
more detail on the formal semantics of MEDL, see [12].

5 Verification of the HA protocol

The full state space of the model is generated without stopping at violations.
Statistics on the model with a different number of machines in a group are
illustrated in Table 2. N/A indicates that the state space failed to be generated
due to a lack of memory. A Pentium IV 3Ghz computer equipped with 2 GB of
memory, and 80GB of hard disk running Spin 4.2.6 on Fedora Linux 4 was used.
A maximum search depth was set as 5×106 and the estimated state space as 108,
of which the hash table and DFS stack took 227 Mb. The HA protocol model
in Promela is approximately 200 lines long. We found that all HA models with
N ≥ 2 had deadlock and all counter examples causing deadlock were generated.
Table 3 shows the statistics on the counter examples.

Immediate Cause of the Deadlock. Firstly, an immediate cause of the dead-
lock at N = 2 was identified. The shortest counter example was analyzed and it
was found that deadlock occurred when all machines in the group were slaves,
in other words when no master existed to admit slaves to join the group. In this
situation, no progress could be made unless machine 0 crashed and revived as a
master, which is clearly beyond the control of the HA protocol. Fig. 6 shows this
fault that immediately causes deadlock formulated in MEDL. deadlock in line 2

Formal Modeling and Verification of HA Protocol 497

Table 2. Statistics on the HA protocol model with a different number of machines

Number of machines in a group (N) 2 3 4 5 6
States 246 17489 551052 1.40 × 107 N/A

Transitions 409 43419 1.75 × 106 5.24 × 107 N/A
Memory usage(in Mb) 228 229 264 1321 N/A

Time to generate state space (in sec) 1.0 1.1 3.2 86.9 N/A

Table 3. Statistics on the counter examples showing deadlock

Number of machines (N) 2 3 4 5
of counter examples 4 156 4440 123360

Size of total counter examples (in bytes) 0.3K 628K 53M 36G
Avg. length of counter example (in steps) 36 1271 2.8 × 104 8 × 105

Time to generate all counter examples 0.1 sec 0.3 sec 65 sec 11 hour

is a primitive event representing deadlock. The event recognizer recognizes this
event by detecting the end of a counter example. m0 slave in line 3 is a primitive
condition indicating whether or not machine 0 is a slave. m1 slave is similarly
defined. Thus, if deadlock occurs when all machines are slaves, the all slaves
alarm in line 4 is triggered.

01:ReqSpec DeadlockDetector
02: import event deadlock;
03: import condition m0_slave, m1_slave;
04: alarm all_slaves = deadlock when (m0_slave && m1_slave);
05:End

Fig. 6. MEDL specification of the fault causing deadlock (N = 2)

All counter examples of the models were checked with N ≥ 2. It was found
that all traces raised the all slave alarm, indicating that the immediate cause
of the deadlock was incorrect master election process.

Identification of Design Flaws. First, the shortest counter example in the
smallest model (N = 2) was analyzed further and we found the following faulty
scenario.

f1: A master (machine 1) died immediately after a backup master (ma-
chine 0) had died and revived as a slave. Machine 1 then revived as a
slave and all machines became slaves.

498 M. Kim

f1 was formulated as f1 in line 6 of Fig. 7. mst died and bkupmst died
indicate crashes of the corresponding machines. becomes mst occurs when a
backup master becomes a master. bkupmst elected indicates that a new backup
master is elected, and m0 alive indicates that machine 0 is alive. m0 working
indicates that machine 0 has joined the group and is cooperating with the other
machines in the group. f1 is triggered when a master dies without a backup
master (line 6) with additional conditions for machine 0 (line 7) satisfied.

It is important to note that a bug triggering f1 is hard to fix because fixing
the HA protocol to work correctly with this scenario requires major redesign of
the HA protocol, which was not feasible due to limited project resources. Thus,
other bugs could not be detected if we used the traditional debugging method.
We could, however, continue debugging process to detect other remaining bugs
as explained below by using the new debugging technique.

01:ReqSpec f1Detector
02: import event mst_died, bkupmst_died, becomes_mst, bkupmst_elected;
03: import condition m0_working, m0_alive;
04:
05: condition restriction = !m0_working && m0_alive;
06: alarm f1 =mst_died when ([bkupmst_died||becomes_mst,bkupmst_elected)
07: && value(mst_died,0) != 0 && restriction);
08:end

Fig. 7. Specification of f1 in MEDL

It was found that 4 out of 4 (N = 2), 90 out of 156 (N = 3), 2703 out of 4440
(N = 4), as well as 70042 out of 123360 counter examples (N = 5) raised the f1
alarm (see Table 4). This indicates that other faults exist, as f1 does not cover
all counter examples. The smallest counter example trace that did not raise the
alarm in N = 3 was analyzed, and the following faulty scenario in the trace was
found.

f2: A master elected a machine that was dead, as a backup master with-
out recognizing that the machine was dead. The master then died and it
happened that there existed no master.

This fault is caused by a bug in which a master assigns a slave as a backup
master by only sending bkup m assign to the slave and not requiring acknowl-
edgment from the slave. It was found that 62 (N = 3), 1560 (N = 4) and 51200
counter examples (N = 5) raised f2 (see Table 4). f1 and f2, however, still do
not cover all counter examples, indicating that there still are other faults.

In a similar manner, f3 was detected and formulated to specify that a backup
master died immediately after a master has died, making all machines slaves.
Finally, f1, f2, and f3 covered all counter examples, indicating that all of the
bugs that cause deadlock had been founded. These analysis results are shown in

Formal Modeling and Verification of HA Protocol 499

Table 4. Analysis results of counter examples due to f1, f2, and f3

Number of machines (N) 2 3 4 5
Total # of counter examples 4 156 4440 123360
of event traces due to f1 4 90 2703 70042
of event traces due to f2 0 62 1560 51200
of event traces due to f3 0 4 177 2118

Table 4. It takes less than one minute to analyze all counter examples for N ≤ 4
and takes around 7 hours to analyze all counter examples to check each of f1, f2,
and f3 for N = 5.

6 Conclusion

In this paper, we present results of formal modeling and verification of the HA
protocol of NXG2000. In this study, we could find several bugs in the HA protocol
through analyzing counter examples generated by model checking. These bugs
had not been noticed by the company before, and the company decided to adopt
a distributed master election process [14] in the next version of NXG2000. We
are convinced that the new debugging technique in this paper is effective to
verify systems of industrial strength, which often have hard-to-fix bugs. We plan
to develop this debugging technique further by adopting other works on counter
example analysis and apply the technique to formally analyze more industrial
systems.

As a future study, we plan to work to add backward analysis capability to
MacDebugger. It was noticed that a root cause of the violation of a safety prop-
erty most often exists at the end of a counter example. Thus, if it is possible to
analyze a counter example backward (from the end to the start of the counter
example), this may decrease the analysis time significantly. In addition, we will
formulate identified bugs using Promela never claim and run model checker on
the original model with the bug descriptions to know if there still exist unre-
vealed bugs or not. This approach eliminates the overhead of analyzing a large
volume of counter examples at the cost of increased model size. The comparison
between these two different approaches on analysis performance and convenience
of formulating bugs can be an interesting research topic.

References

1. High-availability technique in NXG 2000. Technical report,
http://www.secui.com/product/nxg/pdf/NXG technique 03.pdf

2. The Spin Model Checker Home Page, http://www.spinroot.com
3. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Ball,

T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003)

http://www.secui.com/product/nxg/pdf/NXG_technique_03.pdf
http://www.spinroot.com

500 M. Kim

4. Basu, S., Saha, D., Smolka, S.A.: Localizing programs errors for cimple debugging.
In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp.
79–96. Springer, Heidelberg (2004)

5. Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: Scr*: A toolset for specifying and
analyzing requirements. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) COMPASS
1995. LNCS, vol. 1130, Springer, Heidelberg (1996)

6. Pasareanu, C.S., Dwyer, M.B., Visser, W.: Finding feasible counter-examples when
model checking java programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 284–298. Springer, Heidelberg (2001)

7. Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs
Technical Journal 5(2), 72–87 (2000)

8. Holzmann, G.J.: The Spin Model Checker. Wiley, New York (2003)
9. Zakiuddin, I., Goldsmith, M., Whittaker, O., Gardiner, P.: A methodology for

model-checking ad-hoc networks. In: Ball, T., Rajamani, S.K. (eds.) SPIN Work-
shop. LNCS, vol. 2648, Springer, Heidelberg (2003)

10. Bhargavan, K., Gunter, C.A., Kim, M., Lee, I., Obradovic, D., Sokolsky, O.,
Viswanathan, M.: Verisim: Formal Analysis of Network Simulations. IEEE Trans-
action on Software Engineering 8(2) (2002)

11. Bhargavan, K., Obradovic, D., Gunter, C.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)

12. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time
assurance approach for java programs. Formal Methods in System Design (2004)

13. Kim, M.: MacDebugger: A Monitoring and Checking (MaC) based Debugger for
Formal Models, Technical Report CS-TR-2007-270, CS Dept. KAIST (2007)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1997)
15. Ruys, T.C., Holzmann, G.J.: Advanced spin tutorial. In: Graf, S., Mounier, L.

(eds.) SPIN 2004. LNCS, vol. 2989, pp. 304–305. Springer, Heidelberg (2004)
16. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in

counterexample traces. Principles of Programming Languages (2003)

	Formal Modeling and Verification of High-Availability Protocol for Network Security Appliances
	Introduction
	Overview of the HA Protocol of NXG2000
	The HA protocol Model
	A New Debugging Technique to Detect Multiple Bugs
	An Automated Process to Detect Multiple Bugs
	Overview of the MacDebugger Framework
	Meta Event Definition Language

	Verification of the HA protocol
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

