
Formally Speci�ed Monitoring of Temporal Properties�Moonjoo Kim, Mahesh Viswanathan,Hanêne Ben-Abdallahy, Sampath Kannan, Insup Lee, and Oleg SokolskyzDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia, PA 19104AbstractWe describe the Monitoring and Checking (MaC)framework which provides assurance on the correct-ness of an execution of a real-time system at run-time. Monitoring is performed based on a formalspeci�cation of system requirements. MaC bridgesthe gap between formal speci�cation, which analyzesdesigns rather than implementations, and testing,which validates implementations but lacks formal-ity. An important aspect of the framework is aclear separation between implementation-dependentdescription of monitored objects and high-level re-quirements speci�cation. Another salient feature isautomatic instrumentation of executable code.The paper presents an overview of the framework,languages to express monitoring scripts and require-ments, and a prototype implementation of MaC tar-geted at systems implemented in Java.1 IntroductionReal-time systems often arise in the area of em-bedded and safety-critical applications. Depend-ability of such systems is the utmost concern to theirdevelopers. Much research in the past two decadesconcentrated on methods for analysis and validationof real-time systems. Important results have beenachieved, in particular, in the area of formal veri�-cation [4]. Formal methods of system analysis allowdevelopers to specify their systems using mathemat-ical formalisms and prove properties of these spec-i�cations. These formal proofs increase con�dencein correctness of the system's behavior.Still, complete formal veri�cation has not yet be-come a prevalent method of analysis. The reasonsfor this are twofold. First, full veri�cation of real-

life systems remains infeasible. The growth of soft-ware size and complexity seems to exceed advancesin veri�cation technology. Second, veri�cation re-sults apply not to system implementations, but toformal speci�cations of these systems. Constructionof such speci�cations is usually a manual and error-prone process. Separate methods are needed, then,to verify compliance of the system implementationto its formal speci�cation. Testing, on the otherhand, allows one to validate the system implemen-tation directly. However, testing results lack therigor of formal analysis and usually do not provideguarantees of absence of errors in the implementa-tion.Consequently, whichever analysis approach hasbeen taken to validate a real-time system, there ex-ists a possibility of incorrect behavior during theexecution of the system. Run-time monitoring andchecking strives to address this problem.Computer systems are often monitored for per-formance evaluation and enhancement [10], debug-ging and testing [14], and to control or check of sys-tem correctness [18]. Recently, the problem of de-signing monitors to check for the correctness of sys-tem implementation has received increased atten-tion from the research community [3, 15, 16, 13, 17].Such monitors can be used to detect violations oftiming [13] or logical [3] properties of a program,constraints on language constructs [15], and so on.In this paper, we describe a framework of moni-toring and checking a running system with the aimof ensuring that it is running correctly with respectto a formal requirements speci�cation. The useof formal methods is the salient aspect of our ap-proach. We concentrate on the following two issues:(1) how to map high-level abstract events that areused in requirement speci�cation to low-level activi-ties of a running system, and (2) how to instrumentthe code to extract and detect necessary low-level1

activities. We assume that both requirement spec-i�cations and the system implementation are avail-able to us.The major phases of the framework are as fol-lows: (1) system requirements are formalized; atthe same time, a monitoring script is constructed,which is used to instrument the code and establish amapping from low-level information into high-levelevents; (2) at run-time, events generated by theinstrumented system are monitored for compliancewith the requirements speci�cation. The run-timemonitoring and checking (MaC) architecture con-sists of three components: �lter, event recognizer,and run-time checker. The �lter extracts low-levelinformation (such as values of program variablesand time when variables change their values) fromthe instrumented code. The �lter sends this in-formation to the event recognizer, which convertsit into high-level events and conditions and passesthem to the run-time checker.Each event delivered to the checker has a times-tamp, which reects the actual time of the occur-rence of the event. This enables us to monitor real-time properties of the system. Timestamps are as-signed to events by the event recognizer based onthe clock readings provided by the �lter. The run-time checker checks the correctness of the systemexecution thus far according to a requirements spec-i�cation of the system, based on the information itreceives from the event recognizer, and on the pasthistory. The checker can combine monitoring of be-havioral correctness of the system control ow withprogram checking [2] for numerical computations.This integrated approach is a unique feature of theproposed framework.The current prototype implementation of theMaC architecture, monitors systems written inJava. Instrumentation is performed automatically,directly in JAVA bytecode. A language calledMEDL, based on a linear temporal logic, is used todescribe the formal requirements. Other formal lan-guages can be readily used to specify requirements.Related work. The \behavioral abstraction" ap-proach to monitoring was pioneered by Bates andWileden [1]. Although their approach lacked formalfoundation, it provided an impetus for future de-velopments. Several other approaches pursue goalsthat are similar to ours. The work of [5] addressesmonitoring of a distributed bus-based system, basedon a Petri Net speci�cation. Since only the busactivity is monitored, there is no need for instru-mentation of the system. The authors of [16] also

consider only input/output behavior of the system.In our opinion, instrumentation of key points inthe system allows us to detect violations faster andmore reliably, without sacri�cing too much perfor-mance. The test automation approach of [14] is alsotargeted towards monitoring of black-box systemswithout resorting to instrumentation. Additionally,we aim at using the MaC framework beyond testing,during real system executions. Sankar and Man-del have developed a methodology to continuouslymonitor an executing Ada program for speci�cationconsistency [15]. The user manually annotates anAda program with constructs from ANNA, a for-mal speci�cation language. Mok and Liu [13] pro-posed an approach for monitoring the violation oftiming constraints written in the speci�cation lan-guage based on Real-time Logic as early as possi-ble with low-overhead. The framework proposedin this paper does not limit itself to any particu-lar kind of monitored properties. In [10], an elabo-rate language for speci�cation of monitored eventsbased on relational algebra is proposed. Instrumen-tation of high-level source code is provided auto-matically. Collected data are stored in a database.Since the instrumentation code performs databasequeries, instrumentation can signi�cantly alter theperformance of a program.The paper is organized as follows. Section 2presents an overview of the framework. Section 3informally presents the language for monitoringscripts and requirements speci�cations. Section 4describes a prototype implementation of the MaCframework. More complete and formal treatment ofMaC is given in [9].2 Overview of the MaC FrameworkThe MaC framework aims at run-time assurancemonitoring of real-time systems. The structure ofthe framework is shown in Figure 1. The frameworkincludes two main phases: (1) before the system isrun, its implementation and requirement speci�ca-tion are used to generate run-time monitoring com-ponents; (2) during system execution, informationabout the running system is collected and matchedagainst the requirements.A major task during the �rst phase (indicatedby clear boxes in Figure 1) is to provide a map-ping between high-level events used in the require-ment speci�cation, and low-level state informationextracted during execution. They are related ex-plicitly by means of a monitoring script. The2

- Functional Specification
-Temporal Specification

Monitoring Script

 -Monitored Variable Declaration
- Monitored Method Declaration

Program(Java Bytecode)

Program(Java Source code)

- Event Definition
Requirement Specification

Legend

Dependency Run-time communicationInput/Output Process

Filter Generator(Java program

 using JTREK library)

eventsinformation
low level

Specification

Informal Requirement

Instrumented Program(Bytecode) Run-time CheckerEvent Recognizer

HumanHuman

Figure 1. Overview of the MaC frameworkmonitoring script describes how events at the re-quirements level are de�ned in terms of monitoredstates of an implementation. For example, in agate controller of a railroad crossing system, the re-quirements may be expressed in terms of the eventtrain in crossing. The implementation, on theother hand, stores the train's position with respectto the crossing in a variable train position. Themonitoring script in this case can de�ne the eventas condition train position < 800. The languageof monitoring scripts event recognizer (described inSection 3) has limited expressive power in order toensure fast recognition of events.The monitoring script is used to generate a �l-ter and an event recognizer automatically. The �l-ter instruments the implementation to extract thenecessary state information at run-time. The eventrecognizer receives state information from the �lterand determines the occurrences of events accordingto their de�nition in the script. Also during the�rst phase, the system requirements are formalized,and a run-time checker is produced from the formalrequirements. The requirement speci�cation usesevents de�ned in the monitoring script.During the run-time phase (shaded boxes in Fig-ure 1), the instrumented implementation is executedwhile being monitored and checked against the re-quirements speci�cation. The �lter sends relevantstate information to the event recognizer, which de-termines the occurrence of events. These events arethen relayed to the run-time checker to check ad-herence to the requirements.

Filter. A �lter is a set of program fragmentsthat are inserted into the implementation to instru-ment the system. The essential functionality of a �l-ter is to keep track of changes to monitored objectsand send pertinent state information to the eventrecognizer. Instrumentation is performed staticallydirectly on the executable code (bytecode, in thecase of Java). Instrumentation is automatic, whichis made possible by the low-level description in themonitoring script.Event recognizer. The event recognizer is thepart of the monitor that detects an event from val-ues of monitored variables received from the �l-ter according to the monitoring script. Recognizedevents are delivered to the run-time checker. Eachevent is supplied with a timestamp that can be usedin checking real-time properties. Events may addi-tionally have associated numerical values to facili-tate program checking by the monitor.While it is conceivable to merge the event recog-nizer with the �lter, we chose to separate the twomodules. The separation allows us to remove theoverhead of abstracting out events from the low-level information. This reduces interference of themonitor with the monitored system's execution. Onthe other hand, communication overhead incurredby sending changes in the monitored data from the�lter to the event recognizer increases, but it appliesonly to the o�-line processing of the monitored in-formation and is therefore more acceptable. An ad-ditional advantage of the chosen design is a clearseparation of monitoring activity from the system3

activity.Run-time checker. The run-time checkerchecks that the current execution satis�es the givenrequirements, based on the information provided bythe event recognizer. The checker can handle be-havioral as well as numerical requirements. Thelatter are analyzed using the technique of programchecking. The prototype implementation does nothave provisions for program checking yet. The cur-rent implementation uses language MEDL (see Sec-tion 3.4) to express requirements.It may seem that a violation of a requirementat run time is a catastrophic event, and that it istoo late to recover from it. This, however, is notnecessarily true. A monitored property may rep-resent a potentially dangerous condition that needto draw the attention of a human operator, whichis the function that the run-time checker provides.We illustrate this concept with an example in Sec-tion 3.5.3 The MaC LanguageIn this section, we give a brief overview of thelanguages used to describe what to observe in theprogram and the requirements the program mustsatisfy. The scripts written in these languages arethen used to automatically generate the event rec-ognizer and the run-time checker, respectively.The language for monitoring scripts is calledPEDL (Primitive Event De�nition Language, Sec-tion 3.3). PEDL scripts are used to de�ne whatinformation is sent from the �lter to the eventrecognizer, and how they are transformed intorequirements-level events by the event recognizer.Requirement speci�cations are written in MEDL(Meta Event De�nition Language, Section 3.4).The primary reason for having two separate lan-guages in the monitoring framework is to separateimplementation-speci�c details of monitoring fromrequirements speci�cation. This separation ensuresthat the framework is scalable to di�erent imple-mentation languages and speci�cation formalisms,while providing a clean interface to the designer ofmonitors. For example, if we wish to retarget oursystem from programs written in Java to C++, thenall we would need to modify is the syntax of PEDL,leaving MEDL unchanged.Objects described in both PEDL and MEDLscripts are events and conditions. Before we presentthe two languages, we illustrate the distinction be-tween events and conditions.

3.1 Events and ConditionsAs described in Section 2, whenever an \interest-ing" state change occurs in the running system, the�lter sends a noti�cation to the monitor. Based onthe updates from the �lter, the monitor matches thetrace of the current execution against the require-ments. In order to do this, we distinguish betweentwo kinds of state information underlying the noti-�cations.Events occur instantaneously during the systemexecution. For example, an event denoting returnfrom method RaiseGate occurs at the instant thecontrol returns from the method. We can concludethat this event does not occur at any moment ex-cept when the monitor receives an update from the�lter. By contrast, conditions may hold betweenupdates. Consider monitoring condition (position== 2). Once the monitor receives a message fromthe �lter that variable position has been assignedthe value 2, we can conclude that it keeps this valueuntil the next update comes.Since events occur instantaneously, we can assignto each event the time of its occurrence. Times-tamps of events allow us to reason about timingproperties of monitored systems. Conditions, on theother hand, have durations, intervals of time whenthe condition is satis�ed. There is a close connec-tion between events and conditions: the start andend of a condition's interval are events, and the in-terval between any two events can be treated as acondition. This relationship is made precise below.This distinction between events and conditionsis formalized in a simple two-sorted logic that de-�nes various operations on events and conditions.PEDL and MEDL are subsets of this logic withadded means of de�nition of primitive events andconditions.
3.2 A Logic for Events & ConditionsSyntax. We assume a countable set C =fc1; c2; : : :g of primitive conditions. For example, inthe monitoring script language PEDL, these prim-itive conditions will be Java boolean expressionsbuilt from the values of the monitored variables. Inthe requirements description language MEDL thesewill be conditions that were recognized by the eventrecognizer and sent to the checker.We also assume a countable set E = fe1; e2; : : :gof primitive events. When an event occurs, it canhave an attribute value, which is an element of a4

set Dei . For example, startM (RaiseGate) is aprimitive event in the monitoring script language,which occurs at the start of method RaiseGate andwhose attribute value is the tuple of values of allthe parameters with which this method is called.The primitive events in the requirements descriptionlanguage will be those that are reported by the eventrecognizer.The logic has two sorts: conditions and events.The syntax of conditions (C) and events (E) is asfollows:hCi ::= c j [hEi , hEi) j ! hCi j hCi && hCi jhCi jj hCi j hCi) hCihEi ::= e j start(hCi) j end(hCi) j hEi && hEij hEi jj hEi j hEi when hCiSemantics. The models for this logic are similarto those for linear temporal logic, in that they area sequence of worlds. The worlds correspond to in-stants in time at which we have information aboutthe truth values of primitive conditions and events.Each world is, therefore, labeled by the time instantit corresponds to and the set of primitive conditionsand events that are true at that instant. Intuitively,these worlds correspond to the times when the �l-ter (or event recognizer) sends updates, and so thesemodels are a discrete abstraction of the executionof the running system.The intuition in describing the semantics ofevents and conditions based on such models, is thatconditions retain their truth values in the durationbetween two worlds, while events are present only atthe instants corresponding to certain worlds. Thelabels on the worlds give the truth values of primi-tive conditions and events. The semantics for nega-tion (!c), conjunction (c1&&c2), disjunction (c1jjc2)and implication (c1) c2) of conditions is de�nednaturally; so !c is true when c is false, c1&&c2 istrue only when both c1 and c2 are true, c1jjc2 istrue when either c1 or c2 is true, and c1) c2 istrue if c2 is true whenever c1 is true. Conjunction(e1&&e2) and disjunction (e1jje2) on events is de-�ned similarly. Now, since conditions are true fromsome time until just before the instant when theybecome false, two events can naturally be associatedwith a condition, namely the instant when the con-dition becomes true (start(c)) and the instant whenthe condition becomes false (end(c)). Any pair ofevents de�ne an interval of time, and forms a con-dition [e1; e2) that is true from event e1 until e2.Finally, the event e when c is true if e occurs andcondition c is true at that time instant.

The formal semantics for this logic is given in [9].Notice that some natural equivalences hold inthis logic. For example, for any condition c, c �[start(c); end(c)). This allows one to identify condi-tions with pairs of events, and is the reason why thelanguages in the MaC framework, are called \eventde�nition languages". Also, for conditions c1 andc2, and event e, e when c1 when c2 � e when (c1&& c2).
3.3 Primitive Event Definition Language

(PEDL)PEDL is the language for writing monitoringscripts. Design of PEDL is based on the fol-lowing two principles. First, we encapsulate allimplementation-speci�c details of the monitoringprocess in PEDL scripts. Second, we want the pro-cess of event recognition to be as simple as possible.Therefore, we limit the constructs of PEDL to allowone to reason only about the current state in the ex-ecution trace. The name of the language reect thefact that the main purpose of PEDL scripts is to de-�ne primitive events of requirement speci�cations.Monitored entities. PEDL scripts can refer toany object of the target system. This means thatdeclarations of monitored entities are by necessityspeci�c to the implementation language of the sys-tem. In the current prototype, values of �elds of anobject, as well as of local variables of a method, andmethod calls can be monitored. Examples of moni-tored entities' declarations are given in Section 4.De�ning conditions. Primitive conditionsin PEDL, are constructed from boolean-valuedexpressions over the monitored variables. Anexample of such condition is Cond TooFast =Train.calculatePosition().trainSpeed > 100.In addition to these, we have primitive conditionInM(f). This condition is true as long as theexecution is currently within method f. Complexconditions are built from primitive conditions usingboolean connectives.De�ning events. The primitive events inPEDL correspond to updates of monitored variablesand calls and returns of monitored methods. Eachevent has an associated timestamp and may have atuple of values.The event update(x) is triggered when variablex is assigned a value. The value associated with thisevent is the new value of x. Events StartM(f) andEndM(f) are triggered when control enters methodf (resp., returns from f. The value associated with5

StartM is a tuple containing the values of all argu-ments. The value of an event EndM is a tuple thathas the return value of the method, along with thevalues of all the formal parameters at the time con-trol returns from the method. Besides these three,we have one other primitive event which is IoM(f).This is also triggered when control returns from amethod f, but has as its value a tuple that con-tains the return value of the method, and the valuesof the arguments at the time of method invocation.This event allows one to look at the input-outputbehavior of a method, and is needed if one wants toprogram check some numerical computation. Noticethat event IoM(f) is the only event to violate oursecond design principle, namely that the operationof the event recognizer is to be based only on thecurrent state.All the operations on events de�ned in the logiccan be used to construct more complex events fromthese primitive events. In PEDL, we also have twoattributes time and value, de�ned for events. Asmentioned in section 3.2, events have associatedwith them attribute values, and the time of theiroccurrence, and these can be accessed using the at-tributes time and value. time(e) gives the timeof the last occurrence of event e, while value(e)gives the value associated with e, provided e oc-curs. time(e) refers to the time on the clock ofthe monitored system (which may be di�erent fromthe clock of the monitor) when this event occurs.If the monitored system has several clocks, we as-sume, for this paper, that the clocks are perfectlysynchronized.
3.4 Meta Event Definition Language (MEDL)The safety requirements that need to be moni-tored are written in a language called MEDL. LikePEDL, MEDL is also based on the logic for eventsand conditions, described in section 3.2. Primitiveevents and conditions in MEDL scripts are importedfrom PEDL monitoring scripts; hence the languagehas the adjective \meta".Auxiliary variables. The logic described is sec-tion 3.2 has a limited expressive power. For exam-ple, one cannot count the number of occurrencesof an event, or talk about the ith occurrence of anevent. For this purpose, MEDL allows the user tode�ne auxiliary variables, whose values may thenbe used to de�ne events and conditions. Auxil-iary variables must be of one of the basic types inJava. Updates of auxiliary variables are triggered byevents. For example, RaisingGate -> t := time

(RaisingGate)) records the time of occurrence ofevent RaisingGate in the auxiliary variable t. Ex-pression e1 -> count e1 := count e1 + 1 countsoccurrences of event e1. A special auxiliary vari-able currentTime can be used to refer to the cur-rent time of the system. Precisely, it is set to be thetimestamp of the last message received from the �l-ter.De�ning events and conditions. The primi-tive events and conditions in MEDL are those thatare de�ned in PEDL. Besides these, primitive con-ditions can also be de�ned by boolean expressionsusing the auxiliary variables. More complex eventsand conditions are then built up using the variousconnectives described in section 3.2. These eventsand conditions are then used to de�ne the safetyproperties and alarms.Safety Properties and Alarms. The cor-rectness of the system is described in terms safetyproperties and alarms. Safety properties are con-ditions that must always be true during the execu-tion. Alarms, on the other hand, are events thatmust never be raised. Note that all safety proper-ties [12] can be described in this way. Also observethat alarms and safety properties are complemen-tary ways of expressing the same thing. The reasonwe have both of them is because some propertiesare easier to think of in terms of conditions, whileothers are easier to think of in terms of alarms.
3.5 ExampleWe illustrate the use of PEDL and MEDL usinga simple but representative example. The exampleis inspired by the railroad crossing problem, whichis routinely used as an illustration of real-time for-malisms [7]. The system is composed of a gate thatcan open and close, taking some time to do it, trainsthat pass through the crossing, and a controller thatis responsible for closing the gate when a train ap-proaches the crossing and opening it after it passes.The common speci�cation approach is to assumean upper bound on the time necessary for the gateto open or close. In reality, however, mechanicalmalfunctions may result in unexpectedly slow op-eration of the gate. A timely detection of such aviolation lets the train engineer stop the train be-fore it reaches the crossing. In this example, wemonitor the controller of the gate, using the require-ment that the gate is down within 30 seconds aftersignal CloseGate is sent, unless signal OpenGate issent before the time elapses. Precisely, we checkthat if there is a signal CloseGate, not followed by6

class GateController {public static final int GATE_UP = 0;public static final int GATE_DOWN = 1;public static final int IN_TRANSIT = 2;int gatePosition;public void open() { ... }public void close() { ... }...};
Figure 2. Implementation of the gate con-
trollereither signal OpenGate or completion of gate clos-ing, is present in the execution trace, then the timeelapsed since that signal is less than 30.Figure 2 shows a fragment of the gate controllerimplemented as a Java class. The state of thegate is represented as variable gatePosition, whichcan assume constant values GATE UP, GATE DOWN,or IN TRANSIT. The controller controls the gate bymeans of methods open() and close(). For sim-plicity, we assume that there is only one instance ofclass GateController in the system.We need to observe calls to methods open() andclose(), and the state of the gate. The followingPEDL script introduces high-level events OpenGate,CloseGate and Gate Down.export event OpenGate, CloseGate;export condition Gate_Down;Monitored Entities:void GateController.open();void GateController.close();int GateController.gatePosition;CondDef:Cond Gate_Down = (GateController.gatePosition== GateController.GATE_DOWN);EventDef:Event OpenGate =StartM(GateController.open());Event CloseGate =StartM(GateController.close());The correctness requirement for the gate is givenin the MEDL script below. The time of the last oc-currence of event CloseGate is recorded by the aux-iliary variable lastClose. The requirement uses theevents and conditions imported from the monitoringscript and states that if there was a CloseGate eventat the time when the gate was not down, which wasnot followed by either event OpenGate or conditionGate Down becoming true, then the time allotted forgate closing has not elapsed yet.

import event OpenGate, CloseGate;import condition Gate_Down;AuxVarDecl:float lastClose;float currentTime;SafePropDef:Cond GateClosing =[CloseGate when !Gate_Down,OpenGate || start(Gate_Down)) => lastClose + 30 > currentTime;AuxVarDefLCloseGate -> lastClose := time(CloseGate);4 The Current MaC Prototype Sys-temThis section introduces a prototype implementa-tion of the MAC framework. The prototype closelyfollows the general architecture (see Figure 1 in Sec-tion 2). We discuss implementation aspects of the�lter, the event recognizer and the run-time checker.
4.1 Filter and Code InstrumentationJava bytecode has been selected as the basis forinstrumentation for the following reasons: (1) aclass �le, the unit of Java bytecode, contains richsymbolic information about the system [11] thatcan be used for automatic instrumentation; (2) Javabytecode is strongly typed and excludes pointerarithmetic; (3) growing popularity of Java, com-bined with platform independence of Java bytecodewill make the framework widely applicable. In ad-dition, there are many high languages like Ada andLisp which compile its source code into Java byte-code [19].Several aspects of the presented frameworkpresent implementation challenges. We now brieyoutline these challenges and describe the limitationsof the prototype.Naming of monitored objects. In orderto specify monitored entities unambiguously, weuse hierarchical names constructed from identi�ersused in the source code. The following meaning isascribed to a name x.y: (1) if x is a class name, yis a �eld or a method of the class. If y is not static,it will apply to every instance of x; (2) if x is avariable of type T, y is a �eld or a method of classT; (3) if x is a method of class T, y is a local variableof x. Unless y is of a primitive (non-reference) Javatype, the name can be extended further accordingto the same rules. Examples of declarations includeRRC.train x, Train.position().trainSpeed,7

and Gate.gateDown(). The �rst of these declara-tions denotes �eld train x of class RRC, the secondidenti�es local variable trainSpeed of methodposition in class Train. The last one identi�es amethod in class Gate.Detection of object updates. We need toguarantee that all updates to a monitored objectare reported. Two problems need to be addressed:aliasing, where an object can be monitored throughseveral references, and reference changing, where areference is modi�ed to refer to an object that wasnot intended to be monitored.In general, we do not know statically which ref-erences refer to the object of interest. We have,therefore, to check accesses through all referencevariables of the same type. The user has the optionto enable this feature explicitly. However, most ofthe monitored objects in the examples that we haveconsidered are always accessed through the samereference. Therefore, we chose to disable the fea-ture by default.A �lter consists of a set of code fragments in-serted into class �les of the target system and Javaclass, which provides for storing update informationand communication between �lter and event recog-nizer. The following kinds of program entities canbe instrumented:1) Execution points. The current prototype de-tects when the execution point reaches a method in-vocation, return from the method, start and end ofprogram and exception of method. Invocation andreturn from the method can be detected by insert-ing the instrumentation before the �rst instructionand after the last instruction of the code for themethod. Exceptions are monitored by instrument-ing the exception table of the method.2) Local and �eld variables. Every local vari-able is always accessed through an index �xed in abytecode instruction. There are only two kinds ofinstructions that may modify a local variable. In-strumentation is inserted immediately following theupdate. Similarly, there is only one instruction thataccesses a �eld variable in an object, and the accessis through a �xed parameter in the bytecode.The �lter is generated by �lter generator whichis written in Java using JTrek library [6] for in-serting bytecode fragments into the program. The�lter generator gets a program which is to be in-strumented and a list of monitored variables andmonitored methods as input. It generates the in-strumented program as output by inserting codes atproper places of the program. The �lter sends up-

dated values, together with a timestamp and iden-ti�cation of the thread that occasioned the update,whenever it detects an updating of a monitored en-tity. To minimize the overhead to the system, send-ing values to event recognizer through the networkis performed by a separate thread.
4.2 Event recognizerThe event recognizer translates low-level statechanges communicated by the �lter, into high-levelevents and conditions. The event recognizer main-tains a table that stores the current value for eachmonitored variable. Each message from the �ltercauses this table to be updated.Whenever an update from the �lter arrives,the event recognizer re-evaluates the truth of allevents and conditions. Conditions de�ned in termsboolean expressions over the monitored variablescan be directly evaluated from the table of currentvalues of all monitored variables. However, in orderto identify events start(c) and end(c), it mustnot only know the current truth value of conditionc, but also its truth value at the time of the previ-ous update. The same is true for the event end(c).Hence the checker also keeps track of the values of allthe conditions at the time of the previous update, inaddition to the values of the monitored objects. Fi-nally, once the recognizer has determined the truthof all the conditions and events de�ned in the mon-itoring script, it sends to the checker its \exported"events and changes in \exported" conditions.
4.3 Run-time CheckerThe checker maintains a timed trace of the cur-rent execution based on the messages received fromthe event recognizer. Each event is supplied with atimestamp, reecting the time when the event oc-curred. Each value of the timestamp introduces anew state in the time trace. At each state, eventoccurrences and the values of conditions are evalu-ated. As several received events may have the sametimestamp, evaluation of a state is deferred untilall events with the same timestamp arrive. Thechecker is guaranteed to receive messages with non-decreasing timestamps. In the prototype, TCP/IPprotocol is used for communication between theevent recognizer and the checker to ensure propersequencing. The truth value of every event and con-dition can be evaluated in constant time in terms ofthe length of the trace and linear in the size of therequirement speci�cation.8

Once all the truth of all the events and conditionshas been determined, the auxiliary variables are up-dated. If the event guarding the update occurs atthe current state, the auxiliary variable is updatedas per the assignment rule. Whenever an alarm be-comes true or a safety property becomes false, thechecker declares the program to be incorrect.5 ConclusionsThe paper makes a step towards bridging the gapbetween veri�cation of system design speci�cationsand validation of system implementations in a high-level programming language. The former is desir-able but yet impractical for large systems, while thelatter is e�cient but informal and error-prone.To this end, we have presented a design and aprototype implementation of an on-line monitoringof correctness properties of real-time systems. Mon-itoring is based on formally speci�ed system require-ments. The formality of approach guarantees thatat least the current execution complies with the re-quirements. A variety of speci�cation formalismscan be easily accommodated in the framework. Forexample, all properties expressed in real-time logicRTL [8] can be e�ciently checked.The immediate goals of the future work on thistopic include extensions of the prototype into a full-strength monitoring system and extension of theframework to other languages beyond Java. An-other avenue of research is aimed at a transitionfrom passive observation to active guidance of themonitored system. Our current system is geared to-wards the detection of faults. It would be desirablein future to build monitors that can steer a systemto a correct state.References[1] P. Bates and J. Wileden. High-level debugging:The behavioral abstraction approach. J. Syst. Soft-ware, 3(255-264), 1983.[2] M. Blum and S. Kannan. Designing programs thatcheck their work. In JACM V.42 No. 1, pages 269{291, January 1995.[3] S. E. Chodrow and M. G. Gouda. The Sentry Sys-tem. In SRDS11, October 1992.[4] E. M. Clarke and J. M. Wing. Formal methods:State of the art and future directions. ACM Com-puting Surveys, 28(4):626{643, Dec. 1996.[5] M. Diaz, G. Juanole, and J.-P. Courtiat. Observer- a concept for formal on-line validation of dis-

tributed systems. IEEE Transactions on SoftwareEngineering, 20(12):900{913, Dec. 1994.[6] Digital Equipement Corp. DIGITAL JTrek .http://www.digital.com/java/download/jtrek/index.html.[7] C. Heitmeyer and D. Mandrioli, Eds. Formal Meth-ods for Real-Time Systems. Number 5 in Trends inSoftware. John Wiley & Sons, 1996.[8] F. Jahanian and A. Mok. Safety analysis of tim-ing properties in real-time systems. IEEE Transac-tions on Software Engineering, SE-12(9):890{904,September 1986.[9] M. Kim, M. Viswanathan, H. Ben-Abdallah,S. Kannan, I. Lee, and O. Sokolsky. A frameworkfor run-time correctness assurance of real-time sys-tems. Technical Report MS-CIS-98-37, Universityof Pennsylvania, 1998.[10] Y. Liao and D. Cohen. A speci�cational approachto high level program monitoring and measur-ing. IEEE Transactions on Software Engineering,18(11):969{979, Nov. 1992.[11] T. Lindholm and F. Yellin. The Java Virtual Ma-chine Speci�cation. Addison Wesley, 1997.[12] Z. Manna and A. Pnueli. The Temporal Logicof Reactive and Concurrent Systems. Springer-Verlag, 1992.[13] A. K. Mok and G. Liu. E�cient run-time monitor-ing of timing constraints. In IEEE Real-Time Tech-nology and Applications Symposium, June 1997.[14] J. Peleska. Test automation for safety-critical sys-tems: Industrial application and future develop-ments. In FME'96: Third International Sympo-sium of Formal Methods Europe, volume 1051 ofLNCS, pages 39{59, 1996.[15] S. Sankar and M. Mandal. Concurrent runtimemonitoring of formally speci�ed programs. InIEEE Computer, pages 32 {41, March 1993.[16] T. Savor and R. E. Seviora. An approach to au-tomatic detection of software failures in real-timesystems. In IEEE Real-Time Technology and Ap-plications Symposium, pages 136 {146, June 1997.[17] F. B. Schneider. Enforceable security policies.Technical Report TR98-1664, Cornell University,1998.[18] B. A. Schroeder. On-line monitoring: A tutorial.In IEEE Computer, pages 72 { 78, June 1995.[19] R. Tolksdorf. Programming lan-guages for the Java Virtual Machine.Available from http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html.
9

