Automated Analysis of Industrial Embedded Software

Moonzoo Kim and Yunho Kim

Computer Science Department
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea
moonzoo@cs.kaist.ac.kr, kimyunho@kaist.ac.kr

Abstract. For the last few decades, automated software analysis techniques such
as software model checking and concolic testing have advanced in a large degree.
However, such techniques are not frequently applied to industrial software due to
steep learning curve and hidden costs to apply these techniques to industrial soft-
ware in practice. Therefore, to enable technology transfer to industry, it is essen-
tial to conduct concrete case studies applying automated techniques to real-world
industrial software. These studies can serve as references for field engineers who
want to improve quality of software by adopting automated analysis techniques.
Furthermore, concrete applications of such techniques can guide new research
goals and directions to solve practical limitations observed in the studies. In this
paper, we describe our experience of applying various automated software anal-
ysis techniques to industrial embedded software such as flash memory storage
platform and smartphone platform.

1 Introduction

Manual testing is a de-facto standard method to improve the quality of software in in-
dustry. However, conventional testing methods frequently fail to detect faults in target
programs, since it is infeasible for a test engineer to manually create test cases sufficient
to detect subtle errors in specific/exceptional execution paths among an enormous num-
ber of different execution paths. These limitations are serious issues in many industrial
projects, particularly in embedded system domains where high reliability is required
and product recall for bug-fixing incurs significant economic loss.

To solve such limitations, many researchers have worked to develop automated soft-
ware analysis techniques such as model checking [5], software model checking [8], and
concolic testing (a.k.a., dynamic symbolic execution) [13, 6]. However, such techniques
are not frequently applied to industrial software due to steep learning curve and hidden
costs to apply these techniques to industrial software in practice. For example, although
model checking is a fully automated technique, model creation/extraction is a mostly
manual process which causes large cost in an industrial setting. In addition, for software
model checking, a user does not have to make a target model unlike model checking,
but still he/she has to build a valid environment model to obtain meaningful verification
results. Furthermore, to achieve effective and efficient analysis results, a user has to
understand the limitations of automated techniques, which are not clearly described in
related technical papers. Consequently, field engineers often hesitate to adopt automated
analysis techniques in their projects.

To realize the benefits of automated software analysis techniques in practical set-
tings, our group has worked to apply automated analysis techniques such as software
model checking and concolic testing (a.k.a. dynamic symbolic execution) to industrial
software by collaborating with consumer electronics companies such as Samsung Elec-
tronics. Through the collaboration, we realized that it is essential to conduct concrete
case studies of applying automated techniques to real-world industrial software. These
studies can serve as references for field engineers who want to improve quality of soft-
ware by adopting automated analysis techniques. Furthermore, concrete applications
of such techniques can guide new research directions to solve practical limitations ob-
served in the studies. In this paper, we share our experience of applying various tools of
model checking, software model checking, and concolic testing to flash memory storage
platform [9, 11, 10] and smartphone platform [12].

2 Unified Storage Platform for OneNAND Flash Memory
2.1 Opverview of the Unified Storage Platform

The unified storage platform (USP) is a software solution for OneNAND based embed-
ded systems. Figure 1 presents an overview of the USP: it manages both code storage
and data storage. USP allows processes to store and retrieve data on OneNAND through
a file system. USP contains a flash translation layer (FTL) through which data and pro-
grams in the OneNAND device are accessed. FTL is a core part of the storage platform
for flash memory, since logical data can be mapped to separated physical sectors due
to the physical characteristics of flash memory (see Section 2.2). FTL consists of the
three layers: a sector translation layer (STL), a block management layer (BML), and a
low-level device driver layer (LLD).

File Demand Paging gnmed
System Manager (DPM) torage
Generic Prioritized Platform
/O requests read requests (USP)
A |
Sector Flash
Translation (STL) Translation,
Layer (FTL) 0s
Block Adaptation
Management (BML) Module
v
Low Level (LLD)
Device Driver

3

v
OneNAND Flash Memory Devices
Fig. 1. Overview of the USP

Generic I/O requests from processes are fulfilled through the file system, STL,
BML, and LLD, in that order. Although the USP allows concurrent I/O requests from
multiple processes through the STL, the BML operations must be executed sequen-
tially, not concurrently. For this purpose, the BML uses a binary semaphore to coordi-

nate concurrent I/O requests from the STL. In addition to generic I/O requests, a pro-
cess can make a prioritized read request for executing a program through the demand
paging manager (DPM) and this request goes directly to the BML. A prioritized read
request from the DPM can preempt generic I/O operations requested by STL. After the
prioritized read request is completed, the preempted generic I/O operations should be
resumed again.

2.2 Logical-to-Physical Sector Translation

A NAND flash device consists of a set of pages that are grouped into blocks. A unit can
be equal to a block or multiple blocks. Each page contains a set of sectors. Operations
are either read/write operations on a page, or erase operations on a block. NAND can
write data only on an empty page and the page can be emptied by erasing the block
containing the page. Therefore, when new data is written to the flash memory, rather
than directly overwriting old data, the data is written on empty physical sectors and the
physical sectors that contain the old data are marked as invalid. Since the empty physical
sectors may reside in separate physical units, one logical unit (LU) containing data is
mapped to a linked list of physical units (PU). STL manages the mapping from the
logical sectors (LS) to the physical sectors (PS). This mapping information is stored in
a sector allocation map (SAM), which returns the corresponding PS offset from a given
LS offset. Each PU has its own SAM. Figure 2 illustrates the mapping from logical
sectors to physical sectors where one unit contains one block and a block consists of
four pages, each of which has one sector.

Logical Logical Logical
t7 i unit 7 unit 7
SAML unl/t i T - SAML .40 -
Logical [Physical Physical Logical |Physical Physical Logical |Physical Physical
offset | offset unit 1 offset | offset unit 1 offset | offset unit 1
0 0——| LSO 0 3 —+56— 0 3 —+56—
1 11— LSt 1 2 —84— 1 2 —84—
2 2 * LSt 2 * LSt
3 3 X LSo 3 LSO
‘ NULL * NULL SAM4 |
(a) Mapping after LSO and LS1 are written (b) Mapping after LS1 and LSO are updated Logical | Physical Physical
offset | offset unit 4
0 ¥ LS2
1 e
2 0
3
‘ NULL

(c) Mapping after LS2 is added
Fig. 2. Mapping from logical sectors to physical sectors

2.3 Analysis Results and Discussions

Multi-sector Read Function We began by analyzing a multi-sector read (MSR) func-
tion in STL (see Section 2.2) that reads multiple physical sectors that correspond to
logical sectors specified by a user. We selected MSR as it is a core function of USP
and relatively small (157 lines of C code) but with complex control (i.e., four-level
nested loops) and data structure (i.e., LU, PU, and SAM). The requirement property we
checked is that the read buffer of MSR should contain corresponding data in physical

sectors at the end of MSR. In addition, to obtain valid verification results, we had to
provide an operational environment of MSR such as following:

1. For each logical sector, at least one physical sector that has the same value exists.

2. If the iy, LS is written in the &y, sector of the j;;, PU, then the (i mod m)yy, offset
of the j;, SAM is valid and indicates the PS number k, where m is the number of
sectors per unit.

3. The PS number of the i;;, LS must be written in only one of the (i mod m), offsets

of the SAM tables for the PUs mapped to the | - |;; LU.

We applied model checking techniques to MSR through a symbolic model checker
NuSMYV [3], an explicit model checker Spin [7], and C-bounded model checker
CBMC [4] (more detail can be found in [9]) using 64 bit Linux machine equipped
with 3 Ghz Xeon dual-core cpu. For NuSMV and Spin, we built a model for MSR man-
ually. We found that it was a highly challenging task to build a NuSMV model for a C
program with complex control and data structure (a corresponding MSR model is 1000
lines long). The above model checkers did not detect a violation of the requirement
property in problem instances up to 10 physical units and 6 logical sectors. Figure 3
shows the verification performances of the above model checkers in terms of time and
memory. NuSMV spent more than 90% of time in dynamic reordering of BDD vari-
ables due to hard-to-abstract SAMs and showed an order-of-magnitude slower speed
than Spin. For memory consumption, NuSMV showed better performance than Spin.
CBMC showed better performance in terms of both time and memory than Spin and
NuSMYV. Note that CBMC demonstrated relatively slow increases of time/memory cost
as the problem size grows up (i.e., scalability of CBMC is better than NuSMV and
Spin due to the underlying industrial-strength SAT solver). Though the verification was
conducted on a small-scale, this exhaustive result provided good confidence on the cor-
rectness of MSR. Thus, we found that a software model checker could be used as an
effective unit-testing tool for embedded software.

100000 - . . 100000
Time complexity LS = 6 Space complexity LS = 6
10000 10000 T
]
3 A/T s
&o00 Bio00
v . o .
3 . ‘ [-O-Spln § B Spin
A mNusmy T ~NUSMV
100 — —=CBMC 100 —g CBMC
/
10 10
5 6 7 1 9 10 5 6 7 8 9 10
A number of physical units A number of physical units

Fig. 3. Comparison of verification performance among NuSMYV, Spin, and CBMC

BML and LLD Layers We applied software model checkers Blast [1] and CBMC to
several components in the BML and LLD layers (we could not apply Spin and NuSMYV,
since translation from BML/LLD C code to formal models would require large human
effort). In these experiments, we had to build valid environment models for target units

as we did for MSR. We found several bugs including a preemption error caused by
a prioritized read operation and an error that does not propagate a BML semaphore
exception to STL, which is required to reset USP (Section 2.1). Figure 4 shows a call
graph of the topmost STL functions toward BML functions. When a BML function
such as BML_GetVolInfo raises a semaphore exception for any reason, that exception
should be handled by STL functions, but _Get SInfo does not pass the exception to its
caller in some cases. Total size of all functions from STL to BML is around 2500 lines
of C code on average. Blast failed to detect the error and raised false alarms due to its
limitations on handling bitwise operators and nested data structures. CBMC detected
this error in 12 minutes with consuming 3 Gbyte of memory on average (details of the
experiments can be found in [11]).

Topmost STL
functions

N\

.
.
' intai Bug - [BMLGetVolinfo |
STL_Read SM_ReadSector _MamlamWearLeve de[ecg[ed BML_GetVollnfo
[sTCwrite L — 1\ BML_Read
T Ao SM_WiiteSectors K] _KeepBoundsCfDepth b _PartialMerge [ConstructSam |+ _LoadSam{y _GetSinfo
STL_AWrite 12" NS = e) 1= NS A BML_ReplaceBlk H{ OAM_AcquireSM |
STL Delete BML_StorePIExt
[RrC_ADeletef}o _Delete b SM_MarkDeletion .

Fig. 4. Call graph of the topmost STL functions using the BML semaphore

In these analyses, however, we found that both Blast and CBMC had limitations
for complex embedded C programs. For example, Blast often analyzed array opera-
tions incorrectly and its result could not be trusted. In contrast, CBMC did not suffer
accuracy problems, but due to its loop unwinding scheme, extensive loop analysis (i.e.,
unwinding many times) was infeasible. In addition, when a target code invokes external
libraries, the analysis accuracy decreases unless a user makes an environment model
for such libraries. Consequently, we decided to focus on more scalable and automated
analysis techniques and concentrated on concolic testing techniques (see Section 3).

3 Concolic Testing Technique

Concolic (CONCrete + symbOLIC) testing [13, 6] combines both a concrete dynamic
analysis and a symbolic static analysis to automatically explore all possible execution
paths of a target program by negating every branching decision in execution paths.
Thus, concolic testing aims to overcome the limitation of conventional testing as well
as software model checking. Concolic testing can analyze a target program with less
memory than state model checking, since it does not store the entire state space, but an-
alyzes each execution path one by one in a systematic manner (i.e., through depth first
search strategy). In addition, concolic testing can analyze a target program faster than
state model checking, since search space of concolic testing (i.e., explicit path model
checking) is usually smaller than that of state model checking. Although concolic test-
ing may fail to detect bugs which can be discovered by state model checkers, concolic
testing techniques can be a good trade-off between effectiveness and efficiency. In addi-
tion, unlike model checking, external library calls can be handled using concrete input
and output values, thus achieving better applicability. Lastly, concolic testing generates

concrete test cases, which are invaluable assets for industrial software projects (i.e.,
through conventional testing, regression testing, and product line testing, etc.).

It is, however, still necessary to check the effectiveness and efficiency of concolic
testing on industrial software through concrete case studies, since this technique is rel-
atively new and depends on many other static and dynamic components. These compo-
nents potentially include SMT solvers, virtual machines, code instrumenters, compilers,
etc. In addition, in our experience we found that successful application of concolic test-
ing depends on the expertise of a human engineer, as they must determine what should
be declared as symbolic input and what should be the initial input from which symbolic
analysis begins, which search strategy should be chosen, etc.

4 Samsung Linux Platform (SLP) for Smartphones

4.1 File Manager

The SLP file manager (FM) monitors a file system and notifies corresponding applica-
tions of events in the file system. FM uses an inot ify system call to register directo-
ries/files to monitor. When the directories and files that are being monitored change, the
Linux kernel generates inotify events and adds these events to an inotify queue.
FM reads an event from the queue and notifies corresponding programs of the event
through a D-BUS inter-process communication interface. For example, when a user
adds an MP3 file to a file system, FM notifies a music player to update its playlist au-
tomatically. A fault in FM can cause serious problems in SLP, since many applications
depend on FM. FM is written in C and around 10,000 lines long.

Symbolic Inputs To apply concolic testing, we must specify symbolic variables in a

target program, based on which symbolic path formulas are generated at runtime. We

specified inotify_event as a symbolic input, whose fields are defined as follows:
struct inotify_event {

int wd; /+*Watch descriptor =/

uint32_t mask; /*Event «/

uint32_t cookie;/+Unique cookie associating eventsx/

char name []; /+«Optional null-terminated name x/};

uint32_t len; /*Size of 'name’ field */

wd indicates the watch for which this event occurs. ma sk contains bits that describe
the type of an event. cookie is a unique integer that connects related events. name []
represents a file/directory path name for which the current event occurs and len indi-
cates a length of the file/directory path name. Among the five fields, we specified wd,
mask, and cookie as symbolic variables, since name and len are optional fields.
We built a symbolic environment to provide an inotify_event queue that contains
up to two symbolic inotify_events.
Analysis Results By using a concolic testing tool CREST [2], we detected an infinite
loop fault in FM in one second. After FM reads an inotify_event in the queue, the
event should be removed from the queue to process the other events in the queue. For a
normal event, the wd field of the event is positive. Otherwise, the event is abnormal. We
found that FM did not remove an abnormal event from the queue and caused an infinite
loop when an abnormal event was added to the queue. This bug had not been detected
before because original developers did not make test cases that contained abnormal
events, which were hard to trigger. Note that external SLP libraries used by FM could be
handled by CREST without difficulty (but with decreased path coverage), since CREST
simply used concrete values for library calls without building a corresponding symbolic
path formula.

4.2 Security Library

The security library in SLP provides API functions for various security applications on
mobile platforms such as SSH (secure shell) and DRM (digital right management). The
security library consists of security function layer (security APIs such as AES or SHA),
complex math function layer (elliptic curve, large prime number generators, etc), and
a large integer function layer. Most functions in the library are well documented and
its input/output behaviors are clearly defined based on mathematical semantics. We
analyzed a large integer function layer (around 2500 lines long) using CREST.

Symbolic Inputs A large integer is represented by the L_INT data structure:

struct L_INT {

unsigned int size;//Allocated mem size in 32 bits

unsigned int len; //# of valid 32 bit elements

unsigned int *da; //Pointer to the dynamically allocated data array.
unsigned int sign;//0:non-negative, 1: negative }

To test large integer functions, we built a symbolic large integer generator that
returns a symbolic large integer n (line 12) as shown in Figure 5. Lines 3-5 allo-
cate memory for n (line 5). Line 3 declares the size of n as a symbolic variable
of unsigned char type. Note that line 4 enforces a constraint on size such that
min<size<max. Without this constraint, size can be 255, which will generate un-
necessarily many large integers, since the number of generated large integers increases
as the size increases. Line 5 allocates memory for n using L_.INT_Init (). For sim-
ple analysis, we assume that len==s1ize (line 6). Lines 8-9 fill out a data array of n,
if necessary (line 7). Since we assume that size==1en, we do not allow the most-
significant bytes to be 0 (line 10). Using gen_s_int (), we developed test drivers
for all 14 large integer functions to checks their basic mathematical properties such as
(nl 4+ n2)%m == (n2 4+ nl)%m for L_INT ModAdd (nl,n2,m).

01:L_INT* gen_s_int (int min,int max,int to_fill) {

02: unsigned char size, i;

03: CREST_unsigned_char(size); //symbolic variable
04: if(size> max || size< min) exit (0);

05: L_INT *n=L_INT_Init (size);

06: n->len=size;

07: if(to_fill){// sym. value assignment

08: for(i=0; 1 < size; i++) {

09: CREST_unsigned_int (n->da[i]);}

10: if (n->da[size-1]==0) exit (0); }

11: return n;}

Fig. 5. Symbolic large integer generator

Analysis Results We inserted 40 assertions in the 14 large integer functions and found
that all 14 large integer functions violated some assertions. CREST running on a Linux
machine (3.6Ghz Core2Duo) generates 7537 test cases for the 14 large integer func-
tions in five minutes. For example, test _L_INT_ModAdd () generated 831 test cases
to test L_.INT_ModAdd () . 17 of the 831 test cases violated (nl + n2)%m == (n2 +
nl)%m. We analyzed L_INT ModAdd (L_INT d,L_INT nl,L_INT n2,L_INT
m) and found that this function did not check the size of d (destination). Thus, if the
size of dissmaller than (nl+n2) %m, this function writes beyond the allocated mem-
ory for d, which may corrupt d later by other memory writes. This bug had not been
caught before, since high level security functions invoked L_INT ModAdd () with m

that is smaller than n1 and n2, thus escaping from exceptional error-triggering sce-
narios. Automated analysis techniques are very effective to explore such corner case
scenarios and detect hidden bugs.

5 Conclusion and Future Work

We have shown that difficult verification problems in industrial software can be han-
dled successfully using automated formal analysis tools. Though the projects were con-
ducted on a small-scale, Samsung Electronics highly valued the analysis results. At the
same time, the experience gained in these projects led the authors to realize the practi-
cal limitations on the scalability and applicability of software model checking and the
necessity of conducting further research to develop an advanced concolic testing tech-
nique for complex embedded software such as smartphone platforms. Currently, we are
working with University of Nebraska to develop a hybrid concolic testing technique
that utilizes a genetic algorithm to cover the weaknesses of pure concolic testing. In ad-
dition, Samsung Elctronics and KAIST continue collaboration to analyze Android 2.3
platform using concolic testing techniques.

Acknowledgements This research was partially supported by the ERC of Excellence
Program of Korea Ministry of Education, Science and Technology(MEST) / National
Research Foundation of Korea) (Grant 2011-0000978).

References

1. D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. The software model checker Blast:
Applications to software engineering. Software Tools for Technology Transfer, 2007.

2. J. Burnim. CREST - automatic test generation tool for C. http://code.google.com/
p/crest/.

3. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMYV 2: An opensource tool for symbolic model checking. In Computer
Aided Verification, 2002.

4. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In Tools and
Algorithms for the Construction and Analysis of Systems, 2004.

5. E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, January 2000.

6. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In
Programming Language Design and Implementation, 2005.

7. G. Holzmann. The Spin Model Checker. Wiley, New York, 2003.

8. R.Jhala and R. Majumdar. Software model checking. ACM Computing Surveys, 41(4):21-
74, 2009.

9. M. Kim, Y. Choi, Y. Kim, and H. Kim. Formal verification of a flash memory device driver
- an experience report. In Spin Workshop, 2008.

10. M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-sector read operation for flash
storage platform software. Formal Aspects of Computing. to be published.

11. M. Kim, Y. Kim, and H. Kim. A comparative study of software model checkers as unit
testing tools: An industrial case study. IEEE Transactions on Software Engineering (TSE),
37(2), 2011.

12. Y. Kim, M. Kim, and Y. Jang. Concolic testing on embedded software - case studies on
mobile platform programs. In European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE) Industrial Track, 2011.

13. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In European
Software Engineering Conference/Foundations of Software Engineering (ESEC/FSE), 2005.

