
Precise Concolic Unit Testing of C Programs using
Extended Units and Symbolic Alarm Filtering

Yunho Kim

School of Computing, KAIST

Daejeon, South Korea

yunho.kim03@gmail.com

Yunja Choi

School of Computer Science and

Engineering, Kyungpook Natl. Univ.

Daegu, South Korea

yuchoi76@knu.ac.kr

Moonzoo Kim

School of Computing, KAIST

Daejeon, South Korea

moonzoo@cs.kaist.ac.kr

ABSTRACT
Automated unit testing reduces manual effort to write unit test

drivers/stubs and generate unit test inputs. However, automatically

generated unit test drivers/stubs raise false alarms because they

often over-approximate real contexts of a target function f and

allow infeasible executions of f . To solve this problem, we have

developed a concolic unit testing technique CONBRIO. To provide

realistic context to f , it constructs an extended unit of f that con-

sists of f andclosely relevant functions to f . Also, CONBRIO filters

out a false alarm by checking feasibility of a corresponding sym-

bolic execution path with regard to f ’s symbolic calling contexts
obtained by combining symbolic execution paths of f ’s closely
related predecessor functions.

In the experiments on the crash bugs of 15 real-world C programs,

CONBRIO shows both high bug detection ability (i.e. 91.0% of the

target bugs detected) and high precision (i.e. a true to false alarm

ratio is 1:4.5). Also, CONBRIO detects 14 new bugs in 9 target C

programs studied in papers on crash bug detection techniques.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

ACM Reference Format:
Yunho Kim, Yunja Choi, and Moonzoo Kim. 2018. Precise Concolic Unit

Testing of C Programs using Extended Units and Symbolic Alarm Filtering .

In ICSE ’18: ICSE ’18: 40th International Conference on Software Engineering
, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3180155.3180253

1 INTRODUCTION
Although unit testing is effective to detect SW bugs, field engineers

have burden of manually generating test drivers/stubs and test

inputs for each target unit. To reduce manual effort to generate test

inputs, automated test generation has been applied (e.g., concolic

testing have been applied to detect bugs in open source programs [2–

4, 24, 28, 36] and industrial projects [6, 17, 22, 30, 42] at system-level).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00

https://doi.org/10.1145/3180155.3180253

Also, to reduce manual effort to generate unit test drivers/stubs,

automated unit testing has been applied to open source programs

[10, 14, 34] and large industrial SW [25].

A main drawback of the automated unit testing is a large number

of false alarms raised by infeasible unit executions (i.e. unit executi-
ons that are infeasible at system-level). Infeasible unit executions

occur generated due to inaccurate unit test drivers/stubs that over-

approximate real contexts of a target unit (Sect. 2.4). This false

alarm problem is a serious obstacle to apply automated unit testing

in practice since field engineers would not like to spend time to

manually filter out many false alarms.

To overcome this limitation, we have developed an automated

unit testing framework CONBRIO (CONcolic unit testing with

sym-Bolic alaRm fIltering using symbolic calling cOntexts) which
operates in the following two stages:

1. To provide realistic context to a target function f , CONBRIO
constructs an extended unit of f that consists of f and closely
relevant functions to f which can filter out infeasible unit execu-

tions caused by symbolic stubs. The relevance of a function д to

f is measured by the degree of dependency of f on д (Sect.3.2).

Then, CONBRIO performs concolic execution of an extended

unit of f .
2. To filter out false alarms by checking feasibility of a correspon-

ding symbolic unit execution of f , CONBRIO generates symbolic
calling context of f by combining symbolic paths of closely rele-
vant predecessor functions of f in a static call graph.

As a result, CONBRIO detects bugs effectively and precisely because

it enforces various and realistic executions of f through concolic

execution of f with f ’s realistic contexts (i.e., with the functions

closely relevant to f) and accurately filters out false alarms using

f ’s symbolic calling contexts.

Note that it is important to construct an extended unit and sym-

bolic calling context of f to contain only functions closely relevant to
f since including more functions will enlarge symbolic search space

and degrade unit testing effectiveness and efficiency. For example,

at one extreme end, an extended unit may contain all successor

functions of f and fail to detect bugs due to too large symbolic

search space to explore. Also, symbolic calling context of f may

contain symbolic execution paths of all predecessor functions of f
up to main and fail to detect bugs.

1

We have applied CONBRIO to 15 real-world C programs in

SIR [11] and SPEC2006 [38] benchmarks and CONBRIO shows both

1
Generated symbolic calling context may not represent all feasible calling context of f

due to the limitation of symbolic execution. Thus, a symbolic calling context becomes

more difficult to satisfy by adding symbolic execution paths of more predecessor

functions of f (i.e., via logical ∧. See Sect. 3.5).

https://doi.org/10.1145/3180155.3180253
https://doi.org/10.1145/3180155.3180253

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yunho Kim, Yunja Choi, and Moonzoo Kim

high bug detection ability (i.e., 91.0% of all target bugs detected)

and high precision (i.e., a true to false alarm ratio is 1:4.5) which

is more precise than the latest concolic unit testing techniques for

C programs (e.g., 1:5.7 by UC-KLEE [34]). Also, CONBRIO detects

14 new bugs in the latest versions of the nine target C programs

studied in other papers on crash bug detection techniques.

The contributions of this paper are as follows:

• CONBRIO achieves both high bug detection ability (91.0% of the

target bugs detected) and high precision (false alarm ratio is 1:4.5)

based on the two core ideas: 1) building and utilizing contexts of

a target function explicitly based on relevance of functions mea-

sured by a function dependency metric, 2) a new alarm filtering

strategy that constructs symbolic calling contexts compositio-

nally and utilizes them to check feasibility of a violating unit

execution.

• The extensive empirical evaluation on both bug detection ability

and precision of CONBRIO and the other concolic unit testing

techniques on the 15 real-world C programs supports resear-

chers and practitioners to learn the pros and cons of the related

techniques (Sect. 4–5).

• By applying CONBRIO, we have detected and reported 14 new

crash bugs in the latest versions of the 9 target programs that

were studied in other papers on crash bug detection techniques

(Sect. 5.5).

• We have made the real-world crash bug data of the C benchmark

programs publicly available, which were collected and organized

after examining the bug reports of the last 12–24 years (http:

//swtv.kaist.ac.kr/tools/conbrio), so that researchers can use them

for various testing research purposes (Sect. 4.2.1).

The remainder of the paper is as follows. Section 2 explains the

background of automated concolic unit testing. Section 3 describes

the detail of CONBRIO. Section 4 explains the experiment setup

to evaluate CONBRIO compared to other techniques. Section 5

reports the experiment results. Section 6 discusses related work

and Section 7 concludes the paper with future work.

2 BACKGROUND
2.1 Preliminary
Unit testing uses drivers and stubs (or mock objects) to test a target

function in isolation (i.e., without the rest of a target program).

Suppose that a target function under test f takes n arguments

a1, ...an and accessesm global variablesv1, ...vm , and directly calls

l other functions д1, ...дl . To enforce diverse test executions of f ,

a tester develops various unit test drivers drv
f
i s each of which

generates argument values ai
1
, ...ain , global variable valuesv

i
1
, ...vim

and finally invokes f with these input values. Also, a tester builds

stub functions siд1 ...s
i
дl to replace д1, ...дl . Also, test drivers/stubs

should satisfy constraints on the interface between f and the rest

of a target program to avoid infeasible unit test executions of f .

2.2 Concolic Unit Test Driver/Stub Generation
For each target function f , a concolic unit testing technique auto-
matically generates symbolic stubs and a symbolic unit test driver.
Symbolic stubs simply return symbolic values (without updating

global variables and output parameters for simplicity) and a sym-

bolic driver invokes f after assigning symbolic values to the input

variables of f according to their types as follows:
2

• primitive types: primitive variables are directly assigned with

primitive symbolic values of the corresponding types.

• array types: each array element is assigned with a symbolic va-

riable according to the type of the array element (for a large

array, only the first n elements are assigned with symbolic values

where n is given by a user).

• pointer types: for a pointer variable ptr pointing to a variable of a
type T, a driver allocates memory whose size is equal to the size

of T and assigns the address of the allocated memory to ptr (i.e.,

ptr=malloc(sizeof(T))). Then, a driver assigns *ptr with a

symbolic value of type T. If a size of T is not known (e.g., FILE
in standard C library), NULL is assigned to ptr. If there exists
a pointer variable ptr2 pointing to a symbolic variable of the

same type T, a driver assigns ptr2 to ptr.
• structure types: a unit test driver specifies all fields of struct
variable s as symbolic variables recursively (i.e., if s contains

struct variable t, a unit test driver specifies the fields of t as

symbolic too).

A limitation of this approach is that the drivers and stubs often

over-approximate the real environment of f and allow infeasible
unit executions (i.e., executions of f which are not feasible at system-

level) that may raise false alarms.

2.3 Insertion of Assertions Targeting Crash
Bugs

Concolic unit testing techniques aim to detect crashes/run-time

failures such as null-pointer dereference (NPD), array index out-of-

bounds (OOB), and divide-by-zero (DBZ) as well as violations of

user-given assertions. They often focus on crashes because user-

given assertions are usually not available in real-world programs.

Concolic unit testing techniques insert assert(exp) into f
where exp specifies a condition to avoid crashes (e.g. ,denominator ,
0 to avoid DBZ). Because of assert(exp) in f , concolic testing tries
to generate a test input with which f makes exp false and increases

a chance to detect crash bugs.

2.4 Example of False Alarm
Figure 1 shows a target program with a target function f under

test (lines 10–16). main calls a1 if the first parameter x of main is
greater than 0 or calls a2, otherwise (line 3). a1 and a2 call b at line 5
and line 6, respectively, and b calls f at line 7. f takes an integer

parameter x and calls g(x) (line 12) (a sanity check function for

accessing array through an index x) and h(x) (line 15). A concolic

unit testing technique generates a unit test driver driver_f and

symbolic stubs stub_g and stub_h for f. Also, it modifies f to

call stub_g and stub_h instead of g and h respectively (see the

comments at line 12 and line 15) and inserts an OOB assertion at

line 13.

Figure 2 shows a unit test driver and stubs for f. driver_f invo-

kes f with a symbolic argument arg1 (lines 2–3) where int arg1
= SYM_int() sets arg1 as a symbolic integer value (line 2). stub_g

2
This subsection is excerpted from [25].

http://swtv.kaist.ac.kr/tools/conbrio
http://swtv.kaist.ac.kr/tools/conbrio

Precise Concolic Unit Testing of C Programs using
Extended Units and Symbolic Alarm Filtering ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
01:// x and y are inputs of a target program
02:int main(int x,int y){
03: return (x>0) ? a1(x,y) : a2(y);}
04:
05:int a1(int x, int y){if(y>0) return b(x); else return 0;}
06:int a2(int x){if(x>0) return b(x);}
07:int b(int x){if(x>0) return f(x);else return 0;}
08:
09:// Target function under test
10:int f(int x){
11: int array[5] = {1,3,5,7,9}, result;
12: if (g(x) != 0){ //=> if (stub_g(x) != 0) {
13: // => assert(0<=x && x<5);
14: result = array[x];
15: }else result=h(x);//=> else result=stub_h(x);
16: return result;}
17:
18:int g(int x){ return (x<5)? 1:0;}
19:
20:int h(int x){ return x + 2;}

Figure 1: Target program with a target function f

01: int driver_f(){
02: int arg1 = SYM_int();
03: f(arg1);}
04:
05: int stub_g(int x){}
06: int ret = SYM_int();
07: return ret;}
08:
09: int stub_h(int x){
10: int ret = SYM_int();
11: return ret;}

Figure 2: Generated unit test driver and stubs for f

and stub_h return symbolic integer values as g and h return integer
values (lines 5–7 and lines 9–11 respectively). Concolic execution

of driver_f violates the OOB assertion at line 13 of f if a unit test

execution satisfies the following two conditions:

• a symbolic argument arg1 to f (line 3 of driver_f) is larger than
or equal to the size of array (e.g. arg1 is 5)

• stub_g returns a non-zero value (e.g. 1)

However, an alarm raised in such unit test execution is a false
alarm because such unit test execution of f is infeasible with the

real target program where g is invoked (g returns 0 if arg1≥ 5

(line 18 of Figure 1) unlike stub_g). In other words, a concolic unit

testing technique can raise a false alarm if it generates unit test

drivers/stubs different from real environment of f which consist of

main, a1, a2, b, g, and h.

3 CONBRIO TECHNIQUE
Figure 3 shows the overall process of CONBRIO as follows:

1. CONBRIO receives source code of a target program, a list of target

functions to test, and system test cases of the target program as

inputs. CONBRIO obtains function call profiles from the system

test executions (Section 3.1).

2. It checks function relevance by calculating dependency of a tar-

get function f on other function д using conditional probability
p(д | f) based on the observed function call profiles (Section 3.2).

With a given dependency threshold τ , we consider f has a high
dependency on д if p(д | f) ≥ τ .

3. Based on the calculated dependency of f on other functions,

• It constructs an extended unit of f that contains f , f ’s successor
functions in a static function call graph on which f has high

dependency, and symbolic stubs.

• It identifies calling contexts of f each of which is a maximal

call path a1 → a2 → ... → f in a static function call graph

such that f has high dependency on all ai s. We use ctx(f ,k)
to indicate kth calling context of f .

Section 3.3 describes more detail.

4. CONBRIO applies concolic testing to an extended unit of f to ex-

plore diverse and realistic target unit test executions. During con-

colic execution, it builds a symbolic path formula σf vi that repre-
sents executions violating a given assertion vi in f (Section 3.4).

5. It filters out an alarm raised at vi by checking the feasibility of

σf vi with regard to f ’s calling contexts (see Step 3). For this pur-

pose, CONBRIO constructs f ’s symbolic calling context formulas
Σctx (f ,k) and uses a SMT solver to check satisfiability of σf vi
(see Step 4) conjuncted with Σctx (f ,k) (Section 3.5).

If the result is UNSAT for all calling contexts (i.e., there exists

no feasible execution in any calling context of f to make σf vi
feasible), a target alarm is considered as false and ignored. Ot-

herwise (i.e., the result is SAT with at least one calling context),

a corresponding alarm is reported as a violation of vi in f .

3.1 Obtaining Function Call Profile from
System Test Executions

CONBRIO executes a target program with given system test cases

and obtains function call profiles. For example, suppose that a

target program in Fig. 1 has three system test cases to main(x,y):
(-1,1), (1,1), and (5,1). Then, the function call profiles are obtained

as follows: {main→a2, a2→b, b→f,f→g} with (-1,1), {main→a1,
a1→b, b→f,f→g} with (1,1), and {main→a1, a1→b, b→f,f→g,
f→h} with (5,1).

3.2 Computing Dependency of a Target
Function on Other Functions

Suppose that a program has a target function f and other function

д and it has nf system test executions that invokes f . Based on

function call profiles, we compute dependency of f on д as p(д | f).
Given a static call graphG(V ,E) (see Def. 1) and system test execu-

tions, we compute p(д | f) as follows:

• Case 1: for д which is a predecessor of f in G(V ,E), p(д | f) is
calculated as

n1

nf
where n1 is a number of system executions

where д calls f directly or transitively.

• Case 2: for д which is a successor of f in G(V ,E), p(д | f) is calcu-
lated as

n2

nf
where n2 is a number of system executions where f

calls д directly or transitively.

• Case 3: for д which is a successor and predecessor of f in G(V ,E)
(i.e., there exists a recursive call cycle between f and д), p(д | f)
is calculated as

n3

nf
where n3 is a number of system executions

where f calls д or д calls f directly or transitively.

For example, Step 1 of Fig. 3 shows three test cases (-1,1), (1,1), and

(5,1) and their corresponding function call profiles for the program

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yunho Kim, Yunja Choi, and Moonzoo Kim

Step 1: Obtaining func. call profile from system tests Step 2: Computing dependency of a target func. f
on other func. using conditional prob.

Step 4: Concolic testing to generate symbolic
path formula σfvi

that violates a given assertion vi

int main(x,y){
… a1()… a2()}

int a1(){…b()…}
int a2(){…b()…}
int b(){…f()…}
int f(){…
g()… h()…}

int g() {…}
int h() {…}

System test cases

Step 3: Constructing an extended unit of f
and a calling context of f (τ=0.7)

a stub_b a symbolic stub functiona real function

Legend

Dependency of f
on other functions

�(main|f) = 1.00
�(a1|f) = 0.66
�(a2|f) = 0.33
�(b|f) = 1.00
�(g|f) = 1.00
�(h|f) = 0.33

Compute
p(…|f)

f

stub_hg

driver_f

Function call profile

TC1
(-1,1)

TC2
(1,1)

TC3
(5,1)

Target program

main

b

f

g

a1

main

a1

f

g h

b

main

f

g

b

b:1.00

f

g:1.00 h:0.33

a1:0.66

main:1.00

Function call profile

TC1
(-1,1)

TC2
(1,1)

TC3
(5,1)

main

b

f

g

a1

main

a1

f

g h

b

v1

σfv1

v2

σfv2

A calling
context of f

f

stub_hg

driver_f

σfv1
 ctx(f,1) SMT

Solverσfv2
 ctx(f,1)

UNSAT v1 is a false alarm

SAT v2
is a true alarm

Step 5: Filtering out an alarm raised at vi by checking satisfiability of corresponding
symbolic path formula σfvi

with f’s symbolic calling context ctx(f,k)

Ignore

Report

Symbolic
execution

paths

driver_f

Extended
unit of f

a2:0.33

a2

main

f

g

b

a2

v2

Figure 3: Overall process of CONBRIO

in Fig. 1. Based on the profiles, we calculated dependency of f on

other functions as follows:

• p(main|f) = 1.00 (= n1

nf
= 3

3
)

• p(a1|f) = 0.66 (= n1

nf
= 2

3
)

• p(a2|f) = 0.33 (= n1

nf
= 1

3
)

• p(b|f) = 1.00 (= n1

nf
= 3

3
)

• p(g|f) = 1.00 (= n2

nf
= 3

3
)

• p(h|f) = 0.33 (= n2

nf
= 1

3
)

3.3 Constructing Extended Unit and Calling
Contexts

Given a static call graph G(V ,E) of a target program (Def.1), a

target function f ’s dependency on other functions (i.e., p(д | f)), and
a dependency threshold τ , CONBRIO constructs an extended unit
of f that consists of f and f ’s closely relevant successor functions

and calling contexts of f .

Definition 1. A static call graph G(V ,E) is a directed graph

where V is a set of nodes representing functions in a program and

E is a relation V ×V . Each edge (a,b) ∈ E indicates that a directly

calls b. We call a node p as a predecessor of f if there exists a path

from p to f . We call a node s as a successor of f if there exists a

path from f to s .

For example, Step 3 of Fig. 3 shows how CONBRIO constructs an

extended unit of f and a calling context of f for a program in Fig. 1.

Given a static call graph whose nodes are labelled with dependency

of f, CONBRIO constructs an extended unit of f that contains f and
g since f has high dependency on g, but not h (i.e., p(g|f) ≥ τ but

p(h|f) < τ where τ = 0.7). Finally, driver_f invokes an extended

unit of f with symbolic inputs. Note that CONBRIO does not raise
a false alarm in this example unlike concolic unit testing in Sect. 2.4

because an extended unit provides realistic environment to f by

using g which is closely relevant to f. Also, CONBRIO builds a

calling context of f as b→ f since f has high dependency on b, but
not a1 nor a2 (i.e., p(b|f) ≥ τ but p(a1|f),p(a2|f) < τ).

3.3.1 Constructing Extended Unit. For each target function f ,
CONBRIO constructs an extended unit that contains f and f ’s
successor functions д such that f has high dependency on all

function nodes in a call path from f to д in a static function call

graph (i.e. for all nodes ni between f and д, p(ni | f) ≥ τ). A unit

test driver sets all arguments and all global variables accessed by

the extended unit of f as symbolic inputs as described in Sect. 2

and invokes f .
For example, Fig. 4 shows a static call graph whose nodes are

labeled with dependency of a target function f . Fig. 4 shows that an
extended unit of f (marked with black dashed line at the bottom)

consists of f , n12, n13, and n14 functions on which f has high

dependency (i.e. p(n12| f), p(n13| f), p(n14| f) ≥ τ=0.7).

Precise Concolic Unit Testing of C Programs using
Extended Units and Symbolic Alarm Filtering ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

f

n8:0.8 n9:0.8

n6:0.8

n10:0.0

n13:0.8n12:0.8

n14:0.7 n15:0.4

n5:0.8

n7:0.0

n3:0.7

n16:0.6

Target
func.

Extended
Unit of f

n4:0.5

n1:0.5 n2:0.6

ctx(f,1)
ctx(f,2)

main:1.0

Figure 4: Static call graph showing an extended unit and two
calling contexts of f (ctx(f , 1) and ctx(f , 2)) with τ = 0.7

In addition, as a false alarm reduction heuristic, CONBRIO adds

SYM_assume(expr) 3
at the beginning of f ’s extended unit where

expr represents possible value ranges of symbolic input variables

(which are obtained by applying a static value range analyzer [33]

to an entire target program code). If an input value is not in the

estimated range, a current test execution immediately terminates

without raising any alarms and CONBRIO continues to a next test

execution. As another heuristic, CONBRIO constructs an extended

unit to keep consistency between a pointer input variable to dyna-

mically allocated memory and its size variable by figuring out such

relation between input variables based on the variable names.

3.3.2 Constructing Calling Contexts. In a static call graphG(V ,E)
labelled with dependency of f , we define a calling context of f as a

maximal call path from a predecessor node of f to f as follows.

Definition 2. An ith calling context of f ∈ V (saying ctx(f , i))
is a maximal call path a1 → a2 → ... → f in a static call graph

G(V ,E) satisfying the following conditions:

• a1 is a predecessor of f
• for all aj in ctx(f , i), p(aj | f) ≥ τ
• there exists no other calling context of f that contains ctx(f , i)
as its sub path (i.e., ctx(f , i) is maximal).

CONBRIO generates a calling context by traversing a static call

graph from f in a reverse direction until it reaches a node labelled

with low dependency of f . For example, Fig. 4 shows two calling

contexts of f : ctx(f , 1) and ctx(f , 2). ctx(f , 1) is a call path from

n5 to f (see the blue dotted line in the left part) where p(n5| f) =
p(n8| f) = 0.8 > τ = 0.7 and p(n1| f) = 0.5, p(n2| f) = 0.6. Thus,

ctx(f , 1) = n5 → n8 → f . Similarly, ctx(f , 2) = n3 → n6 → n9 →
f .

3.4 Concolic Testing to Generate Violating
Symbolic Path Formulas

CONBRIO applies concolic testing to an extended unit to explore

diverse and realistic executions of f . During concolic execution, it

3SYM_assume(expr) is a macro of if(!expr) exit(0);.

obtains a set of symbolic execution path formulas SEf . and records

a symbolic path formula σf (vi , j) that violates an assertionvi in f (j
is an index to a symbolic path formula violating vi since there can
be multiple such symbolic path formulas). We use σf vi to denote∨
j σf (vi , j).
To focus on f , CONBRIOmodifies DFS search strategies by using

a priority queue for branch conditions of f and a normal queue

for those of the other functions in an extended unit of f (e.g., g in

Fig. 1). CONBRIO explores various behaviors of f first by negating

branch conditions in a priority queue first (branch conditions in a

normal queue are negated when the priority queue is empty).

3.5 Alarm Filtering by Checking Satisfiability
of f ’s Violating Symbolic Path Formula σf vi
with f ’s Symbolic Calling Context Formula

To filter out false alarms raised at vi in f , CONBRIO checks the

feasibility of σf vi with regard to f ’s calling contexts (see Sect. 3.3.2).
For this purpose, CONBRIO constructs Πctx (f ,k) which is a kth
symbolic calling context of f and checks satisfiability of σf vi ∧
Πctx (f ,k) using a SMT solver. Πctx (f ,k) is constructed as follows

(see Fig. 5):

• For each function aj in a calling context of f (i.e. ctx(f ,k)),
CONBRIO obtains SEa j which is a set of symbolic execution

path formulas of aj .
Note that this task is the same task in Step 4 (Sect. 3.4). If aj was
already tested as a target function and SEa j was generated in

Step 4, this alarm filtering step (Step 5) reuses SEa j .
• CONBRIO obtains a slice of SEa j with regard to aj+1 (saying

Slice(SEa j ,a
j+1)) as follows:

Slice(SEa j ,a
j+1)

def
= {σ ′ |σ ′

is a prefix of σ ∈ SEa j such
that σ contains invocation of aj+1 and σ ′

does not contain

a suffix of σ after the invocation}.

For example, for ctx(f , 1) in Fig. 4, Fig. 5 shows that Slice(SEn5,n8)
has two symbolic path formulas that calln8:σn5(n8,1) andσn5(n8,2)
(shown as thick blue arrows) where σx (y,z) is zth symbolic path

formula of a function x that terminates immediately after calling

a function y. Slice(SEn8, f) also has two symbolic path formulas

that call f : σn8(f ,1) and σn8(f ,2) .
• CONBRIO obtains symbolic calling context formula of f with

ctx(f ,k) (i.e.,Πctx (f ,k)) by combining sets of sliced symbolic exe-

cution path formulas ofa1 (i.e., Slice(SEa1 ,a
2)),a2 (i.e. Slice(SEa2 ,a

3)),

... of ctx(f ,k) until reaching f using logical conjunction. Thus,

Πctx (f ,k) with ctx(f ,k) = a1 → a2 → ... → f is defined as

follows:

Πctx (f ,k)
def
=

∧
a j ∈(ctx (f ,k)−{f })(

∨
σl ∈Slice(SEaj ,a

j+1) σl)

For example, Fig. 5 shows Πctx (f ,1) with ctx(f , 1) = n5 → n8 →
f in Fig. 4 as follows (see thick blue arrows representing σn5(n8,1),
σn5(n8,2), σn8(f ,1) and σn8(f ,2)):
Πctx (f ,1) = Πn5→n8→f =

(σn5(n8,1) ∨ σn5(n8,2)) ∧ (σn8(f ,1) ∨ σn8(f ,2))

Finally, CONBRIO applies a SMT solver to σf vi ∧ Πctx (f ,k) for

every symbolic calling context of f . If a result is UNSAT for all

calling contexts (i.e., there exists no feasible execution in any calling
contexts of f to make σf vi feasible), a target alarm is considered as

false and ignored. Otherwise (i.e. , a result is SAT with at least one

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yunho Kim, Yunja Choi, and Moonzoo Kim

v1

σfv1
Violating sym.
exec. paths of f

Sym. exec.
paths of n5

SEn5

n8

n5

σn5(n8,2)

σn5(n8,1)

f

Sym. exec.
paths of n8

SEn8

σn8(f,1) σn8(f,2)

Slice(SEn5,n8)

Slice(SEn8,f)

Figure 5: Violating symbolic path formula σf vi and a symbo-
lic calling context of f (i.e., Πctx (f ,1)) with ctx(f , 1) in Fig. 4

calling context), a corresponding alarm is reported as a violation of

vi in f .

3.6 Implementation
We have implemented CONBRIO in 5,000 lines of C++ code using

Clang/ LLVM-3.4 [26]. CONBRIO uses CROWN [1] for concolic tes-

ting and LLVM-based static variable range analyzer [33] to compute

the possible ranges of variables. CROWN (Concolic testing for Real-

wOrld softWare aNalysis) is a lightweight instrumentation-based

concolic testing tool to generate concrete test inputs for real-world

C programs (available at http://github.com/swtv-kaist/CROWN).

It supports complex C features such as bitwise operators, floating

point arithmetic, bitfields and so on.

4 EXPERIMENT SETUP
We have designed five research questions to evaluate bug detection

ability and precision of CONBRIO and compare CONBRIO with

other concolic unit testing techniques on 15 real-world C programs.

Note that it is important to evaluate bug detection ability and preci-

sion together because of a trade-off between them (i.e., a technique

may improve bug detection ability at the cost of precision or vice

versa). Also, we applied CONBRIO to the latest versions of the

nine C programs studied in other papers on crash bug detection

techniques.

4.1 Research Questions
RQ1. Bug Detection Ability: How many crash bugs among the

target crash bugs does CONBRIO detect, compared to the other

concolic unit testing techniques?

Table 1: Target programs and bugs for RQ1 to RQ4
Target Lines # of # of sys. Branch Func # of

programs func. test cov. cov. target

and versions cases (%) (%) bugs

Bash-2.0 32714 1214 1100 46.2 89.0 6

Flex-2.4.3 7471 147 567 45.7 93.9 2

Grep-2.0 5956 132 809 50.3 94.7 5

Gzip-1.0.7 3054 82 214 55.8 87.8 2

Make-3.75 28715 555 1043 64.5 87.9 3

Sed-1.17 4085 73 360 47.3 87.7 2

Vim-5.0 66209 1749 975 35.8 91.0 6

Perl-5.8.7 79873 2240 1201 52.3 95.0 6

Bzip2-1.0.3 4737 114 6 67.4 93.9 2

Gcc-3.2 342561 5553 9 43.7 96.2 15

Gobmk-3.3.14 154583 2682 1354 65.2 92.0 5

Hmmer-2.0.42 35992 539 4 75.6 94.1 3

Sjeng-11.2 10146 144 3 77.9 91.7 2

Libquantum-0.2.4 2255 101 3 68.5 93.1 3

H264ref-9.3 51578 590 6 63.6 88.0 5

Sum 829929 15915 7654 N/A N/A 67

Average 55328.6 1061.0 510.3 57.3 91.7 4.5

RQ2. Bug Detection Precision: How much is a false alarm ratio

of CONBRIO, compared to the other techniques?

RQ3. Effectiveness of the SymbolicAlarmFiltering: Howmuch

does the alarm filtering strategy using symbolic calling contexts

affect a number of target bugs detected and a false alarm ratio?

RQ4. Effect of the Function Selection Strategy on Bug De-
tection Ability and Precision: How much does the function se-

lection strategy based on the function relevance metric affect a

number of target bugs detected and a false alarm ratio, compared

to a strategy based on static call graph distance?

RQ5. Effectiveness of Detecting New Crash Bugs: How many

new crash bugs does CONBRIO detect?

4.2 Target Bugs and Programs
We target crash bugs described in Section 2.3 by inserting corre-

sponding crash assertions in target programs because crash bugs

are serious problems and CONBRIO can automatically insert such

assertions without user-given test oracles, which are rarely availa-

ble in target programs. We use two benchmarks: known crash bug
benchmark for RQ1 to RQ4 and unknown crash bug benchmark for
RQ5 (available at http://swtv.kaist.ac.kr/tools/conbrio).

4.2.1 Known Crash Bug Benchmark. The known crash bug ben-

chmark consists of all C programs in SIR [11] (except Siemens

programs and space which do not have available bug-fix histories)

and SPEC2006 integer benchmarks (except mcf-1.2which has only
one system test case). We target the crash bugs of the benchmark

programs that satisfy the following conditions:

• crash bugs that exist in a target program version and have been

confirmed by original developers through bug-fix commits since

the release of a target program version (e.g., Dec 1996 for bash-2.0)
until April 2017

• crash bugs that can be detected by unit testing (i.e., both buggy

statement(s) reported in a bug-fix commit and violated asser-

tion(s) are located in a same target function)

http://github.com/swtv-kaist/CROWN
http://swtv.kaist.ac.kr/tools/conbrio

Precise Concolic Unit Testing of C Programs using
Extended Units and Symbolic Alarm Filtering ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Target programs for RQ5

Target programs Lines # of # of sys. Branch Func.

and versions func. test cases cov. (%) cov. (%)

abcm2ps-8.13.9 36595 499 12 74.0 93.0

autotrace-0.31.1 18495 343 5 69.3 84.8

bib2xml-5.11 77216 1032 24 73.2 93.0

catdvi-0.14 12693 187 7 53.0 81.8

eog-3.14.1 43463 605 42 73.3 81.0

gif2png-2.5.11 4058 76 2 60.1 81.6

jpegtran-1.3.1 51828 817 33 72.0 84.9

mp3gain-1.5.2 5786 100 3 53.7 86.0

xpdf-3.03 22309 381 13 54.9 81.9

Sum 272443 4040 141 N/A N/A

Average 30271.4 448.9 15.7 64.8 85.3

Table 1 describes 15 target programs including their sizes (in

LoC including comments and empty lines), a number of functions

to test, a number of system test cases used, branch coverage and

function coverage achieved by the system test cases, and a number

of the target crash bugs. For all target programs, we used all system

test cases provided in the benchmarks. Each target program has

two to 15 target crash bugs (4.5 on average). Note that no system

test case detects a target bug.

For example, we have reviewed 28 bug-fix commits reported

since the release of vim-5.0 on Feb 1998 until April 2017. 11 among

them report crash bugs existing in vim-5.0. Among the 11 crash

bugs, unit testing can detect six of them, which we target for

vim-5.0 (see the eighth row of the table).

4.2.2 Unknown Crash Bug Benchmark. The unknown crash bug

benchmark programs were selected from the literature on crash

bug detection techniques. This is because SIR and SPEC benchmark

programs do not satisfy the following criteria: we selected target

programs whose sizes are 1,000 to 100,000 LoC and which have

more than three crash bug fixes in the last three years (i.e. between

April 2014 to April 2017). We excluded very large programs due to

huge manual effort required to check validity of alarms. We also

excluded programs with three or less crash bug fixes in the last

three years because such programs may not have a crash bug.

To obtain new crash bug benchmark programs, we surveyed

papers on crash bug detection techniques published in major SE

(ICSE, FSE, ASE, ISSTA), PL (PLDI, POPL, SPLASH), and security

conferences (IEEE S&P, ACM CCS, USENIX Security) in the last

three years and obtained the nine relevant papers [3, 8, 18, 27, 34,

35, 43–45]. Then, we applied the above criteria to the latest versions

of the target programs studied in these papers and obtained the

nine target programs in Table 2. Again, for all target programs, we

used all system test cases provided in the target program versions

and no system test case violated the crash assertions.

4.3 Concolic Unit Testing Techniques to
Compare

We have compared CONBRIO with the following concolic unit

testing techniques:

• Symbolic unit testing (SUT): It generates a symbolic unit testing

driver with symbolic arguments to a target function f and sym-

bolic global variables without any constraints on the symbolic

values, as described in Sect. 2.2. Also, SUT uses symbolic stubs

to replace all functions called by f .
• Static call-graph distance techniques: It constructs an extended

unit to include all successor functions of f within a certain dis-

tance bound from f in a static function call graph. Also, a calling

context of f contains predecessor functions of f within a cer-

tain distance bound from f . We use distance bounds 3, 6 and 9.

SUT corresponds to a static call-graph distance technique with a

distance bound 0.

SUT uses DFS as a concolic search strategy. Call-graph distance

techniques and CONBRIO use the modified DFS (Sect. 3.4).
4
These

unit testing techniques have been implemented in 1,000 lines of

C++ code using CROWN [1].

4.4 Measurement
We consider that a target bug is detected if a unit test execution

that violates an assertion covers one of the buggy statements in a

target unit. To identify the buggy statements, we have manually

analyzed all crash bug-fix commits of all subsequent releases of

the target program versions in SIR and SPEC2006 benchmarks. We

consider that a statement s of a target program is a buggy statement

if s corresponds to the changed/fixed statements in a crash bug-fix

commit.

We analyze alarms reported by the alarmfiltering strategy (Sect. 3.5).

For true alarms, we count a number of violated assert statements

which satisfy the following conditions:

• There exists a unit test execution σf v that covers a buggy state-

ment and violates an assert statement in a target function f .
• We can confirm that σf v is feasible at system level by manually

creating a system-level test that includes σf v and violates the

assert statement (we compared execution traces of σf v and a

corresponding system test using gdb).

We consider all other alarms as false ones.

4.5 Testbed Setting
For SUT, call-graph distance techniques, and CONBRIO, we set the

timeout of concolic testing (Step 4 in Fig. 3) as 180 seconds per a

target function.
5
After test generation terminates, call-graph dis-

tance techniques and CONBRIO performs the false alarm filtering

task (Step 5 in Fig. 3). We set a function dependency threshold τ as

0.7.

Since the experiment scale is large (i.e., targeting 15,915 functions

for the known crash bugs and 4,040 functions for the unknown

crash bugs), the experiments were performed on 100 machines each

of which is equipped with Intel quad-core i5 4670K and 8GB ram,

running Ubuntu 14.04.2 64 bit version. We run four concolic unit

test runs on a machine in parallel.

4
We report the experiment using only DFS and modified DFS since the experiments

using other search strategies such as random negation and CFG heuristic show only

negligible difference.

5
We selected timeout as 180 seconds because exploratory study with timeout 60, 180,

300, and 600 seconds suggested that timeout beyond 180 seconds had negligible effect

on the overall experiment results of CONBRIO and the other techniques.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yunho Kim, Yunja Choi, and Moonzoo Kim

4.6 Threats to Validity
A threat to external validity is the representativeness of our target

programs. But we expect that this threat is limited since the target

programs are widely used real-world ones and tested by many

other researchers. Another threat to external validity is the possible

bias of the system tests we used to obtain dependency between

functions. We tried to reduce this threat by utilizing all available

system test cases in the benchmarks.

A threat to internal validity is possible faults in the implementa-

tion of the concolic unit testing techniques we studied. To address

this threat, we extensively tested our implementation. A threat to

construct validity is the use of the crash bugs that were fixed by

the bug-fix commits reported so far (i.e., the target programs may

have unknown/unreported crash bugs which we do not count). We

target crash bugs confirmed by the developers through the bug-

fix commits because it would require too much effort to manually

validate numerous alarms without confirmed reports in this large

scale experiment. However, this threat seems limited because all

target programs are well-maintained so that these programs may

not have many new bugs.

5 EXPERIMENT RESULT
For all comparison in the experiments in this section, we applied

Wilcoxn test with a significance level 0.05 to show the statistical

significance. All comparison results in this section are statistically

significant unless mentioned otherwise. The experiment data are

available at http://swtv.kaist.ac.kr/tools/conbrio.

5.1 Experiment Data
5.1.1 Data on Extended Units and Calling Contexts. For the 15

known crash bug benchmark programs, each extended unit con-

structed by CONBRIO contains 6.2 functions on average. CONBRIO

generated 3.0 calling contexts per target function where each calling

context has 6.6 functions on average. Call-graph distance techni-

ques with bound 3, 6, and 9 generate an extended unit that contains

5.8, 13.8, and 22.5 functions on average, respectively. Also, they

generate 5.9, 11.1, and 24.3 calling contexts per target function on

average, respectively.

5.1.2 Data on Unit Tests Generated and Alarm Filtering. For the
15 known crash bug benchmark programs, CONBRIO spent 1.8

hours to generate 7,979,781 unit tests for 15,915 target functions

and 2.3 hours for the symbolic alarm filtering using Z3 on 100

quad-core machines. Z3 reports that a symbolic calling context

formula with a violating symbolic unit execution consists of 1.5

million clauses on 0.1 million Boolean variables on average and

its maximum memory usage is around 7.6 GB. Call-graph distance

techniques with a distance bound 0, 3, 6, and 9 spent the almost

same 1.8 hours for unit test generation (i.e., most target functions

reach the timeout) and 0, 2.6, 3.9, and 6.3 hours for the symbolic

alarm filtering, respectively.

CONBRIO covered 69.8% to 88.0% of the branches of a target

program (82.5% on average) with the unit tests and the given system

test cases (i.e., the unit tests increase the branch coverage 25.2%p

more on average (= 82.5% - 57.3% where 57.3% is the average branch

Table 3: Numbers of the target bugs detected by the concolic
unit testing techniques

Target # of Bound of static call

program target graph distance tech. CONBRIO

bugs 0(SUT) 3 6 9

Bash-2.0 6 5 3 3 3 5

Flex-2.4.3 2 2 1 1 1 1

Grep-2.0 5 3 4 2 2 4

Gzip-1.0.7 2 2 1 1 1 2

Make-3.75 3 3 3 2 2 3

Sed-1.17 2 2 2 2 2 2

Vim-5.0 6 5 4 2 2 5

Perl-5.8.7 6 6 5 4 3 6

Bzip2-1.0.3 2 2 2 2 2 2

Gcc-3.2 15 14 12 9 8 14

Gobmk-3.3.14 5 4 3 3 3 5

Hmmer-2.0.42 3 3 3 3 3 3

Sjeng-11.2 2 2 2 2 2 2

Libquantum-0.2.4 3 3 2 2 2 3

H264ref-9.3 5 5 4 3 3 4

Sum 67 61 51 41 39 61

coverage achieved by the system test cases (see the last row of

Table 1)).

5.2 RQ1: Bug Detection Ability
Table 3 describes a number of the target bugs detected by the conco-

lic unit testing techniques and shows that CONBRIO has high bug

detection ability. CONBRIO and static call-graph distance technique

with bound zero (i.e., SUT) achieve the highest bug detection ability

(i.e., 91.0% (=61/67)) (but SUT achieves this at the cost of many false

alarms (see Sect. 5.3)). Note that the given system tests do not detect

any of the target bugs. In addition, we applied concolic testing at

system level using distributed concolic testing tool SCORE [23]

with the same amount of total time on 100 machines but found that

no target bug was detected.

As a distance bound of the call-graph distance techniques incre-

ases to 3, 6, and 9, the number of detected bugs severely decreases

to 51, 41, and 39, respectively because larger symbolic search space

should be explored within the timeout.

Among the undetected six target bugs (=67-61), three target bugs

in bash, grep, and gcc were missed because concolic execution

did not cover corresponding buggy statements within the timeout,

two bugs in flex and h264ref were missed because of the alarm

filtering strategy, and one in vim was missed because a unit exe-

cution covered the corresponding buggy statement and an assert

statement but did not violate the assert statement.

5.3 RQ2: Bug Detection Precision
Table 4 describes a number of false alarms and a ratio of false alarms

per true alarm of the techniques and shows that CONBRIO achieves

high bug detection precision. Among the techniques, CONBRIO

raises the lowest number of false alarms (i.e., 20.5 false alarms per

target program on average) and the lowest false alarms per true

alarms ratio (i.e., 4.5 false alarms per true alarm on average).
6

6
The static alarm reduction heuristics of CONBRIO decrease the number of false

alarms (23.5 to 20.5 on average) and the number of false alarms per true alarm (5.2 to

http://swtv.kaist.ac.kr/tools/conbrio

Precise Concolic Unit Testing of C Programs using
Extended Units and Symbolic Alarm Filtering ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 4: Numbers of false alarms and ratios of false alarms
per true alarm of the concolic unit testing techniques

Static call-graph distance techniques

Target 0 (SUT) 3 6 9 CONBRIO

programs # of F/T # of F/T # of F/T # of F/T # of F/T

false alarm false alarm false alarm false alarm false alarm

alarms ratio alarms ratio alarms ratio alarms ratio alarms ratio

Bash-2.0 484 96.8 137 45.7 69 23.0 54 18.0 18 3.6

Flex-2.4.3 142 71.0 25 25.0 12 12.0 12 12.0 6 6.0

Grep-2.0 120 40.0 34 8.5 18 9.0 18 9.0 13 3.3

Gzip-1.0.7 33 16.5 7 7.0 3 3.0 3 3.0 5 2.5

Make-3.75 664 221.3 106 35.3 59 29.5 46 23.0 9 3.0

Sed-1.17 31 15.5 9 4.5 4 2.0 4 2.0 5 2.5

Vim-5.0 906 181.2 207 51.8 123 61.5 72 36.0 25 5.0

Perl-5.8.7 392 65.3 187 37.4 64 16.0 44 14.7 57 9.5

Bzip2-1.0.3 34 17.0 12 6.0 7 3.5 7 3.5 10 5.0

Gcc-3.2 2026 144.7 503 41.9 195 21.7 147 18.4 79 5.6

Gobmk-3.3.14 791 197.8 133 44.3 62 20.7 45 15.0 39 7.8

Hmmer-2.0.42 162 54.0 48 16.0 22 7.3 22 7.3 12 4.0

Sjeng-11.2 108 54.0 13 6.5 7 3.5 7 3.5 8 4.0

Libquantum-0.2.4 55 18.3 9 4.5 4 2.0 4 2.0 5 1.7

H264ref-9.3 232 46.4 34 8.5 15 5.0 15 5.0 17 4.3

Average 412.0 82.7 97.6 22.9 44.3 14.6 33.3 11.5 20.5 4.5

The static call-graph distance technique with distance 0 (i.e. SUT)

suffers the largest number of false alarms (412.0 false alarms per tar-

get program on average). CONBRIO raises only 5.0% (=20.5/412.0),

21.0%, and 46.4% and 61.6% of the false alarms raised by the static

call-graph distance techniques with distance bounds 0, 3, 6, and 9

on average, respectively (see the last row of the table).

5.4 RQ3. Effectiveness of the Symbolic Alarm
Filtering

The comparison of the experiment results of CONBRIO and CON-

BRIO without the alarm filtering strategy using symbolic calling

context formulas (Sect. 3.5) demonstrates that the alarm filtering

strategy improves bug detection precision significantly. In other

words, CONBRIO without the alarm filtering strategy detects two

more target bugs (i.e., 63 bugs) in all target programs but with five

times higher false alarm ratio (i.e., 20.3 false alarms per true alarm

on average). Although the symbolic alarm filtering spent more time

(2.3 hours) than the unit test generation (1.8 hours), this strategy is

worthwhile to apply to improve bug detection precision. Detailed

experiment data is available at http://swtv.kaist.ac.kr/tools/conbrio.

5.5 RQ4. Effect of the Function Selection
Strategy on Bug Detection Ability and
Precision

The comparison on the experiment results of CONBRIO and the

call-graph distance techniques confirms that the idea of including

only closely relevant functions to a target function based on the

proposed dependency metric in extended units and calling contexts

is effective.

For example, CONBRIO and the call-graph distance technique

with bound 3 generate an extended unit of a similar size (i.e., 6.2

vs. 5.8 functions on average) and the amount of generated calling

contexts are also comparable (3.0 calling contexts each of which has

6.6 functions vs. 5.9 calling contexts each of which has 2.8 functions

on average) (see Sect. 5.1.1). The time taken to generate unit test

4.5 on average) without decreasing the bug detection ability (i.e. CONBRIO without

the static alarm reduction heuristics detects the same 61 bugs and raises 23.5 false

alarms per target program on average).

executions is almost same 1.8 hours and the time taken to apply

the alarm filtering strategy is also similar (2.3 vs 2.6 hours) .

However, CONBRIO achieves much higher bug detection ability

and precision than the call-graph distance technique with bound

3 (i.e., 91.0% vs 76.1% (=51/67) for bug detection ability and 4.5 vs.

22.9 false alarms per true alarm on average). With larger distance

bounds 6 and 9, a number of the detected bugs drops to 41 and 39

and the false alarm ratio decreases to 14.6 and 11.5 respectively,

which is still three to two times less precise than CONBRIO.

5.6 RQ5. Effectiveness of Detecting New Crash
Bugs

CONBRIO detects 14 new crash bugs in the seven target programs.

CONBRIO detects five new crash bugs in autotrace, two bugs

in each of abcm2ps, gif2png, and mp3gain, one bug in each of

bib2xml, eog, and jpegtran, and no bug in catdvi and xpdf. 7

Note that we confirmed the 14 new crash bugs by manually

creating system-level test cases that crash a target program due to

the bugs detected by CONBRIO. CONBRIO raises 71 false alarms

over the all target programs and its true to false alarm ratio for

each program ranges from 1:3.0 to 1:6.0 (1:4.3 on average except

catdvi and xpdf). We have reported these 14 new crash bugs to

the original developers and been waiting the responses from them

(detailed example and explanation of the newly detected bugs are

available at http://swtv.kaist.ac.kr/tools/conbrio).

6 RELATEDWORK
6.1 Concolic Unit Testing Techniques
There exist concolic unit testing techniques (e.g., [7, 32, 37, 40])

which require a user to build symbolic unit test drivers and stubs.

DART [16] generates symbolic unit test drivers (but not symbolic

stubs) like SUT (Sect. 2.2) and test inputs for C programs. CON-

BOL [25] generates symbolic unit test drivers/stubs and test inputs

targeting large-scale embedded C programs. DART and CONBOL

generate symbolic unit test drivers without utilizing contexts of a

target function f and may suffer many false alarms.
8

Chakrabarti and Godefroid [9] developed a unit testing technique

which statically partitions a static call graph using topological

information and tests each partition as a unit through symbolic

execution. This technique may suffer many false alarms because the

obtained partitions may not represent groups of relevant functions

due to insufficient information to generate partitions (i.e., using

only topological information of a static call graph without semantic

or dynamic information). Their tool is not publicly available and

the paper does not report bug detection ability nor precision [9].

Tomb. et al [41] reported that interprocedural program analysis

with deeper call depth bound raise fewer false alarms. However,

they did not report how to set a proper call depth bound.

Recently, UC-KLEE [34] directly starts symbolic execution from

a target function using lazy initialization [21]. Through the manual

7
CONBRIO generated 3.3 calling contexts per target function each of which has 4.3

functions on average. It spent 11.2 minutes to generate 725,584 unit tests for 4,040

target functions and 20.7 minutes to apply the symbolic alarm filtering on 100 machines

and covered 80.9% of the branches on average.

8
DART [16] bypasses the false alarm issue by targeting public API functions of libraries

which should work with all possible inputs.

http://swtv.kaist.ac.kr/tools/conbrio
http://swtv.kaist.ac.kr/tools/conbrio

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Yunho Kim, Yunja Choi, and Moonzoo Kim

analysis of the thousands of alarms, the authors of UC-KLEE de-

tected 67 new bugs in BIND, openssl, Linux kernel and its true to

false alarm ratio is 1:5.7 on average. We could not directly compare

CONBRIO with UC-KLEE because UC-KLEE is not publicly availa-

ble and BIND, openssl, and Linux kernel (million lines of code) are

too large to manually analyze alarms.

6.2 Random Method Sequences Generation
Techniques for Object-Oriented Programs

Randoop [29] invokes a random sequence of public methods inclu-

ding constructors of a target method’s class. MSeqGen [39] mines

code bases to extract relevant method sequences of a target class

under test and extends such method sequences with symbolic exe-

cution for high coverage. EvoSuite [13, 14] tests Java methods using

search-based strategies with symbolic execution. TestFul [5] com-

bines genetic algorithm and a local search to improve the speed

of Java unit test generation. Garg et al. [15] improves Randoop by

generating input test cases of the generated method sequence using

concolic testing for C++ programs. These techniquesmay also suffer

false alarms due to infeasible test inputs/method sequences genera-

ted. For example, Gross et al. [19] reported that Randoop raised 181

alarms without detecting any bug (i.e., all alarms were false ones)

on five Java programs although the authors of Randoop reported

that Randoop’s true to false alarm ratio is 1:0.67 on 8 Java libraries

and 6 .NET libraries on average [29]. Fraser et al. [14] reported

that the statistically estimated true to false alarm ratios range from

1:0.6 to 1:4.2 in their experiments on randomly selected 100 projects

hosted on sourceforge.net. Garg et al. [15] does not report detected

bugs or false alarm ratios but branch coverage obtained using the

proposed technique on eight programs (except gnuchess on which

the authors reported nine new bugs and that a true to false alarm

ratio was 1:1.0). In spite of the lack of explicit context information

(e.g., class/object information) in C programs, CONBRIO detects

bugs precisely in C programs (i.e., a true to false alarm ratio is 1:4.5

on average) while keeping high bug detection ability (i.e., 91.0% of

the target bug detected on average).

The aforementioned papers report only bug detection precision

(RQ2), not bug detection ability (RQ1), whichmakes fair comparison

between these techniques and CONBRIO difficult. This is because

these techniques may improve a true to false alarm ratio at the cost

of missing bugs. Because of such trade-off between precision and

recall of bug detection, we studied and reported both bug detection

ability and precision.

6.3 Automated Unit Testing Techniques based
on System Tests

Elbaum et al. [12] proposed a technique to generate unit tests from

system tests; the technique captures program states before and after

an invocation of a target function f to generate unit test inputs

and oracles for f . OCAT [20] captures object instances during sy-

stem executions and generates unit tests using Randoop with the

captured object and the mutated object instances as seed objects.

GenUTest [31] automatically generates unit tests and mock objects

using captured method sequences during system testing. A limi-

tation of these techniques is that the executions of the generated

unit tests just replay the same behaviors [12, 31] (or similar be-

haviors [20]) of a target unit in already performed system testing

(i.e., they are applicable to only regression testing of evolving soft-

ware, not to a single version of software). Also, the aforementioned

papers do not report bug detection ability nor precision.

7 CONCLUSION AND FUTUREWORK
We have presented an automated concolic unit testing technique

CONBRIO which generates extended units to closely mimic the real

contexts of a target function f and filters out false alarms using

symbolic calling context formulas of f using relevant functions to

f . Through the experiments, CONBRIO demonstrates both high

bug detection ability (91.0% of all target bugs detected) and high

bug detection precision (a true to false alarm ratio is 1:4.5). Further-

more, CONBRIO detects 14 new crash bugs in the latest versions of

the nine target C programs studied in other papers on crash bug

detection techniques.

As future work, to improve the precision of automated unit tes-

ting further, we plan to refine the function dependency metric by

analyzing more semantic characteristic of target program executi-

ons. Also, we will improve bug detection precision by synthesizing

a common-likely symbolic calling context based on multiple calling

contexts of a target function f .

ACKNOWLEDGEMENT
This work is supported by Next-Generation Information Computing

Development Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Science and ICT (MSIT)

(No. NRF-2017M3C4A7068175 and No. NRF-2017M3C4A7068177),

and Basic Science Research Program through NRF funded by MSIT

(NRF-2016R1A2B4008113), and Basic Science Research Program

through NRF funded by the Ministry of Education

(NRF-2017R1D1A1B03035851).

REFERENCES
[1] [n. d.]. CROWN: Concolic testing for Real-wOrld softWare aNalysis. ([n. d.]).

http://github.com/swtv-kaist/CROWN.

[2] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar,

and Michael D. Ernst. 2008. Finding Bugs in Dynamic Web Applications. In

Proceedings of the 2008 International Symposium on Software Testing and Analysis
(ISSTA ’08). ACM, New York, NY, USA, 261–272.

[3] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,

USA, 1083–1094.

[4] Radu Banabic, George Candea, and Rachid Guerraoui. 2014. Finding Trojan

Message Vulnerabilities in Distributed Systems. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 113–126.

[5] Luciano Baresi, Pier Luca Lanzi, andMatteoMiraz. 2010. TestFul: An Evolutionary

Test Approach for Java. In Proceedings of the 2010 Third International Conference
on Software Testing, Verification and Validation (ICST ’10). IEEE Computer Society,

Washington, DC, USA, 185–194.

[6] Ella Bounimova, Patrice Godefroid, and David Molnar. 2013. Billions and Bil-

lions of Constraints: Whitebox Fuzz Testing in Production. In Proceedings of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,

Piscataway, NJ, USA, 122–131.

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-coverage Tests for Complex Systems Programs.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.

[8] S. K. Cha, M. Woo, and D. Brumley. 2015. Program-Adaptive Mutational Fuzzing.

In 2015 IEEE Symposium on Security and Privacy. 725–741. https://doi.org/10.

1109/SP.2015.50

http://github.com/swtv-kaist/CROWN
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50

Precise Concolic Unit Testing of C Programs using
Extended Units and Symbolic Alarm Filtering ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

[9] Arindam Chakrabarti and Patrice Godefroid. 2006. Software Partitioning for Ef-

fective Automated Unit Testing. In Proceedings of the 6th International Conference
on Embedded Software (EMSOFT ’06). ACM, New York, NY, USA, 262–271.

[10] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An Automatic

Robustness Tester for Java. Software Practical Experience 34, 11 (Sept. 2004),

1025–1050.

[11] HyunsookDo, Sebastian Elbaum, andGregg Rothermel. 2005. Supporting Control-

led Experimentation with Testing Techniques: An Infrastructure and Its Potential

Impact. Empirical Software Engineering 10, 4 (Oct. 2005), 405–435.

[12] S. Elbaum, H. Chin, M. Dwyer, and M. Jorde. 2009. Carving and Replaying

Differential Unit Test Cases from SystemTest Cases. IEEE Transactions on Software
Engineering (TSE) 35, 1 (Jan 2009), 29–45.

[13] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gene-

ration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). ACM, New York, NY, USA, 416–419.

[14] Gordon Fraser and Andrea Arcuri. 2015. 1600 Faults in 100 Projects: Automatically

Finding FaultsWhile Achieving High Coverage with EvoSuite. Empirical Software
Engineering 20, 3 (June 2015), 611–639.

[15] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.

2013. Feedback-directed Unit Test Generation for C/C++ Using Concolic Execu-

tion. In Proceedings of the 2013 International Conference on Software Engineering
(ICSE ’13). IEEE Press, Piscataway, NJ, USA, 132–141.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,

NY, USA, 213–223.

[17] Patrice Godefroid, Michael Y Levin, and David A Molnar. 2008. Automated

Whitebox Fuzz Testing. In Proceedings of the 2008 Network and Distributed System
Symposium, Vol. 8. 151–166.

[18] Denis Gopan, Evan Driscoll, Ducson Nguyen, Dimitri Naydich, Alexey Loginov,

and David Melski. 2015. Data-delineation in Software Binaries and Its Application

to Buffer-overrun Discovery. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,

145–155. http://dl.acm.org/citation.cfm?id=2818754.2818775

[19] F. Gross, G. Fraser, and A. Zeller. 2012. Search-based System Testing: High

Coverage, No False Alarms. In International Symposium on Software Testing and
Analysis (ISSTA).

[20] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. 2010. OCAT: Object

Capture-based Automated Testing. In Proceedings of the 19th International Sym-
posium on Software Testing and Analysis (ISSTA ’10). ACM, New York, NY, USA,

159–170.

[21] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. 2003. Generalized

Symbolic Execution for Model Checking and Testing. In Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03). Springer-Verlag, Berlin, Heidelberg, 553–568.

[22] Moonzoo Kim, Yunho Kim, and Yoonkyu Jang. 2012. Industrial Application of

Concolic Testing on Embedded Software: Case Studies. In Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification and Validation
(ICST ’12). IEEE Computer Society, Washington, DC, USA, 390–399.

[23] M. Kim, Y. Kim, and G. Rothermel. 2012. A Scalable Distributed Concolic Testing

Approach: An Empirical Evaluation. In International Conference on Software
Testing, Verification and Validation (ICST).

[24] Yunho Kim, Moonzoo Kim, YoungJoo Kim, and Yoonkyu Jang. 2012. Industrial

Application of Concolic Testing Approach: A Case Study on Libexif by Using

CREST-BV and KLEE. In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 1143–1152.

[25] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim. 2013. Automated unit testing

of large industrial embedded software using concolic testing. In Proceedings of the
2013 IEEE/ACM 28th International Conference on Automated Software Engineering.
519–528.

[26] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.

[27] Wei Le and Shannon D. Pattison. 2014. Patch Verification via Multiversion

Interprocedural Control Flow Graphs. In Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 1047–

1058. https://doi.org/10.1145/2568225.2568304

[28] David Molnar, Xue Cong Li, and David A. Wagner. 2009. Dynamic Test Gene-

ration to Find Integer Bugs in x86 Binary Linux Programs. In Proceedings of the
18th Conference on USENIX Security Symposium (SSYM’09). USENIX Association,

Berkeley, CA, USA, 67–82.

[29] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.

Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE ’07). IEEE Computer Society,

Washington, DC, USA, 75–84.

[30] Yongbae Park, Shin Hong, Moonzoo Kim, Dongju Lee, and Junhee Cho. 2015.

Systematic Testing of Reactive Software with Non-deterministic Events: A Case

Study on LG Electric Oven. In Proceedings of the 37th International Conference
on Software Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,

29–38.

[31] B. Pasternak, S. Tyszberowicz, and A. Yehudai. 2009. GenUTest: A Unit TEst and

Mock Aspect Generation Tool. Software Tools for Technology Transfer 11, 4 (2009),
273–290.

[32] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,

Michael Lowry, Suzette Person, and Mark Pape. 2008. Combining Unit-level

Symbolic Execution and System-level Concrete Execution for Testing NASA

Software. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis (ISSTA ’08). ACM, New York, NY, USA, 15–26.

[33] Fernando Magno Quintao Pereira, Raphael Ernani Rodrigues, and Victor Hugo

Sperle Campos. 2013. A Fast and Low-overhead Technique to Secure Programs

Against Integer Overflows. In Proceedings of the 2013 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO) (CGO ’13). IEEE Computer

Society, Washington, DC, USA, 1–11.

[34] David A. Ramos and Dawson Engler. 2015. Under-constrained Symbolic Exe-

cution: Correctness Checking for Real Code. In Proceedings of the 24th USENIX
Conference on Security Symposium (SEC’15). USENIX Association, Berkeley, CA,

USA, 49–64.

[35] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David

Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection

for Fuzzing. In 23rd USENIX Security Symposium (USENIX Security 14). USE-
NIX Association, San Diego, CA, 861–875. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/rebert

[36] Raimondas Sasnauskas, Olaf Landsiedel, Muhammad Hamad Alizai, Carsten

Weise, Stefan Kowalewski, and Klaus Wehrle. 2010. KleeNet: Discovering In-

sidious Interaction Bugs in Wireless Sensor Networks Before Deployment. In

Proceedings of the 9th ACM/IEEE International Conference on Information Proces-
sing in Sensor Networks (IPSN ’10). ACM, New York, NY, USA, 186–196.

[37] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing

Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA, 263–272.

[38] spec2006 [n. d.]. The SPEC CPU 2006 Benchmark Suite. ([n. d.]). https://www.

spec.org/cpu2006/.

[39] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and

Wolfram Schulte. 2009. MSeqGen: object-oriented unit-test generation via mining

source code. In European Software Engineering Conference/Foundations of Software
Engineering (ESEC/FSE).

[40] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex: White Box Test Generation

for .NET. In Proceedings of the 2Nd International Conference on Tests and Proofs
(TAP’08). Springer-Verlag, Berlin, Heidelberg, 134–153.

[41] Aaron Tomb, Guillaume Brat, and Willem Visser. 2007. Variably Interprocedural

Program Analysis for Runtime Error Detection. In Proceedings of the 2007 Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’07). ACM, New York,

NY, USA, 97–107. https://doi.org/10.1145/1273463.1273478

[42] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. 2004. Test Input Gene-

ration with Java PathFinder. In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’04). ACM, New York, NY,

USA, 97–107.

[43] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder. 2015. High System-Code

Security with Low Overhead. In 2015 IEEE Symposium on Security and Privacy.
866–879. https://doi.org/10.1109/SP.2015.58

[44] Xiaofei Xie, Yang Liu, Wei Le, Xiaohong Li, and Hongxu Chen. 2015. S-looper:

Automatic Summarization for Multipath String Loops. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA 2015). ACM,

New York, NY, USA, 188–198. https://doi.org/10.1145/2771783.2771815

[45] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. 2015. Automatic Inference

of Search Patterns for Taint-Style Vulnerabilities. In 2015 IEEE Symposium on
Security and Privacy. 797–812. https://doi.org/10.1109/SP.2015.54

http://dl.acm.org/citation.cfm?id=2818754.2818775
https://doi.org/10.1145/2568225.2568304
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://doi.org/10.1145/1273463.1273478
https://doi.org/10.1109/SP.2015.58
https://doi.org/10.1145/2771783.2771815
https://doi.org/10.1109/SP.2015.54

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminary
	2.2 Concolic Unit Test Driver/Stub Generation
	2.3 Insertion of Assertions Targeting Crash Bugs
	2.4 Example of False Alarm

	3 CONBRIO Technique
	3.1 Obtaining Function Call Profile from System Test Executions
	3.2 Computing Dependency of a Target Function on Other Functions
	3.3 Constructing Extended Unit and Calling Contexts
	3.4 Concolic Testing to Generate Violating Symbolic Path Formulas
	3.5 Alarm Filtering by Checking Satisfiability of f's Violating Symbolic Path Formula fvi with f's Symbolic Calling Context Formula
	3.6 Implementation

	4 Experiment Setup
	4.1 Research Questions
	4.2 Target Bugs and Programs
	4.3 Concolic Unit Testing Techniques to Compare
	4.4 Measurement
	4.5 Testbed Setting
	4.6 Threats to Validity

	5 Experiment Result
	5.1 Experiment Data
	5.2 RQ1: Bug Detection Ability
	5.3 RQ2: Bug Detection Precision
	5.4 RQ3. Effectiveness of the Symbolic Alarm Filtering
	5.5 RQ4. Effect of the Function Selection Strategy on Bug Detection Ability and Precision
	5.6 RQ5. Effectiveness of Detecting New Crash Bugs

	6 Related Work
	6.1 Concolic Unit Testing Techniques
	6.2 Random Method Sequences Generation Techniques for Object-Oriented Programs
	6.3 Automated Unit Testing Techniques based on System Tests

	7 Conclusion and Future Work
	References

