
SCORE: a Scalable Concolic Testing Tool for Reliable
Embedded Software

Yunho Kim and Moonzoo Kim
Computer Science Department

Korea Advanced Institute of Science and Technology
Daejeon, South Korea

kimyunho@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

ABSTRACT
Current industrial testing practices often generate test cases in a
manual manner, which degrades both the effectiveness and effi-
ciency of testing. To alleviate this problem, concolic testing gen-
erates test cases that can achieve high coverage in an automated
fashion. One main task of concolic testing is to extract symbolic in-
formation from a concrete execution of a target program at runtime.
Thus, a design decision on how to extract symbolic information af-
fects efficiency, effectiveness, and applicability of concolic testing.
We have developed a Scalable COncolic testing tool for REliable
embedded software (SCORE) that targets embedded C programs.
SCORE instruments a target C program to extract symbolic infor-
mation and applies concolic testing to a target program in a scal-
able manner by utilizing a large number of distributed computing
nodes. In this paper, we describe our design decisions that are im-
plemented in SCORE and demonstrate the performance of SCORE
through the experiments on the SIR benchmarks.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Dynamic testing is a de-facto standard method for improving the

quality of software in industry. Conventional testing methods, how-
ever, often fail to detect faults in programs. One reason for this is
that a program can have an enormous number of different execution
paths due to conditional and loop statements. Thus, it is practically
infeasible for a test engineer to manually create test cases sufficient
to detect subtle bugs in specific execution paths. In addition, it is
a technically challenging task to generate effective test cases in an
automated manner. An alternative approach, concolic (CONCrete
+ symbOLIC) [17] testing (also known as dynamic symbolic exe-
cution [19] or white-box fuzzing [8]) combines concrete dynamic
analysis and static symbolic analysis to automatically generate test

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

cases to explore execution paths of a program, to achieve full path
coverage (or at least, coverage of paths up to some bound).

A concolic testing tool extracts symbolic information from a
concrete execution of a target program at runtime. In other words,
to build a corresponding symbolic path formula, a concolic testing
tool monitors every update of symbolic variables and branching de-
cisions in an execution of a target program. Thus, a design decision
on how to extract symbolic information affects efficiency, effective-
ness, and applicability of concolic testing.

We have developed a Scalable COncolic testing tool for REli-
abile embedded software (SCORE) that targets sequential embed-
ded C programs. SCORE instruments a target C source code by
inserting probes to extract symbolic information at runtime. This
concolic testing approach has several advantages when applied to
embedded C programs compared to a modified virtual machine ap-
proach (Section 2). In addition, to reduce a time cost to explore
a large number of execution paths, SCORE utilizes a scalable dis-
tributed concolic algorithm that involves a large number of comput-
ing nodes dynamically with high efficiency (Section 3). Currently,
SCORE is implemented on the Amazon EC2 cloud computing plat-
form [6]. In this paper, we describe our design decisions that are
implemented in the SCORE tool for applying concolic testing in a
practical and scalable manner to embedded C programs. In addi-
tion, we demonstrate the performance of SCORE through the ex-
periments on the SIR benchmarks

2. INSTRUMENTATION-BASED CONCOLIC
TESTING FOR EMBEDDED C PRO-
GRAMS

A core idea behind concolic testing is to obtain symbolic path
formulas from concrete executions and solve them to generate test
cases by using constraint solvers. Various concolic testing tools
have been implemented to realize this core idea (see [15] for a sur-
vey). Existing tools can be classified into two groups in terms of the
approach they use to extract symbolic path formulas from concrete
executions.

The first approach for extracting symbolic path formulas is to
use modified virtual machines (VM). The concolic testing tools that
use this approach are implemented as modified VMs on which tar-
get programs execute. An advantage of this approach is that the
tools can exploit all execution information at run-time, since a VM
possesses all necessary information. PEX [19] targets C# programs
that are compiled into Microsoft .Net bytecode, KLEE [4] targets
LLVM [14] bytecode, and jFuzz [10] targets Java bytecode on top
of Java PathFinder [20].

The second approach for extracting symbolic path formulas
is to instrument the target source code to insert probes that ex-

1

tract symbolic path formulas from concrete executions at run-
time. Tools that use this approach include CUTE [17], DART [7],
and CREST [3], which operate on C programs, and jCUTE [16],
which operates on Java programs. This approach is more suitable
for embedded C programs compared to the first approach, since
embedded software often has different development/runtime en-
vironments from those of non-embedded software due to limited
computational power and physical constraints. Advantages of the
instrumentation-based concolic testing for embedded C programs
are as follows:

1. Embedded software is often developed for a specific hard-
ware/OS platform (or tested on a customized simulation en-
vironment such as Scratchbox [1]) (see [12]1). Therefore,
the first approach using a VM requires to port a modi-
fied VM that supports concolic testing to a specific hard-
ware/simulator platform, which is expensive.

2. An embedded program often contains native binary code
to access hardware devices directly, which cannot be inter-
preted using the VM approach. Most concolic testing tools
of the first approach simply stop/ignore a current symbolic
execution when they encounter such native binary code and
try another execution path, which can miss bugs related with
low-level I/O operations that are often the focus of embed-
ded programs. Although the second approach cannot sym-
bolically interpret native binary code either, it still executes
such binary code and continues to analyze an execution path
using concrete values.

3. A target program written in C can be compiled into a binary
executable program that can run on hardware directly. A bi-
nary executable program that is compiled from a C source
code can run order of magnitude faster than the correspond-
ing bytecode runs on a VM. Thus, this second approach can
test an embedded C program much faster than the first ap-
proach does, which is an important advantage, since concolic
testing takes a large amount of time.

Therefore, SCORE utilizes the second approach for embedded
C programs. As shown in Figure 1, a target C program is instru-
mented by the SCORE instrumentor (implemented in CIL with an
extension module). To alleviate difficulty of extracting symbolic
information from a concrete execution, SCORE transforms a tar-
get C program into an equivalent one that has no side-effect and
a single atomic predicate at each conditional statement (i.e., every
conditional statement with a compound predicate is transformed
into combination of conditional statements with atomic predicates).
Then, SCORE inserts probes into a target C program that invoke
symbolic execution library to extract symbolic information to build
a corresponding symbolic path formula at run-time. Lastly, the in-
strumented target program is compiled into an executable binary
through gcc.

C source

code

Symbolic

exec. library

Instr.

C code
Probes GCC

Instr. bin.

program
CIL Ext.

Figure 1: Instrumentation Process of SCORE

1We could not apply SCORE to the industrial project with Samsung
Electronics, since we were not allowed to utilize Amazon EC2 due
to the security policy of Samsung Electronics.

3. DISTRIBUTED CONCOLIC TESTING
FRAMEWORK

3.1 Overview
SCORE consists of one server, multiple clients, and a user in-

terface program through which a user can control SCORE. For ef-
ficient communication between computing nodes, SCORE adopts
a hybrid architecture of a client-server architecture and a peer-to-
peer architecture by utilizing a central server that handles control
messages to keep track of the status of the clients and to direct
load-balancing between the clients (i.e., test cases are transferred
between clients in a well-balanced manner) (see Figure 2).

Server

SMT

solver

Instr. bin.

Program

Client 1

TC queue

SMT

solver

Instr. bin.

Program

Client 2

SMT

solver

Instr. bin.

Program

Client nLegend

Test case

transfer

Control msg

transfer

Figure 2: SCORE architecture

Each client has its own copy of an instrumented target binary
program (possibly with a platform simulator) and applies concolic
testing to the target program to generate test cases, which are stored
in a test case queue. After a client pops a test case from the queue,
it generates further test cases by solving symbolic path formulas
that are obtained by negating branch conditions of the execution
path on the test case. If a client has an empty test case queue, it
requests new test cases from the server and the server commands
another client that has test cases to send test cases to the requesting
client. 2 Although SCORE utilizes a large number of computing
nodes, a user can manage these nodes conveniently through the au-
tomated initialization (Section 3.2) and dynamic management of
nodes (Section 3.3) features.

There are several concolic testing tools utilizing distributed plat-
forms such as Staats et al. [18], King [13] and Cloud9 [2], all of
which utilize a VM-based approach. However, these tools do not
consider characteristics of embedded software and they are not ad-
equate for embedded software due to the reasons explained in Sec-
tion 2. In addition, except Cloud9, these tools do not achieve linear
speed-up in terms of a number of computing nodes.

3.2 Initialization of Distributed Clients
Before starting distributed concolic testing, SCORE automat-

ically instantiates virtual nodes and installs copies of an instru-
mented target binary program on the virtual nodes. This auto-
mated initialization process is desirable, since SCORE utilizes vir-
tual nodes of ‘spot-instance’ type of Amazon EC2 whose storages
are destroyed when virtual nodes are turned off. SCORE utilizes
virtual nodes of spot-instance type, because a price for virtual node
of spot-instance is cheaper (US$ 0.06/hour) than a price for a vir-
tual node of persistent storage (US$ 0.17/hour). In addition, only

2The distributed concolic algorithm of SCORE, detailed commu-
nication protocol, and complete experimental results can be found
in [11].

2

20 virtual nodes of persistent storage type can be instantiated in one
user account while 100 virtual nodes of spot-instance type can be
instantiated in one user account.

For this automated initialization, we have built an Amazon AMI
(Amazon Machine Instance) for SCORE, which is used to instan-
tiate virtual node. Amazon AMI for SCORE is based on a 32 bit
minimal version of Fedora Core 8 and contains basic development
libraries, a ftp client (to download an instrumented target program),
a SMT solver (Z3), and a monitoring tool (to measure CPU usage
and network traffic).

Distributed concolic testing is initiated by invoking a SCORE
server with an instrumented binary target program. The server in-
stantiates clients and establishes network connections to the clients.
Then, the clients download the target program from the server and
start distributed concolic testing. Although the clients can share
the target program on Network File System (NFS) without down-
loading the target program from the server, it will cause significant
overhead due to a large number of concurrent network accesses to
the target program on NFS.

3.3 Dynamic Management of Nodes
SCORE can add and remove clients dynamically at run-time.

This dynamic resource management feature is useful, because
SCORE utilizes a large number of computing nodes. This dynamic
management feature supports flexible management of multiple test-
ing tasks and thus assigns computing resources to multiple testing
tasks in a globally efficient manner. In addition, flexible manage-
ment of multiple testing tasks is beneficial in an economic sense.
For example, the price for using computing nodes at night may be
cheaper than the price during the day (this is true for Amazon EC2’s
spot-instance computing nodes, which are purchased by bidding).

For example, suppose that a user applies concolic testing to a tar-
get program using SCORE. The user commands a server to assign
n clients to the testing task initially. In addition, during the testing
process, SCORE allows a user to both increase or decrease n at run-
time. To add a new client, the server instantiates a new computing
node through the underlying Amazon EC2 API and remotely starts
a client on the node. The client begins to participate in the testing
task by sending a request packet to the server. To remove a client,
a user can specify a number of clients to remove, or conditions by
which to select a client such as the number of test cases in the client,
execution time spent so far, and so on. For example, suppose a user
requests removal of all clients that have fewer than five test cases.
The server searches the status table of all clients and selects those
that satisfy the condition. For each such client, the server sends a
termination packet to the client. Then, the client transfers test cases
generated so far, covered path/branch information, and statistics on
testing activities to another designated client.

3.4 Non-redundant Test Case Generation
SCORE uses a depth-first search (DFS) strategy to explore a

symbolic execution tree. In theory, the DFS strategy explores one
execution path exactly once; it would generate redundant test cases
(i.e., test cases running a same execution path) otherwise. However,
when a target program contains external library calls and floating-
point arithmetics that cannot be reasoned by SMT solvers, the DFS
strategy may execute the same path multiple times in practice.

For example, suppose that a target program has if(x ==
abs(x)) exit(); else {...} where abs() is an exter-
nal C library function. The program will terminate if a test case
TC1 (x=0) is given. Then, SCORE negates this branch condition
to generate TC2 to explore the else branch. Since the external
library invocation abs(x) is concretized to its current concrete

return value (i.e., 0), the negated symbolic path formula is x !=
0. Although a new test case TC2 (x=1) is generated by solving the
negated formula, TC2 executes the same execution path explored
by TC1. Note that if a newly generated test case is redundant, all
test cases that are derived from it can be also redundant. Thus,
SCORE detects such redundant test cases and does not generate
further test cases from these redundant test cases.

To detect such redundant test cases, SCORE checks whether
a newly generated test case executes a predicted execution path
c1 ∧ c2...∧ ck−1 ∧¬ck (ci is a branch condition and ci is executed
immediately before ci+1) that has common prefix (i.e., c1∧...ck−1)
with the previous execution path until the negated branch condition
(i.e., ¬ck). For this purpose, SCORE keeps information on the pre-
vious execution path, since this prediction test can be done by com-
paring a current execution path and the previous execution path. 3

This prediction test applies to the distributed clients by transferring
test cases with common prefixes of their previous execution paths
(i.e., c1 ∧ c2... ∧ ck−1) and negated branch conditions (i.e., ck).

3.5 Implementation
SCORE is written in C/C++ and contains 7600 lines of code with

24 classes and 265 functions. For n clients, the server creates n
threads, each of which communicates with one client. To minimize
communication overhead, each client is implemented as two sepa-
rate threads. One thread generates test cases through concolic test-
ing. The other thread communicates with other computing nodes to
receive/send test cases or control messages. Each client stores test-
ing outcomes such as test cases generated, covered branches, and
covered execution paths on the local hard disk. When the testing
process terminates or a user requests to stop the concolic testing,
these outcomes are collected by the server automatically.

SCORE is implemented to operate on distributed computers con-
nected through TCP/IP networks, since the framework may be de-
ployed on a large scale computing platform such as cloud comput-
ing platforms or P2P networks where communication might not be
reliable. SCORE uses CREST 0.1.1 [3] to instrument a target C
program and to obtain symbolic formulas from concrete execution
paths at run-time. However, we have extended the instrumentation
tool and the symbolic execution engine of CREST to support sym-
bolic path formulas in bit-vector theory while the original CREST
supports only linear-integer arithmetic symbolic path formulas. In
addition, SCORE uses Z3 2.15 as a underlying SMT solver instead
of Yices (a SMT solver used by CREST), since Z3 provides richer
C APIs for bit-vector theory than Yices does (for example, Z3 pro-
vides C API for bit-vector division and modular operators, which
are not directly supported by C API of Yices) and user community
are more active.

3.6 Experimental Results
To demonstrate efficiency and effectiveness of SCORE, we ap-

plied SCORE to well-known benchmark programs. As objects of
experiments, we selected six programs from the SIR repository [5],
including three of the Siemens programs [9], and three non-trivial
real-world programs (grep 2.0, sed 1.17, and vim 5.0). 4

All experiments were performed on the Amazon EC2 cloud com-
puting platform. The server of the SCORE framework ran on a
virtual node that had 7GB of memory and 8 CPU cores of 20 ECU
computing power in total (1 ECU is equivalent to a 1Ghz Xeon pro-

3A test case that exercises an execution path that does not match a
predicted execution path may not be a redundant test case. How-
ever, since such a test case can be a redundant one, we conserva-
tively consider the test case as a redundant one.
4The experimental results are taken from [11]

3

cessor). Each client ran on a virtual node that was equipped with
1.7 GB memory and 2 CPU cores of 5 ECU in total. The server and
clients ran on Fedora Core Linux 8. All virtual nodes are connected
through a 1 gigabps Ethernet.

For each target program, we executed CREST on a node and
SCORE on each of the five client number levels for 5 minutes. To
control for potential differences in runs due to the randomization
inherent in the techniques, we repeated the experiments 30 times
and reported the mean value of 30 runs.

We begin by comparing SCORE to CREST. In these experi-
ments, we set SCORE to use linear-integer arithmetic symbolic
path formulas for fair comparison to CREST. Figure 3 illustrates
the effectiveness (i.e., number of non-redundant test cases gener-
ated) increase achieved by SCORE as the client number level in-
creased, in a manner that compares the two tools. The figure com-
pares effectiveness results obtained by SCORE at all five client
number levels to the results obtained by CREST, per program, in
terms of the ratio of numbers of test cases generated by each. Ef-
fectiveness appears to increase linearly with client number level,
but the rate of increase does vary per program.

of clients

Ratio

of

effecti-

veness

Figure 3: Ratio of effectiveness between CREST and SCORE,
per client number level

4. CONCLUSION AND FUTURE WORK
We have developed the SCORE framework that targets embed-

ded C programs to decrease the time cost of concolic testing by
utilizing a large number of distributed computing nodes. The
framework enables distributed nodes to generate test cases inde-
pendently, and in so doing it achieves scalability. In addition,
SCORE utilizes instrumentation-based approach that is suitable for
testing embedded C programs. We demonstrated linear speedup of
SCORE on distributed systems through the experiments.

As future work, we intend to apply SCORE to industrial em-
bedded C programs, to analyze advantages and weakness of the
framework in practice. In addition, we plan to develop additional
distributed concolic algorithms that aim higher branch coverage in
a fast manner instead of path coverage pursued by DFS, which may
facilitate its earlier adoption in industrial software development.
Finally, we plan to release SCORE as an open-source project for
researchers and testing practitioners to utilize SCORE in their re-
search platforms and projects freely and to improve SCORE with
support from open source community.

Acknowledgements
This research was partially supported by the ERC of Excellence
Program of Korea Ministry of Education, Science and Technol-
ogy(MEST) / National Research Foundation of Korea) (Grant
2011-0000978), and Basic Science Research Program through the
NRF funded by the MEST (2010-0005498). We would like to thank
Matt Staats for his feedback and comments.

5. REFERENCES
[1] Scratchbox - cross-compilation toolkit.

http://www.scratchbox.org/.
[2] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel

symbolic execution for automated real-world software
testing. In 6th ACM SIGOPS/EuroSys, 2011.

[3] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. Technical Report UCB/EECS-2008-123, EECS
Department, University of California, Berkeley, Sep 2008.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Operating System Design and
Implementation, 2008.

[5] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering
Journal, 10(4):405–435, 2005.

[6] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[7] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Programming Language
Design and Implementation, 2005.

[8] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In Network and Distributed Systems
Security, 2008.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In International
Conference on Software Engineering, pages 191–200, 1994.

[10] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun.
jFuzz: A concolic whitebox fuzzer for Java. In NASA Formal
Methods Symposium, 2009.

[11] M. Kim, Y. Kim, and G. Rothermel. A scalable distributed
concolic testing approach. In Automated Software
Engineering, 2011. under review.

[12] Y. Kim, M. Kim, and Y. Jang. Concolic testing on embedded
software - case studies on mobile platform programs. In
Foundations of Software Engineering (FSE), 2011.

[13] A. King. Distributed parallel symbolic execution. Technical
report, Kansas State University, 2009. MS thesis.

[14] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation, 2004.

[15] C. Pasareanu and W. Visser. A survey of new trends in
symbolic execution for software testing and analysis.
Software Tools for Tech. Transfer, 11(4):339–353, 2009.

[16] K. Sen and G. Agha. CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools. In Computer
Aided Verification, 2006.

[17] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In European Software Engineering
Conference/Foundations of Software Engineering, 2005.

[18] M. Staats and C. Pasareanu. Parallel symbolic execution for
structural test generation. In International Symposium on
Software Testing and Analysis, 2010.

[19] N. Tillmann and W. Schulte. Parameterized unit tests. In
European Software Engineering Conference/Foundations of
Software Engineering, 2005.

[20] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Automated Software Engineering,
September 2000.

4

