
Target-Driven Compositional Concolic Testing with Function
Summary Refinement for Effective Bug Detection
Yunho Kim

KAIST

Daejeon, South Korea

yunho.kim03@gmail.com

Shin Hong

Handong Global University

Pohang, South Korea

hongshin@handong.edu

Moonzoo Kim

KAIST

Daejeon, South Korea

moonzoo.kim@gmail.com

ABSTRACT
Concolic testing is popular in unit testing because it can detect

bugs quickly in a relatively small search space. But, in system-level

testing, it suffers from the symbolic path explosion and often misses

bugs. To resolve this problem, we have developed a focused composi-
tional concolic testing technique, FOCAL, for effective bug detection.
Focusing on a target unit failure v (a crash or an assert violation)

detected by concolic unit testing, FOCAL generates a system-level

test input that validates v . This test input is obtained by building

and solving symbolic path formulas that represent system-level

executions raising v . FOCAL builds such formulas by combining

function summaries one by one backward from a function that

raised v to main. If a function summary ϕa of function a conflicts

with the summaries of the other functions, FOCAL refines ϕa to ϕ ′a
by applying a refining constraint learned from the conflict. FOCAL

showed high system-level bug detection ability by detecting 71

out of the 100 real-world target bugs in the SIR benchmark, while

other relevant cutting edge techniques (i.e., AFL-fast, KATCH, Mix-

CCBSE) detected at most 40 bugs. Also, FOCAL detected 13 new

crash bugs in popular file parsing programs.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Automated test generation, target-driven compositional concolic

testing, function summary refinement, Craig interpolant, dynamic

symbolic execution

ACM Reference Format:
Yunho Kim, Shin Hong, and Moonzoo Kim. 2019. Target-Driven Composi-

tional Concolic Testing with Function Summary Refinement for Effective

Bug Detection. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3338934

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00

https://doi.org/10.1145/3338906.3338934

1 INTRODUCTION
Concolic testing and software model checking have been popular in

unit-level [8, 15, 21–23, 26, 27, 35, 39, 40] (i.e., exploring a function

f with symbolic unit driver/stubs/environments after separating

f from an entire target program P) because they can detect bugs

quickly in a relatively small search space [26]. However, concolic

unit testing has a weakness, in that most of the detected failures

in f are false alarms raised by infeasible unit executions (i.e., unit

executions that are infeasible at system-level). This is because con-

colic unit testing uses approximate symbolic driver/stubs which

do not accurately represent the real context(s) of f in P . Note that
false alarms are serious obstacles for unit testing [13, 17, 37]. In

contrast, system-level concolic testing does not suffer from false

alarms because it generates concrete system-level test inputs that

execute P from main. However, system-level concolic testing often

fails to detect bugs due to a huge symbolic path space.

To resolve these weaknesses of unit testing and system testing,

we have developed FOcused CompositionAL concolic testing (FOCAL).
Instead of exploring a huge symbolic search space from scratch

to detect failures, FOCALidentifies target failures quickly by using

concolic unit testing and to focus on generating system-level test
inputs that validate the failures. Thus, it can detect many bugs in a

limited time without false alarms. FOCAL operates as follows:

1. Identifying target failures v :
FOCAL applies concolic unit testing to every function in P and

checks whether a failure occurs (i.e., a crash or an assert viola-

tion). This unit-level concolic testing can identify many more

failures (although many of them are false ones) than system-level

concolic testing in a limited testing time.

2. Generating a system-level test input that validates the identified
target failures v :
1) For each function a, FOCAL builds a function summary (FS)
ϕa which is a disjunction of the explored symbolic paths (i.e.,

a under-approximate FS).

2) FOCAL tries to construct a validating system-level symbolic
path formula Φv whose solution is a system-level test input

that validates v . Suppose that a static function call-graph of

P has a call-chain from main to a1 where a1 calls fv which

raisedv in concolic unit testing (i.e., ⟨main,an , ...,a2,a1⟩ such
that main calls an , an calls an−1, and so on).

• FOCAL obtains Φv by combining the summaries of the func-

tions in ⟨main,an , ...,a2,a1⟩ and the unit executions of fv
that raise v (calling itψv) one by one backward (i.e., com-

biningψv with ϕa1 first, and then with ϕa2 , and so on).

• If an intermediate symbolic path formula (SPF) generated

by combining ψv with the summaries of functions in the

call-chain ⟨ak−1, ...,a1⟩ is satisfiable, but that of a grown

https://doi.org/10.1145/3338906.3338934
https://doi.org/10.1145/3338906.3338934

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yunho Kim, Shin Hong, and Moonzoo Kim

call-chain

〈
ak ,ak−1, ...,a1

〉
with ψv is unsatisfiable, ϕak

conflicts with the combined summaries of the functions in

⟨ak−1, ...,a1⟩ and ψv . Then, FOCAL refines ϕak to ϕ ′ak to

resolve the conflict by applying a refining constraint which
is learned from the conflict by using an SMT solver (i.e.,

Craig interpolants in Sect. 3.5.4). Note that this target-driven

refinement of under-approximate FSes using the Craig in-

terpolants is a new technique and crucial in generating a

system-level test input for v (Sect. 3.5.4 and Sect. 6.1).

We performed experiments on the SIR benchmark programs and

case studies to detect new crash bugs in real-world file parsing

programs. The experiments showed that FOCAL achieved high

system-level bug detection ability: it detected 71 out of the 100 real-

world target bugs while relevant cutting-edge testing techniques

(i.e., AFL-fast, KATCH, Mix-CCBSE) detected only 40, 34, and 25

bugs, respectively (Sect. 5.1). Also, FOCAL successfully detected 13

new crash bugs in popular file parsing programs (Sect. 5.4).

The contributions of this paper are as follows:

• FOCAL is the first technique that detects bugs effectively in a

limited testing time by combining the advantages of concolic

unit testing (i.e., quick target failure identification) and system-

level concolic testing (i.e., validating target failures without false

alarms). Without exploring a huge symbolic search space from

scratch, it focuses on generating system-level test inputs that

validate the target failures identified by concolic unit testing.

• We have developed the following techniques to construct Φv
effectively and efficiently by composing FSes:

• Construction of a realistic FS of a function ai based on ai ’s
extended unit, which provides realistic contexts to ai (Sect. 3.3).
Extended units can reduce false target failures as well as non-

validating SPFs (i.e., satisfiable SPFs whose solutions do not val-

idate the target failures) and increase validating SPFs (Sect. 6.2).

• Target-driven refinement of under-approximate FSes using

Craig interpolants to guide concolic testing to construct more

validating SPFs (Sect. 3.5.4 and Sect. 6.1).

• We performed systematic empirical evaluations of the bug de-

tection ability of FOCAL and relevant cutting edge testing tech-

niques (i.e., AFL-fast, KATCH, Mix-CCBSE and several variants

of FOCAL) on the SIR C programs. In the experiments, FOCAL

detected 71 out of the 100 target bugs without any false alarms,

while the other techniques detected at most 40 (Sect. 4– 5).

• FOCAL detected 13 new crash bugs in 12 popular file parsing pro-

grams. These were reported with the crashing system test inputs

generated by FOCAL to the original developers and confirmed

by the developers (Sect. 5.4).

• We made 100 real-world bug data for the SIR benchmark pro-

grams publicly available (https://sites.google.com/view/focal-

fse19). These data were collected and organized after examining

the bug reports of the last 12–24 years, so that researchers can

use them for various testing research purposes (Sect. 4.2.1).

The paper is organized as follows. Sect. 2 shows an illustrating

example. Sect. 3 describes details of FOCAL. Sect. 4 explains the

experiment setup used to evaluate FOCAL for comparison with

other techniques. Sect. 5 reports the experimental results. Sect. 6 dis-

cusses observations from the experiments. Sect. 7 discusses related

work. Finally, Sect. 8 concludes the paper with future work.

Figure 1: Example target program

2 ILLUSTRATING EXAMPLE
We explain how FOCAL generates a system-level input that fails

through an example (three functions main, f, and g, in Fig. 1).

Step 1. Identifying a target failure line v in g:
In Fig. 1, FOCAL identifies Line 22 in g as a failure line by concolic

unit testing (i.e., v is Line 22 and fv = g). The SPF of the unit

execution of fv that fails at v ,ψv , is (*s = ‘C’) ∧ (*(s+1) , ‘\0’).
Step 2. Generating summaries of functions in P :

FOCAL generates a FS of every function in P using concolic unit

testing. Suppose that, during the concolic unit testing of f in a

limited testing time, s always starts with ‘B’ (i.e., ∗s = ‘B’ at Line
12). Then, the FS of f, ϕf , will be as follows:

ϕf = ((∗s = ‘B′) ∧ (∗(s + 1) = ‘\0′))

∨ ((∗s = ‘B′) ∧ (∗(s + 1) , ‘\0′) ∧ ... ∧ (∗(s + 2) = ‘\0′))

∨ ...

Step 3. Constructing a system-level symbolic path formula
that validates v :
To construct a system-level symbolic path formula (SPF) from a

target function that raises a failure at v (i.e., g) to main, FOCAL
selects one of the g’s callers and combines ψv with the FS of the

selected caller. Among multiple callers, FOCAL first chooses a caller

having the highest function relevancewith g (the function relevance
is given as a label between function nodes in Fig. 1). Among the

two callers of g (i.e., f and main), FOCAL first chooses f because g
has a higher function relevance with f (i.e., 0.7) than main (0.5).

Once f is chosen, FOCAL conjoins ψv (Step 1) and ϕf (Step 2)

and finds that ϕf ∧ ψv is unsatisfiable because (*s = ‘B’) in ϕf
conflicts withψv = (*s = ‘C’) ∧ (*(s+1) , ‘\0’).

To refineϕf , first FOCAL obtains a Craig interpolantI ofψv and

ϕf (i.e.,I := (*s = ‘C’)) using Z3. 1 Then, it inserts assume(I) at
the beginning of f (i.e., at the end of Line 11) as a refining constraint,

1 I := (*s = ‘C’) is a Craig interpolant ofψv and ϕf (see Corollary 1) because

• |= ψv → I (i.e., |= ((*s = ‘C’) ∧ (*(s+1) , ‘\0’))→ (*s = ‘C’), and
• I ∧ ϕf is unsatisfiable (i.e., (*s = ‘C’) ∧ (((*s = ‘B’) ∧ (*(s+1) = ‘\0’)) ∨ ...))

https://sites.google.com/view/focal-fse19
https://sites.google.com/view/focal-fse19

Target-Driven Compositional Concolic Testing with Function Summary Refinement for Effective Bug Detection ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 2: An extended unit of f5 and two failure contexts
⟨main, f1, f3⟩ and ⟨main, f2, f3⟩ in a static call-graph of P . We
assume that f5 has a target failure line v (i.e., fv = f5).

where assume(exp) immediately terminates a current execution if

exp is false. By re-running concolic unit testing of fwith assume(*s
==‘C’) at Line 11, FOCAL obtains a refined FS ϕ ′f := (*s = ‘C’).

Now, ϕ ′f ∧ ψv = (*s = ‘C’) ∧ ((*s = ‘C’) ∧ (*(s+1) , ‘\0’))

becomes satisfiable. Then, FOCAL continues to construct a system-

level SPF for the failure by conjoining ϕmain with ϕ
′
f ∧ψv . Finally, if

the final SPF Φv (= ϕmain∧ϕ
′
f ∧ψv) is satisfiable, FOCAL generates

a system-level input (i.e., a solution of Φv) that crashes the program
at Line 22.

If Φv is not satisfiable, FOCAL tries to refine ϕmain into ϕ ′main
then it checks if Φ′

v (= ϕ ′main ∧ ϕ ′f ∧ ψv) is satisfiable. If Φ
′
v is

not satisfiable, FOCAL tries to build a different validating SPF by

backtracking to combineψv and ϕmain (instead of ϕf) and checks if
ϕmain ∧ψv is unsatisfiable (it refines ϕmain into ϕ

′′
main if necessary).

If ϕmain ∧ψv (and ϕ ′′main ∧ψv) is still unsatisfiable, FOCAL tried

all possible call-chains from main to g, but failed to generate a test

input to validate the target failure v at Line 22.

3 FOCUSED COMPOSITIONAL CONCOLIC
TESTING TECHNIQUE (FOCAL)

This section explains how FOCAL operates using a target program

P in Fig. 2 as an example. Fig. 2 shows a static call-graph of P which

consists of 11 functions (i.e., main, f1, ..., and f10) including the

program entry function main.

3.1 Overview
Fig. 3 shows the overall process of FOCAL. FOCAL takes as inputs

a target program P and a set of system-level seed test inputs T and

generates system-level test inputs that make P fail. FOCAL operates

in the following four phases (see Fig. 3):

1. Measuring function relevance (Sect. 3.2):

First, FOCAL generates system-level test inputs by fuzzing the

given system-level seed test inputs. Then, from the function

call profile obtained by executing the fuzzed system tests, it

measures relevance between every pair of the functions in P .
This information is used for target failure line identification, FS

generation, and system-level SPF construction.

2. Identification of a target failure line v (Sect. 3.3):

To identify a target failure line v (i.e., a line of program code

where a crash or an assert violation occurs), FOCAL applies

concolic unit testing to every function in P . We call a function

that has v as fv .
For example, FOCAL applies concolic unit testing to each of main,
f1, ..., and f10 in Fig. 2 separately. Suppose that f5 is written in

Lines 30–50 and f5 crashes at Line 40 during concolic unit testing
of f5. Then, we set Line 40 as a target failure line v and fv = f5.

3. Construction of function summaries (Sect. 3.4):
For each function a in P , FOCAL builds a FS ϕa which is a dis-

junction of SPFs explored by concolic unit testing (i.e., an under-

approximate FS).

4. Construction of system-level SPFs to validate a failure atv (Sect. 3.5):

To validate a failure at v in system-level (i.e., generating a test

input that makes P fail at v), FOCAL builds SPFs by combining

unit failure executionsψv (i.e., a set of unit executions of fv that

fail atv) and the summaries of the functions inv’s failure-context
(e.g., ⟨ak , ...,a1⟩ which is a call-chain to a1 that calls fv).
For example of Fig. 2, suppose that concolic unit testing of f5
crashes at Line 40 in f5 (i.e., fv = f5). Then, FOCAL builds SPFs by
combiningψv and the summaries of the functions in the failure-

context of v (e.g., ⟨f1⟩, ⟨main, f1⟩, ⟨f3⟩, ⟨f1, f3⟩, ⟨main, f1, f3⟩,
⟨f2, f3⟩, and ⟨main, f2, f3⟩) until it constructs a validating SPF

whose solution makes P fail at v .

3.2 Function Relevance Metric
FOCAL computes function relevance metric using the conditional

probability based on the function call profiles observed from sys-

tem test executions. To obtain accurate function relevance, FOCAL

generates a large number of system test inputs by fuzzing a given

set of system-level seed test inputs T . FOCAL considers that f and

д are highly relevant if it frequently observes that f calls д (immedi-

ately or transitively) (denoted by f →д) or д calls f in system test

executions. Intuitively speaking, if caller-callee functions execute

together frequently, they closely interact with each other, which

means that they are highly relevant to each other.

We measure the relevance between f and д (denoted by r (f ,д))

as
(x+y)

2
such that

• x is p((f →д or д→ f)| f) which is calculated by
w
z where

• w is the number of the system test executions where f →д or

д→ f occurs

• z is the number of the system test executions where f occurs

• y is p((f →д or д→ f)|д)

Ex. Suppose that we have the following test executions in Fig. 2:

• t1 = {main → f1, f1 → f5, f5 → f7}
• t2 = {main → f1, f1 → f5, f5 → f8, f8 → f9}
• t3 = {main→f1, f1→f5,f5→f7, f5→f8,f8→f9, f8→f10}
• t4 = {main → f1, f1 → f3, f3 → f6, f6 → f10}

In this example, r (f5, f7)=0.83 (=(
2

3
+1)/2 becausep(f5→ f7 | f5) =

2

3

and p(f5→ f7 | f7) = 1) and r (f5, f10)= 0.42 (= (
1

3
+

1

2
)/2 because

p(f5→ f10 | f5) =
1

3
and p(f5→ f10 | f10) =

1

2
).

3.3 Identification of a Target Failure Line v
FOCAL applies concolic unit testing to each function a in P and

identifies a target line v in a if a fails. To reduce false target lines

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yunho Kim, Shin Hong, and Moonzoo Kim

Figure 3: Focused Compositional Concolic Testing (FOCAL)

caused by infeasible unit executions, FOCAL applies concolic unit

testing to an extended unit of a (denoted by E(a)) [23]. E(a) consists
of a, a’s closely relevant callee functionsb1...bn (i.e., functions reach-

able from a in a static call-graph), and symbolic stubs to replace

callee functions of a that are not closely relevant to a (symbolic

stubs return unconstrained symbolic-values).

Note that concolic unit testing E(a) (instead of a alone) can

reduce false alarms by removing infeasible unit executions of a
because a’s closely related functions can provide realistic environ-

ment to a. The relevance between functions a and b (denoted by

r (a,b)) is measured based on how frequently a calls b or vice versa,

among system test executions (Sect. 3.2). Note that E(a) should only
contain functions b1...bn which are closely relevant to a (i.e., r (a,b)
is among the top 30% of the relevancies between all function pairs

in P) since including more functions will enlarge symbolic path

space and degrade unit testing effectiveness and efficiency.

For example of Fig. 2, suppose that E(f5) is {f5, f7, f8, f9} because
r (f5, f7) is high (i.e., among the top 30% of the relevancies between

all function pairs in P). Similarly, suppose that r (f5, f8) and r (f5, f9)
are also high, but not r (f5, f10). When FOCAL applies concolic unit

testing to f5, it explores E(f5) consisting of { f5, f7, f8, f9}.

3.4 Function Summary Construction
FOCAL builds a FS of every function a of P as a disjunction of all

explored SPFsσi s onE(a) (i.e.,ϕa
def
=

∨
σi) during the target failure

line identification process (Sect. 3.3). This approach of building

FSes is applicable for complex real-world programs with nested

loops, external binary libraries, complex pointer arithmetic, etc.

The syntax and semantics of FS follow QF_BV in SMTLIB2.

To focus on exploring diverse behaviors of a in a given time bud-

get, FOCAL applies concolic unit testing to E(a) using a weighted
random negation search strategy. This search strategy randomly

negates a branch in a current symbolic path while giving four times

higher chance to the branches in a than the branches in the other

functions in E(a).

3.5 Construction of System-level SPFs to
Validate a Failure at v

3.5.1 Preliminaries.

• fv is the function which has a target failure line v .
• Cv is a set of functions that directly call fv . For example of Fig. 2,

fv = f5 and Cv = { f1, f3}.

• ψv is a set of failure executions in fv (i.e., a disjunction of the

SPFs of E(fv) (generated by concolic unit testing) that fail at v).
• ϕa denotes a FS of a function a. ϕa is a disjunction of the SPFs of

E(a) (generated by concolic unit testing) (i.e., ϕa =
∨
σi where

σi is a SPF of E(a)).
• A failure-context Sv = ⟨ak , ...,a2,a1⟩ of a target failure line v

is a call-chain/path in a static call-graph of P such that ak calls

ak−1, ak−1 calls ak−2 and so on and a1 ∈Cv . For example, the

failure-contexts of v in Fig. 2 are ⟨f1⟩, ⟨main, f1⟩, ⟨f3⟩, ⟨f1, f3⟩,
⟨main, f1, f3⟩, ⟨f2, f3⟩, and ⟨main, f2, f3⟩.

• Slice(ϕai+1 ,ai) is a sliced formula of ϕai+1 with regard to the

invocation of a function ai (i.e., for ϕai+1 =
∨
σj , Slice(ϕai+1 ,ai)

=
∨
σ ′
j where σ

′
j is a prefix of σj only up to an invocation of ai).

• Φv (⟨a⟩) for a ∈ Cv denotes a combined SPF ofψv and the FS of

a that directly calls fv (i.e., Φv (⟨a⟩) = Slice(ϕa , fv) ∧ψv).

• For a failure-context Skv = ⟨ak , ...,a1⟩, Φv (S
k
v) denotes a com-

bined SPF ofψv andψv ’s symbolic calling context formula which

is the combined sliced summaries of the functions in Sv in a back-

ward order (i.e., Φv (S
k
v) = Slice(ϕak ,ak−1) ∧ Φv (⟨ak−1, ...,a1⟩)).

Combined FSes capture effects on visible variables, parameters,

return-values in SSA form (i.e., all variables in FSes are expressed

as expressions over the symbolic input-variables).

For example of Fig. 2,

Φv (⟨main, f1, f3 ⟩) = Slice(ϕmain, f1) ∧ Φv (⟨f1, f3 ⟩)

= Slice(ϕmain, f1) ∧ Slice(ϕf1, f3) ∧ Φv (⟨f3 ⟩)

= Slice(ϕmain, f1) ∧ Slice(ϕf1, f3) ∧ Slice(ϕf3, f5) ∧ψv

3.5.2 Strategies for Function Summary Composition. To generate

SPFs that validate a failure at v quickly, FOCAL uses function rel-

evance metric to select a FS to combine as follows (i.e., giving a

high priority to a function which has high relevance with a most re-

cently combined function). Suppose that FOCAL has built Φv (S
k−1
v)

where the failure-context Sk−1v is ⟨ak−1, ...,a1⟩ and ak−1 is called
by b1,...,bm . FOCAL selects bi whose relevance with ak−1 is the

highest and combines ϕbi with Φv (S
k−1
v). If FOCAL fails to gener-

ate Φv after selecting ϕbi to combine with Φv (S
k−1
v), it backtracks

to select and combine bi′ which has the second highest relevance

with ak−1 and so on.

This function relevance-based FS composition can be effective

because, if b is more relevant with ak−1than b
′
, it will be easier to

refine ϕb to be compatible with ak−1 than ϕb′ because b and ak−1
share more common contexts than b ′ and ak−1 (i.e., ϕb may need

less refinement steps to become compatible with ak−1 than ϕb′).

Target-Driven Compositional Concolic Testing with Function Summary Refinement for Effective Bug Detection ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 4: FSR using the Craig interpolants

3.5.3 Generation of Symbolic Path Formulas by Combining Func-
tion Summaries. To generate a SPF Φv to validate a failure at v , FO-
CAL combines the summaries of the functions in a failure-context

⟨main, ...,a1⟩ of v andψv in a backward order. If the combined SPF

is satisfiable, FOCAL uses a solution of the formula obtained by an

SMT solver as a system-level test input to validate a failure at v .
For Fig. 2 where fv = f5, FOCAL generates SPFs as follows:

1. Suppose that r (f3, f5) > r (f1, f5). FOCAL generates Φv (⟨f3⟩) =
Slice(ϕf3 , f5)∧ψv . IfΦv (⟨f3⟩) is satisfiable and r (f1, f3) > r (f2, f3),
FOCAL increases a failure-context of v to ⟨f1, f3⟩

2. It generates Φv (⟨f1, f3⟩) = Slice(ϕf1 , f3)∧Φv (⟨f3⟩) and checks if
Φv (⟨f1, f3⟩) is satisfiable. If yes, FOCAL increase a failure-context
of v to ⟨main, f1, f3⟩.

3. Finally, if Φv (⟨main, f1, f3⟩) = Slice(ϕmain, f1) ∧ Φv (⟨f1, f3⟩) is
satisfiable, FOCAL obtains a solution of Φv (⟨main, f1, f3⟩) by
using a SMT solver and uses the solution as a system-level test

input to validate a failure at v .

Meanwhile, a combined SPF may be unsatisfiable if a FS conflicts
with the other FSes. For example, suppose that ak calls ak−1 in

a failure-context of v (i.e., Sk−1v = ⟨ak−1, ...,a1⟩) and ϕak does

not contain a symbolic path that provides a context necessary for

Φv (S
k−1
v) to invoke a failure at v . Then, the combined formula

Slice(ϕak ,ak−1) ∧ Φv (S
k−1
v) will be unsatisfiable. In such cases,

FOCAL refines ϕak as shown in Sect. 3.5.4.

3.5.4 Function Summary Refinement (FSR). Fig. 4 shows how FO-

CAL refines a FS. Suppose that FOCAL combined ϕak and Φv (S
k−1
v)

where a failure-context Sk−1v is ⟨ak−1, ...,a1⟩, ak calls ak−1 and

Φv (S
k−1
v) is satisfiable. If the combined formula is unsatisfiable due

to the conflict between ϕak and Φv (S
k−1
v), to continue construction

of SPFs to validate a failure at v , FOCAL refines ϕak into ϕ ′ak . It

builds ϕ ′ak using concolic testing
2
on E(ak) with a Craig inter-

polant of Φv (S
k−1
v) and Slice(ϕak ,ak−1) as a refining constraint.

Craig interpolation theorem is given as follows:

2
To build a refined FS quickly, FOCAL extends CFG search heuristic [7] to guide the

search to reach the lines where ak calls ak−1 quickly.

Theorem 1 (Craig, 1957 [9]). Suppose A → C is a valid impli-

cation in first-order logic (i.e., |= A → C). Then, there is a Craig
interpolant I such that |= A → I and |= I → C .

Corollary 1. Suppose that A ∧ B is unsatisfiable in first-order

logic (i.e., |= A → ¬B). Then, by Thm. 1, there is a Craig interpolant

I such that |= A → I and I ∧ B is unsatisfiable.
3

Suppose thatA isΦv (S
k−1
v),B is Slice(ϕak ,ak−1), andΦv (S

k−1
v)∧

Slice(ϕak ,ak−1) is unsatisfiable. Then, by Corollary 1, there exists

a Craig interpolant I of Φv (S
k−1
v) and Slice(ϕak ,ak−1) such that

I∧Slice(ϕak ,ak−1) is unsatisfiable. Note that Slice(ϕak ,ak−1) rep-
resents the already explored paths in ak . Thus, Craig interpolant I
can work as a guide in concolic unit testing of ak to avoid revisiting

already explored paths (i.e., I → ¬Slice(ϕak ,ak−1)). And at the

same time, I can lead the concolic unit testing to explore paths

compatible with Φv (S
k−1
v) (i.e., Φv (S

k−1
v) → I).

Now we propose the following heuristic to build ϕ ′ak such that

Φv (⟨ak , ...,a1⟩) is satisfiable.

• When FOCAL generates ϕ ′ak using concolic testing, FOCAL en-

forces a Craig interpolant I of Φv (S
k−1
v) and Slice(ϕak ,ak−1) as

a FS refining constraint so that ϕ ′ak can be different from ϕak
(and, thus, ϕ ′ak may not conflict with Φv (S

k−1
v)).

This strategy constructs a new FS ϕ ′ak that can be compatible with

Φv (S
k−1
v). This is because I guides concolic testing to make ϕ ′ak

contain symbolic paths different from the ones in ϕak by pruning

Slice(ϕak ,ak−1) (because I ∧ Slice(ϕak ,ak−1) is unsatisfiable).
FOCAL implements this strategy by inserting assume(I) at the

beginning of the body of ak , which guides concolic execution to

explore paths that satisfy I by terminating an execution of ak
immediately if I is violated.

Suppose thatϕ ′ak does not resolve the conflict in the first function

summary refinement step. We call the Craig interpolant used in this

first function summary refinement step as I1
and the first refined

FS as ϕ1ak (=ϕ ′ak). Then FOCAL obtains the second interpolant

I2 = I(Φv (S
k−1
v), Slice(ϕ1ak ,ak−1)). Then, it builds a new refined

FS ϕ2ak using I2 ∧ I1
as a new refining constraint and checks

whether ϕ2ak resolves the conflict. If not, this step repeats until a

newly refined FS does not increase branch coverage of ak three

times in a row (i.e., until this step does not explore new search

space of ak much) or the conflict is resolved.

3.5.5 Example of Constructing Symbolic Path Formulas to Validate
a failure at v in Fig. 2. Suppose that fv = f5 and r (f5, f3) = 0.9,

r (f5, f1) = 0.8, r (f3, f1) = 0.7, and r (f3, f2) = 0.6.

First, FOCAL selects f3 to build Φv (⟨f3⟩) by combining ϕf3 and
ψv because r (f5, f3) > r (f5, f1). Suppose that Φv (⟨f3⟩) is satisfiable.
Then, FOCAL continues to select f1 (because r (f3, f1) > r (f3, f2))
to combine ϕf1 and Φv (⟨f3⟩) and obtains Φv (⟨f1, f3⟩). Suppose that
Φv (⟨f1, f3⟩) is unsatisfiable. Then, FOCAL refines ϕf1 into ϕ

′
f1
by

using a Craig interpolant I(Φv (⟨f3⟩), Slice(ϕf1 , f3)). Suppose that
Φ′
v (⟨f1, f3⟩) = Slice(ϕ ′f1

, f3) ∧Φv (⟨f3⟩) is satisfiable. Then, FOCAL

3
Corollary 1 is just another form of Theorem 1. |=A→C in Thm 1 is equivalent

to that A∧B is unsatisfiable in Cor 1, because if we replace C in Thm 1 with ¬B in

Cor 1, then |= A→¬B ≡ |= ¬A∨¬B ≡ |= ¬(A∧B). Also, |= I →C in Thm 1 is

equivalent to |=I→¬B in Cor 1 which indicates that I∧B is unsatisfiable because

|=I→¬B ≡ |=¬I∨¬B ≡ |=¬(I ∧ B).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yunho Kim, Shin Hong, and Moonzoo Kim

Table 1: Programs of the known crash bug benchmark

Target Lines # of # of seed Branch Func # of target

programs func. sys. TCs cov.(%) cov. (%) bugs

Bash-2.0 32714 1214 1100 46.2 89.0 39

Flex-2.4.3 7471 147 567 45.7 93.9 5

Grep-2.0 5956 132 809 50.3 94.7 6

Gzip-1.0.7 3054 82 214 55.8 87.8 5

Make-3.75 28715 555 1043 64.5 87.9 10

Sed-1.17 4085 73 360 47.3 87.7 3

Vim-5.0 66209 1749 975 35.8 91.0 32

Sum 148204 3952 5068 N/A N/A 100

Average 21172.0 564.6 724.0 49.4 90.3 14.3

finally combines ϕmain and Φ′
v (⟨f1, f3⟩) to build Φv (⟨main, f1, f3⟩)

(see a dotted circle on a failure-context ⟨main, f1, f3⟩ in the middle

of Fig.2). However, suppose that Φv (⟨main, f1, f3⟩) is unsatisfiable
and FOCAL fails to refine ϕmain to be compatible with Φ′

v (⟨f1, f3⟩).
Then, FOCAL backtracks to f3 and combines f2 (instead of f1)

with Φv (⟨f3⟩) to build Φv (⟨f2, f3⟩). Suppose that Φv (⟨f2, f3⟩) is
satisfiable. Then, FOCAL continues to build Φv (⟨main, f2, f3⟩) (see
a dotted circle on a failure-context ⟨main, f2, f3⟩ in the right part

of Fig.2). If Φv (⟨main, f2, f3⟩) is satisfiable, FOCAL generates a

solution to the formula and uses the solution as a system-level

test input to validate a failure at v .

4 EXPERIMENT SETUP
4.1 Research Questions
RQ1. Bug detection ability: How many target bugs does FOCAL

detect, compared to fuzzing (AFL-fast [5]) and the guided concolic

testing techniques (KATCH [31] and Mix-CCBSE [30])?

RQ2. Effect of the Craig interpolants in FSR: How much does

the Craig interpolants in function summary refinement (FSR) affect

the number of the detected bugs and the execution time to build

SPFs?

RQ3. Effect of the extended units for bug detection and exe-
cution time : How much do the extended units affect FOCAL’s

number of the bugs detected and execution time, compared to

FOCAL without the extended units (FOCAL
−E

) and FOCAL with

randomly built extended units (FOCAL
R
)?

RQ4. New crash bug detection: How many new bugs does FO-

CAL detect, compared to AFL-fast, KATCH, and Mix-CCBSE?

4.2 Target Bugs
To measure bug detection ability of the techniques, we target crash

bugs (although FOCAL can detect non-crash bugs if test oracles are

provided as assertions) because they (e.g., null-pointer dereference,

divide-by-zero, buffer overflow) cause serious reliability and secu-

rity problems and can be detected with automatically generated

assertions.

FOCAL automatically inserts assertions (e.g., assert(ptr!=NULL))
to detect crash bugs in the target programs.

We use two sets of target programs: known crash bug benchmark
for RQ1-3 and new crash bug benchmark for RQ4.

4.2.1 Known Crash Bug Benchmark. We collected 100 real-world

crash bugs of the seven SIR C programs (shown in Table 1) that are

larger than 1 KLoC and were fixed by the original developers from

Dec 1996 to July 2018. Each program is the same version of the

programs in SIR [12] because they are widely used for the software

testing research.

From the revision histories, we collected bugs such that (1) the

bug report shows that the bug crashes the program, (2) the original

developers confirmed the bug report and released a patch to fix the

bug, and (3) the bug exists at the version chosen for the benchmark

(i.e., the same version in SIR). We collected total 19,108 bug-fix

commits of the target programs. Then, we extracted 587 crash bug-

fix commits by searching keywords like “overflow”, “segfault”, etc.

We manually analyzed the changed code and commit logs of the

587 crash bug-fix commits and identified 100 crash bugs.

We consider a program line lb as a faulty line of a bug b if lb is

included in the patch (i.e., the bug-fix commits for b). We did not

use any artificially inserted bugs in SIR.

4.2.2 New Crash Bug Benchmark. To evaluate the effectiveness of

FOCAL for discovering new crash bugs, we target the popular C

programs that parse regular expression, XML and JSON [6]. We

choose the latest versions of the target text parsing C programs

as of July 2018. The programs consist of 7243.8 LoC and 272.3

functions on average (details of the new crash bug target programs

are available at https://sites.google.com/view/focal-fse19). The text

parsing libraries are widely used in various software including

server applications and smartphone apps and the crash bugs in

these libraries can cause severe reliability and security problems.

4.3 FOCAL Setup
4.3.1 Fuzzing . To compute function relevance from diverse sys-

tem behaviors, FOCAL applied the AFL-fast fuzzer [5] to generate

various system test inputs. Using all system tests provided in a

target program as seed test inputs, FOCAL ran AFL-fast for 1 hour

(no target bug detected).

For known crash bug target programs, it generated 24,300 system

test inputs that executed previously unexplored execution paths on

average per program (achieving 79.3% branch coverage).
4
For new

crash bug target programs, it generated 33,300 system test inputs

that executed previously unexplored execution paths on average

per program (achieving 90.3% branch coverage).

4.3.2 Construction of Extended Units. For each function a, FOCAL
constructs an extended unit of a (i.e., E(a)) based on the function

relevance between a and a’s (immediate or transitive) callee func-

tion b (i.e., r (a,b)). If r (a,b) is in the top 30% of the relevancies of all

pairs of functions in P (i.e., b is closely relevant to a), b is included

in E(a); if not, b is not included in E(a) and replaced by a symbolic

stub function.

4.3.3 Timeout of Concolic Unit Testing. For concolic unit testing for
target failure line identification (Sect. 3.3), FS construction (Sect. 3.4),

4
The quality of the seed test inputs does not affect bug detection ability of FOCAL

much because it uses diverse test inputs generated by fuzzing the seed test inputs.

For example, when we randomly selected and used only 10% of the seed test inputs

(achieving branch coverage 28.3% on average) per program, FOCAL still detected 69

out of 100 target bugs.

https://sites.google.com/view/focal-fse19

Target-Driven Compositional Concolic Testing with Function Summary Refinement for Effective Bug Detection ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

and FSR (Sect. 3.5.4), we set ten minutes timeout for each function

in P .

4.3.4 Implementation. We have implemented FOCAL and its vari-

ants in 7,800 lines of C++ code using Clang/LLVM-4.0 [29]. FOCAL

uses AFL-fast [5] for fuzzing, CROWN [25] for concolic testing and

Z3 [10] for solving SMT constraints and computing Craig inter-

polants.

4.4 Automated Test Generation Techniques to
Compare

We have evaluated FOCAL and the following testing techniques:

• Fuzzing technique (AFL-fast [5]): AFL-fast guides the search-based
fuzzing to cover rarely explored code locations. We used all

system test inputs generated to compute function relevance as

seed test inputs for AFL-fast. We set the timeout of AFL-fast as

the same amount of the total execution time of FOCAL.

• Directed concolic testing techniques (KATCH and Mix-CCBSE):
KATCH [31] takes a program, a patch, and a set of regression tests

to generate test inputs to cover the code locations changed by the

patch. To guide KATCH to execute the target failure line v iden-

tified by concolic unit testing of FOCAL, we make a patch that

adds a crash assertion at v to a target program. Mix-CCBSE [30]

takes a program and a target line as inputs and performs concolic

testing to cover the target code lines. We give each of the target

failure lines v identified by concolic unit testing of FOCAL to

Mix-CCBSE as the target line. We implemented our own pro-

totype of Mix-CCBSE on KLEE 1.4 (in 600 lines of C++ code)

since we could not use the Mix-CCBSE implementation due to

technical problems (the implementation has not been maintained

since 2013).

We set the timeout of KATCH and Mix-CCBSE for each target

failure line v as the same amount of the execution time spent

for the most time-consuming target failure line of P by FOCAL.

For example, if FOCAL spends one hour to validate the most

time-consuming target failure line in P , we give one hour to

KATCH and Mix-CCBSE for each target failure line in P .

• FOCAL−I : it is a variant of FOCAL that performs FSRwithout the
Craig interpolants. For fair comparison with FOCAL, FOCAL

−I

builds a refined FS in 90 minutes, which is more than the largest

amount of time (87 minutes) spent by repeated FSRs using the

Craig interpolants (Sect. 3.5.4).

• FOCAL−E : it is a variant of FOCAL that does not use extended

units (i.e., concolic unit testing performs on a single function a
with symbolic stubs that replace all callee functions of a).

• FOCALR : it is a variant of FOCAL that uses randomly constructed

extended units (i.e., E(a) contains a and randomly selected callee
functions of a (with a probability 0.5), and symbolic stubs that

replace the other callee functions of a). For example of Fig. 2,

suppose that FOCAL
R
randomly adds f8 to E(f5) but not f7. Then,

it continues to randomly add f10 (a callee of f8) to E(f5) but not
f9. As a result, FOCAL

R
constructs E(f5) as { f5, f8, f10}.

4.5 Measurement
To reduce the random variance on the experiment, we repeated the

experiments ten times and report the average numbers.

4.5.1 Bug Detection. For a known crash bug b, we report that b
is detected if a technique generates a system-level test input that

makes P reach lb (one of the faulty code lines of b) and then crash at
a target failure line. If one system execution has covered the faulty

lines of multiple target bugs, we manually analyzed the system

execution to identify which bug causes the failure at a target failure

line.

For a new crash bug, we report the number of the target failure

lines where crashes are validated by the generated system test

inputs as the number of detected bugs. This is because we do not

know which bug covers which failure line(s).

4.5.2 Execution Time. We report the execution time of a technique

on a single machine for a fair comparison of FOCAL with other

testing techniques. The execution time of FOCAL and its variants

consists of:

• Fuzzing and function relevance measurement (FZ): one hour

spent to fuzz the seed test inputs (and negligible amount of time

to calculate the function relevance using the fuzzed test inputs)

• Target failure line identification (FLI): time spent by concolic unit

testing each E(a) to identify target failure lines

• Satisfiability check (SC): time spent for checking satisfiability of

constructed SPFs (Sect. 3.5.3)

• Craig interpolant calculation (CC): time spent for computing the

Craig interpolants for FSR

• Function summary refinement (FSR): time spent for running

concolic unit testing to obtain a refined FS

In RQ1 and RQ4, we report the sum of FZ, FLI, SC, CC, and FSR

time as the execution time of FOCAL to compare with AFL-fast,

KATCH, and Mix-CCBSE. In RQ2 to RQ3, we report the sum of SC,

CC, and FSR time because FOCAL and its variants share the same

target failure lines and have the same amount of FZ and FLI time.

4.6 Testbed Setting
Since the experiment scale is large, the experiments were performed

on 30 machines equipped with Intel quad-core i5 4670K (3.4 Ghz)

and 8GB RAM, running Ubuntu 16.04 64 bit version. Each machine

runs four instances of testing processes.

4.7 Threats to Validity
A threat to external validity is the representativeness of our target

programs. We expect that this threat is limited since the target

programs are widely used real-world ones and tested by many

other researchers. Also, the set of target bugs might not be com-

plete because we might fail to extract one from the bug reports

or a target program has an unknown (i.e., not reported) bug. We

expect that this threat is also limited because we did our best to

thoroughly review the bug reports and the target programs are

actively maintained. A threat to internal validity is possible bugs

in the implementations of FOCAL and the other concolic testing

techniques we studied. We extensively tested our implementations

to address this threat.

5 EXPERIMENT RESULTS
This section presents experiment results to answer the research

questions. All detailed data are available at https://sites.google.com/

view/focal-icse19.

https://sites.google.com/view/focal-icse19
https://sites.google.com/view/focal-icse19

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yunho Kim, Shin Hong, and Moonzoo Kim

Table 2: # of the target bugs detected by and the execution
time (hours) on a single machine of AFL-fast, KATCH, Mix-
CCBSE, and FOCAL

AFL-fast KATCH Mix-CCBSE FOCAL

Targets #det. Time(h) #det. Time(h) #det. Time(h) #det. Time(h)

bugs bugs bugs bugs

Bash 11 399.1 10 522.7 8 669.2 25 399.1

Flex 2 125.2 2 164.0 1 176.0 4 125.2

Grep 4 250.8 3 357.8 2 400.1 5 250.8

Gzip 4 112.5 3 181.1 2 227.2 4 112.5

Make 6 294.7 4 347.4 3 479.4 9 294.7

Sed 3 134.6 2 205.4 2 225.3 3 134.6

Vim 10 521.5 10 648.9 7 746.9 21 521.5

Sum 40 1838.3 34 2427.3 25 2924.0 71 1838.3

Avg. 5.7 262.6 4.9 346.8 3.6 417.7 10.1 262.6

5.1 RQ1: Bug Detection Ability
FOCAL showed high bug detection ability. Table 2 shows the num-

bers of the target bugs detected by and the execution time of AFL-

fast, KATCH, Mix-CCBSE, and FOCAL. It shows the total execution

time (in hours) spent on a single machine (for fair comparison be-

tween the techniques). The wall-clock execution time is roughly

1/100 of the reported time (e.g., FOCAL spent 18 hours to perform

all experiment) because the experiment was run on 30 quad core

machines in parallel.

In each run, FOCAL always detected the 71 bugs in 1838.3 hours

on average (262.6 hours on average per program), which consist of

• Fuzzing and function relevance measurement (FZ): 1 hour

• Target failure line identification (FLI): 553.4 hours

• Satisfiability check (SC): 77.8 hours

• Craig interpolant calculation (CC): 155.8 hours

• FS refinement (FSR): 1044.2 hours

In contrast, AFL-fast detected only 40 bugs with the same amount

of time as that of FOCAL. KATCH and Mix-CCBSE detected only

34 and 25 bugs after spending 1.3 and 1.6 times larger amount

of the execution time than FOCAL (i.e., total 2427.3 and 2924.0

hours), respectively. Since KATCH and Mix-CCBSE do not perform

concolic testing in a compositional way, they need to explore large

execution space to guide concolic testing to raise a failure at v . All
bugs detected by these techniques were also detected by FOCAL.

5.2 RQ2: Effect of the Craig Interpolants in FSR
Table 3 shows that the Craig interpolants in the FSR improved bug

detection ability. FOCAL detected 4.4 times more bugs (=71/16)

than FOCAL
−I

.
5
Also, the table shows that the Craig interpolants-

based FSR refines FSes effectively in terms of branch coverage (i.e.,

ϕ ′a covers a largely different set of branches than ϕa). C(ϕa) is a
branch coverage of a achieved by a set of execution paths in ϕa and

C(ϕa ∪ϕ
′
a) is a branch coverage of a achieved by a set of execution

paths in ϕa or ϕ ′a .
6
Table 3 shows that FOCAL increases the branch

coverage of each function by 17.3%p (= C(ϕa∪ϕ
′
a)−C(ϕa)) by using

FSR with the Craig interpolants (it generates 946.9 interpolants on

5
FOCAL

−I
always detected the 19 bugs in each of the 10 runs. The bugs detected by

FOCAL
−I

are also detected by FOCAL.

6
For FOCAL which repeats the FSR step, ϕ′

a is the final refined FS (Sect. 3.5.4). For

FOCAL
−I

, ϕ′
a is a FS refined for the same amount of the total refinement time spent

by FOCAL.

Table 3: # of the detected target bugs, the time (hours) to
build SPFs, and the effect of FSR of FOCAL−I and FOCAL

FOCAL
−I

FOCAL

Tar- # det. Time Branch Cov.(%) #det. Time #I Branch Cov. (%)

gets bugs (h) C(ϕa) C(ϕa bugs (h) C(ϕa) C(ϕa
∪ϕ ′a) ∪ϕ ′a)

Bash 4 145.6 54.1 59.1 25 231.2 1170 54.1 66.8

Flex 1 69.5 55.3 62.0 4 103.7 531 55.3 73.8

Grep 2 129.8 59.1 67.9 5 231.7 1141 59.1 77.9

Gzip 2 61.6 56.5 61.0 4 99.4 571 56.5 72.0

Make 1 134.9 59.8 65.3 9 217.5 1198 59.8 78.7

Sed 1 75.1 52.9 60.1 3 123.0 570 52.9 71.8

Vim 5 195.3 48.2 53.3 21 271.2 1447 48.2 66.0

Sum 16 811.7 N/A N/A 71 1277.8 6628 N/A N/A

Avg. 2.3 116.0 55.1 61.3 10.1 182.5 946.9 55.1 72.4

Table 4: # of the detected bugs and the execution time to
build SPFs of FOCAL−E , FOCALR , and FOCAL.

FOCAL
−E

FOCAL
R

FOCAL

Targets #det. Time #det. Time #det. Time

bugs (h) bugs (h) bugs (h)

Bash 10 902.9 7.4 238.8 25 231.2

Flex 2 173.4 1.2 97.6 4 103.7

Grep 2 617.4 2.6 314.9 5 231.7

Gzip 2 376.8 2.0 98.9 4 99.4

Make 3 712.9 2.8 331.6 9 217.5

Sed 1 468.3 1.4 203.1 3 123.0

Vim 12 1010.6 10.8 494.5 21 271.2

Sum 32 4262.3 28.2 1779.4 71 1277.8

Avg. 4.6 608.9 4.0 254.2 10.1 182.5

average per program). In contrast, FOCAL
−I

increases the branch

coverage of each function by only 6.2%p.

The execution time of FOCAL
−I

to build symbolic path formulas

is shorter than that of FOCAL (i.e., 811.7 vs. 1277.8which correspond

to SC+CC+FSR) because FSR without Craig interpolants was not

effective in resolving the conflicts and FOCAL
−I

generates much

fewer SPF than FOCAL (Sect. 6.1).

5.3 RQ3: Effect of the Extended Units on Bug
Detection and Execution Time

The experiment results show that utilizing extended units con-

tribute to high bug detection ability because FOCAL detected more

than twice the number of bugs (71 bugs) than FOCAL
−E

(32 bugs)
7

and FOCAL
R
(28.2 bugs). Table 4 shows the numbers of the detected

target bugs and the execution time to build SPFs of these techniques.

Also, FOCAL spent only 1/3 of the time spent by FOCAL
−E

(i.e.,

1277.8 vs. 4262.3 hours) because FOCAL
−E

identified 4.8 times more

target failure lines than FOCAL (497 and 2402 target failure lines,

respectively). FOCAL
R
identified 1.7 times more target failure lines

(i.e., 849.4 vs. 497) and spent 1.4 times larger amount of time (i.e.,

1779.4 vs. 1277.8 hours) than FOCAL.

7
FOCAL

−E
always detected the 32 bugs in each of the 10 runs. The bugs detected by

FOCAL
−E

are also detected by FOCAL.

Target-Driven Compositional Concolic Testing with Function Summary Refinement for Effective Bug Detection ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

5.4 RQ4: New Crash Bug Detection
FOCAL detected 13 new crash bugs in the 12 target C programs

in 782.5 hours on average
8
. We have reported the new bugs with

crashing system-level test inputs to the developers of the target

programs. Eight of them were confirmed by the developers and we

have not received a response for the remaining five (we uploaded

all responses in https://sites.google.com/view/focal-fse19).

For example of libxml2-2.9.8, FOCAL identified 87 target fail-

ure lines and detected two bugs in 124 hours: one buffer overflow

bug (crashing at HTMLparser.c:5408) and one null pointer derefer-
ence bug (crashing at xmlregexp.c:4349). For example, to validate

the buffer overflow bug of libxml2-2.9.8, FOCAL generates a pair
of command line options (--html and --push) and an input file (a

765 bytes long xml file) as a test input.

6 DISCUSSION
6.1 Effectiveness of the Craig Interpolants

Guided FSR for Bug Detection Ability
Since the amount of the execution time of FOCAL is proportional

to a number of SPFs generated, reducing non-validating SPFs (i.e.,
satisfiable SPFs that correspond to the executions from main to v
but those whose solutions do not validate the target failures) is

important in detecting bugs effectively in a limited testing time.

FOCAL uses under-approximate FSes to reduce non-validating SPFs

because over-approximate FSes may lead compositional concolic

testing to generate many non-validating SPFs.

FSR is crucial for FOCAL in detecting bug effectively because

under-approximate FSes might not provide necessary execution

contexts for ψv . With the help of the Craig interpolants as FS re-

fining constraints, FOCAL generates 11.6 validating SPFs (each of

which consists of 5.2 FSes on average) that reach main from the

target failure lines and whose solutions validate the target failures

per program on average, which is 4.5 times (=11.6/2.6) more than

the validating SPFs generated by FOCAL
−I

. Consequently, FO-

CAL detects 4.4 times (=71/16) more bugs than FOCAL
−I

. Thus,

we can conclude that FSR using the Craig interpolants as refining

constraints significantly improves bug detection ability of FOCAL.

6.2 Effectiveness of Function Relevance-Based
Extended Units for Execution Time and
Bug Detection Ability

Realistic FSes are important for compositional concolic testing tech-

niques to detect bugs effectively in a limited testing time. FOCAL

uses function relevance-based extended units (Sect. 3.2 and Sect. 3.3)

to obtain realistic FSes. Sect. 5.3 demonstrates that the function rel-

evance based extended units contribute in reducing the execution

time and improving bug detection ability of FOCAL.

First, since the amount of the execution time of FOCAL is pro-

portional to a number of target failure lines, the extended units

saved the execution time in a large degree by reducing (false) tar-

get failure lines. FOCAL and FOCAL
−E

identified 67.1 and 313.9

target failure lines and spent 182.5 and 608.9 hours on average per

program, respectively.

8
AFl-fast, KATCH, and Mix-CCBSE detected 8, 7, and 5 crash bugs in 782.5, 1210.3,

and 1610.9 hours, respectively. All bugs detected by them were detected by FOCAL.

Second, the extended units help FOCAL to reduce non-validating

SPF generation. For example, FOCAL
−E

generated 21.3 satisfiable

SPFs that reach main from the target failure lines on average per

program. But, only 5.4 test inputs obtained by solving these SPFs

validate target failures (=25.4%=5.4/21.3). FOCAL generated 14.8

satisfiable SPFs that reach main from the target failure lines and

11.6 test inputs that validate the target failures (=78.4%=11.6/14.8)

on average per program.
9
Thus, we can conclude that the extended

units contribute to build SPFs that closely represent realistic system-

level behaviors of a target program.

Third, the extended units also improve bug detection ability (i.e.,

71 vs. 32 bugs detected by FOCAL and FOCAL
−E

). This is because

the FSes based on extended units (i.e., FOCAL) are more realistic

and more compatible to combine to build SPFs than the ones based

on single function (i.e., FOCAL
−E

). For example, FOCAL generates

0.22 (= 14.8/67.1) satisfiable SPFs that reach main per target failure

line while FOCAL
−E

generates only 0.07 (=21.3/313.9) satisfiable

SPFs that reach main per target failure line.

6.3 Comparison of the Directed Compositional
Concolic Testing Techniques

We compare FOCAL with SMASH [16] and Alter [38] which are

the most closely related work. Since the implementations of these

techniques are not publicly available, we compare them in an ana-

lytic way. FOCAL uses an under-approximate summary of a func-

tion based on its extended unit, and then repeatedly refines the

summary to cover program behaviors that are compatible with the

target failures by using the Craig interpolants.

SMASH [16] generates an over-approximate summary (i.e., may-

summary by predicate abstraction) and an under-approximate sum-

mary (i.e., must-summary by dynamic symbolic execution) of a

function. It uses both summaries to prune the execution space that

do not lead to a target failure. Unlike FOCAL, SMASH does not

refine a must-summary and may fail to detect bugs. The experiment

results with 69 device drivers [16] showed that SMASH is three

times faster than a non-compositional may-must analysis technique

DASH [4], but detects no more bugs than DASH.

Alter [38] explores symbolic space of a program in a goal-driven

way with selectively composing over-approximate FSes.Alter uses

Craig interpolants to check if the current search scope cannot have a

solution towards a target failure. But FOCAL uses Craig interpolants

to refine FSes to build satisfiable SPFs targetingv . The Alter paper
does not show a system-level bug detection ability because Alter

generates only test inputs to a public method nearest to a target

failure (a method call distance from a nearest public method to a

target failure is usually short), not to a program entry function (e.g.,

main in C programs). In contrast, FOCAL generates a test input

that runs P from main to validate a target failure at v and, thus,

fully demonstrates its bug detection ability as a system-level bug

detection technique.

9
A system-level test input obtained by solving a satisfiable SPF still may not vali-

date/reproduce the target failure because ϕa may not represent real behaviors of a
due to a’s symbolic stubs that may return infeasible values.

https://sites.google.com/view/focal-fse19

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Yunho Kim, Shin Hong, and Moonzoo Kim

7 RELATEDWORK
7.1 Compositional Symbolic Analysis
SMART [14] generates a FS as a disjunction of function-wise sym-

bolic path formulas (i.e., conjunctions of constraints over inputs and

outputs of a function). However, since SMART does not refine FSes,

the bug detection ability may be low. Godefroid et al. [14] reported

only a case study on message parsing modules in oSIP without re-

porting bug detection ability. Anand et al. [2] extends SMART [14]

by generating FSes as first-order formulas with uninterpreted func-

tions. It refines a FS by refining uninterpreted functions on demand

(not using Craig interpolants). However, unlike FOCAL that fo-

cuses on generating test inputs to validate target failures that were

quickly identified by concolic unit testing, Anand et al. [2] may

not detect bugs effectively in given limited time as it targets all

uncovered code locations. Anand et al. [2] reported three small case

studies on C# programs where the proposed technique detects only

one more bug than Pex [39]. Qiu et al. [34] proposed a composi-

tional symbolic execution for heap manipulating programs. They

reported the execution time performed by the proposed approach to

explore all feasible program paths, but did not report bug detection

ability of the proposed approach.

For bounded model checking, FunFrog [36] and HiFrog [1] con-

struct over-approximate FSes using Craig interpolants in a proposi-

tional logic and a quantifier-free linear real arithmetics with UF the-

ory, respectively. Asadi et al. [3] proposed an on-demand FSR using

different theories for bounded model checking. Unlike these tech-

niques which use Craig interpolants to generate over-approximate

FSes, FOCAL constructs and refines under-approximate FSes using

Craig interpolants as refining constraints.

7.2 Directed Symbolic Analysis
Mix-CCBSE [30] combines backward call-chain exploration and

forward shortest-distance guided symbolic execution to reach a

given target code line, but without using FSes. Cilocnoc [11] com-

bines symbolic backward execution and search-based concrete for-

ward execution such that forward execution handles complex code

which symbolic backward execution cannot analyze (e.g., external

function calls or complex loops). Since Cilocnoc does not adopt

compositional approach, it may suffer from search space explosion

problem. Cilocnoc’s bug detection ability is evaluated on seven toy

programs by comparing time to reach the given goal line between

Cilocnoc, jCUTE and Symbolic PathFinder.

BugRedux [20] generates a system-level test input that repro-

duces a failure from the system-level failed execution information

such as a call stack dump or a call sequence obtained from the

failed system-level execution. Similarly to BugRedux, Hercules [33]

generates a system-level test input that reproduces a crash in real-

world binary programs from a crash report (e.g., call stack dump,

program state). First, Hercules identifies a crash condition from the

crash report. Then, it performs symbolic execution and computes a

minimal unsatisfiability core if a symbolic path formula σ conflicts

with the crash condition. Hercules guides symbolic execution to

resolve the conflict by negating every clause in σ that appears in

the minimal unsatisfiability core. In contrast, FOCAL uses a Craig

interpolant for FSR to resolve a conflict betweenϕak and summaries

of a current failure-context.
10

In addition, FOCAL can detect un-

known failures where as BugRedux and Hercules cannot detect

unknown failures, but reproduce failures only if information on a

corresponding system-level execution is available.

Jaffar et al. [19] use a Craig interpolant-based search strategy to

prune symbolic paths. Unlike FOCAL that utilizes compositional

concolic testing, Jaffar et al.’s work analyzes a whole program by

performing function inlining (i.e., limited scalability.) Jaffar et al.

reported the execution time spent by the proposed technique to

explore all feasible execution paths in relatively small target bench-

mark programs (i.e., SV-COMP12), but did not report bug detection

ability. KATCH [31] uses a directed forward search strategy to cover

changed portion of source code (i.e., a patch) effectively by using

regression tests as initial tests of symbolic executions.

8 CONCLUSION
We present FOCAL which detects many bugs in programs without

false alarms. A core idea of FOCAL is to effectively and quickly

identify the target failures using concolic unit testing and focus to

generate system-level tests that validate the target failures using

compositional concolic testing with the Craig interpolants-based

function summary refinement. The evaluation with the real-world

C programs shows that FOCAL outperforms fuzzing (AFL-fast) and

directed concolic testing (KLEE and Mix-CCBSE) techniques.

As future work, we will improve the FS composition strategy

to prune the failure-contexts from which validating SPFs may not

be generated. Also, we will improve the accuracy of function rele-

vance metric by using machine learning techniques with various

static and dynamic code features. Furthermore, we will expand

the target domain of the compositional approach to invasive soft-

ware testing [24] to reduce computational cost and mutation-based

fault localization (MBFL) [18, 28, 32] to improve fault localization

precision by generating more failing test inputs.

ACKNOWLEDGMENTS
This research has been supported by Next-Generation Informa-

tion Computing Development Program through NRF funded by

MSIT (NRF-2017M3C4A7068177 and NRF-2017M3C4A7068179), Ba-

sic Science Research Program through NRF funded by MSIT (NRF-

2017R1C1B1008159 and NRF-2019R1A2B5B01069865), and Basic

Science Research Program through NRF funded by MOE (NRF-

2017R1D1A1B03035851).

REFERENCES
[1] Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even Mendoza, Grigory

Fedyukovich, Antti E. J. Hyvärinen, and Natasha Sharygina. 2017. HiFrog: SMT-

based Function Summarization for Software Verification. In Tools and Algorithms
for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 207–213.

[2] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven

Compositional Symbolic Execution. In Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 367–381.

10
Using Craig interpolants as path guiding constraints (FOCAL) may guide concolic

testing to a target path more effectively than the minimal unsatisfiability core based

constraints (Hercules). This is because the Craig interpolant is a goal-driven over-

approximation of the failure conditions constructed so far (i.e., Φv (Sk−1v)) and, thus,

can serve as hints to guide concolic execution toward the target failures. In contrast,

the minimal unsatisfiability core based constraints just prevent concolic execution

from exploring the execution paths that cannot raise the target failures.

Target-Driven Compositional Concolic Testing with Function Summary Refinement for Effective Bug Detection ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

[3] Sepideh Asadi, Martin Blicha, Grigory Fedyukovich, Antti Hyv\"arinen, Karine

Even-Mendoza, Natasha Sharygina, and Hana Chockler. 2018. Function Sum-

marization Modulo Theories. In LPAR-22. 22nd International Conference on Logic
for Programming, Artificial Intelligence and Reasoning (EPiC Series in Computing),
Gilles Barthe, Geoff Sutcliffe, and Margus Veanes (Eds.), Vol. 57. EasyChair, 56–75.

https://doi.org/10.29007/d3bt

[4] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Simmons.

2008. Proofs from Tests. In Proceedings of the 2008 International Symposium
on Software Testing and Analysis (ISSTA ’08). ACM, New York, NY, USA, 3–14.

https://doi.org/10.1145/1390630.1390634

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

based Greybox Fuzzing As Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,

NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[6] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format.

RFC 8259. https://doi.org/10.17487/RFC8259

[7] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test

Generation. In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE ’08). IEEE Computer Society, Washington,

DC, USA, 443–446. https://doi.org/10.1109/ASE.2008.69

[8] Arindam Chakrabarti and Patrice Godefroid. 2006. Software Partitioning for Ef-

fective Automated Unit Testing. In Proceedings of the 6th International Conference
on Embedded Software (EMSOFT ’06). ACM, New York, NY, USA, 262–271.

[9] William Craig. 1957. Three Uses of the Herbrand-Gentzen Theorem in Relating

Model Theory and Proof Theory. The Journal of Symbolic Logic 22, 3 (1957),

269–285. http://www.jstor.org/stable/2963594

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.

In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[11] Peter Dinges and Gul Agha. 2014. Targeted Test Input Generation Using Symbolic-

concrete Backward Execution. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (ASE ’14). ACM, New York, NY,

USA, 31–36. https://doi.org/10.1145/2642937.2642951

[12] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting Con-

trolled Experimentation with Testing Techniques: An Infrastructure and Its

Potential Impact. Empirical Software Engineering 10, 4 (Oct. 2005), 405–435.

[13] Gordon Fraser and Andrea Arcuri. 2013. 1600 Faults in 100 Projects: Automatically

Finding FaultsWhile Achieving High Coverage with EvoSuite. Empirical Software
Engineering 20, 3 (2013), 611–639.

[14] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In Proceed-
ings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’07). ACM, New York, NY, USA, 47–54. https:

//doi.org/10.1145/1190216.1190226

[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). ACM, New York,

NY, USA, 213–223.

[16] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali.

2010. Compositional May-must Program Analysis: Unleashing the Power of

Alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’10). ACM, New York, NY, USA,

43–56. https://doi.org/10.1145/1706299.1706307

[17] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-Based System

Testing: High Coverage, No False Alarms. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA ’12). ACM, New York, NY,

USA, 67–77.

[18] Shin Hong, Taehoon Kwak, Byeongcheol Lee, Yiru Jeon, Bongseok Ko, Yunho

Kim, and Moonzoo Kim. 2017. MUSEUM: Debugging real-world multilingual

programs using mutation analysis. Information and Software Technology 82 (2017),

80 – 95. https://doi.org/10.1016/j.infsof.2016.10.002

[19] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. 2013. Boosting Con-

colic Testing via Interpolation. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA,

48–58. https://doi.org/10.1145/2491411.2491425

[20] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for In-

house Debugging. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 474–484. http://dl.acm.

org/citation.cfm?id=2337223.2337279

[21] Moonzoo Kim, Yunho Kim, and Yunja Choi. 2012. Concolic testing of the multi-

sector read operation for flash storage platform software. Formal Aspects of
Computing 24, 3 (01 May 2012), 355–374. https://doi.org/10.1007/s00165-011-

0200-9

[22] M. Kim, Y. Kim, and H. Kim. 2011. Comparative Study on Software Model

Checkers as Unit Testing Tools: An Industrial Case Study. IEEE Transactions on

Software Engineering (TSE) 37, 2 (March 2011), 146–160.

[23] Yunho Kim, Yunja Choi, and Moonzoo Kim. 2018. Precise Concolic Unit Testing

of C Programs Using Extended Units and Symbolic Alarm Filtering. In Proceedings
of the 40th International Conference on Software Engineering (ICSE ’18). ACM, New

York, NY, USA, 315–326. https://doi.org/10.1145/3180155.3180253

[24] Yunho Kim, Shin Hong, Bongseok Ko, Duy Loc Phan, and Moonzoo Kim. 2018. In-

vasive Software Testing: Mutating Target Programs to Diversify Test Exploration

for High Test Coverage. In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation.

[25] Yunho Kim and Moonzoo Kim. [n.d.]. CROWN: Concolic testing for Real-wOrld

softWare aNalysis. http://github.com/swtv-kaist/CROWN Accessed: 2019-06-29.

[26] Yunho Kim, Youil Kim, Taeksu Kim, Gunwoo Lee, Yoonkyu Jang, and Moonzoo

Kim. 2013. Automated Unit Testing of Large Industrial Embedded Software Using

Concolic Testing. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE’13). IEEE Press, Piscataway, NJ, USA,

519–528. https://doi.org/10.1109/ASE.2013.6693109

[27] Yunho Kim, Dongju Lee, Junki Baek, and Moonzoo Kim. 2019. Concolic Testing

for High Test Coverage and Reduced Human Effort in Automotive Industry. In

International Conference on Software Engineering (ICSE) Software Engineering In
Practice (SEIP) track.

[28] Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moonzoo Kim. To appear. Precise

Learn-to-Rank Fault Localization using Dynamic and Static Features of Target

Programs. ACM Transactions on Software Engineering and Methodology (To

appear).

[29] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.

[30] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. 2011.

Directed Symbolic Execution. In Proceedings of the 18th International Confer-
ence on Static Analysis (SAS’11). Springer-Verlag, Berlin, Heidelberg, 95–111.
http://dl.acm.org/citation.cfm?id=2041552.2041563

[31] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-coverage Testing

of Software Patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 235–245.

https://doi.org/10.1145/2491411.2491438

[32] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the

Mutants: Mutating Faulty Programs for Fault Localization. In Proceedings of the
2014 IEEE International Conference on Software Testing, Verification, and Validation
(ICST ’14). IEEE Computer Society, Washington, DC, USA, 153–162. https:

//doi.org/10.1109/ICST.2014.28

[33] Van-Thuan Pham, Wei Boon Ng, Konstantin Rubinov, and Abhik Roychoudhury.

2015. Hercules: Reproducing Crashes in Real-world Application Binaries. In

Proceedings of the 37th International Conference on Software Engineering - Volume
1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 891–901. http://dl.acm.org/citation.

cfm?id=2818754.2818862

[34] Rui Qiu, Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. 2015. Composi-

tional Symbolic Execution with Memoized Replay. In Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Pis-

cataway, NJ, USA, 632–642. http://dl.acm.org/citation.cfm?id=2818754.2818832

[35] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing

Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA, 263–272.

[36] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2011. Interpolation-

Based Function Summaries in Bounded Model Checking. In Hardware and Soft-
ware: Verification and Testing, Kerstin Eder, João Lourenço, and Onn Shehory

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 160–175.

[37] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and

Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?

An Empirical Study of Effectiveness and Challenges (T). In Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (ASE ’15). IEEE Computer Society, Washington, DC, USA, 201–211. https:

//doi.org/10.1109/ASE.2015.86

[38] Nishant Sinha, Nimit Singhania, Satish Chandra, and Manu Sridharan. 2012.

Alternate and Learn: Finding Witnesses without Looking All over. In Computer
Aided Verification, P. Madhusudan and Sanjit A. Seshia (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 599–615.

[39] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex: White Box Test Generation

for .NET. In Proceedings of the 2Nd International Conference on Tests and Proofs
(TAP’08). Springer-Verlag, Berlin, Heidelberg, 134–153.

[40] Aaron Tomb, Guillaume Brat, and Willem Visser. 2007. Variably Interprocedural

Program Analysis for Runtime Error Detection. In Proceedings of the 2007 Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’07). ACM, New York,

NY, USA, 97–107. https://doi.org/10.1145/1273463.1273478

https://doi.org/10.29007/d3bt
https://doi.org/10.1145/1390630.1390634
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.17487/RFC8259
https://doi.org/10.1109/ASE.2008.69
http://www.jstor.org/stable/2963594
https://doi.org/10.1145/2642937.2642951
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1016/j.infsof.2016.10.002
https://doi.org/10.1145/2491411.2491425
http://dl.acm.org/citation.cfm?id=2337223.2337279
http://dl.acm.org/citation.cfm?id=2337223.2337279
https://doi.org/10.1007/s00165-011-0200-9
https://doi.org/10.1007/s00165-011-0200-9
https://doi.org/10.1145/3180155.3180253
http://github.com/swtv-kaist/CROWN
https://doi.org/10.1109/ASE.2013.6693109
http://dl.acm.org/citation.cfm?id=2041552.2041563
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/ICST.2014.28
http://dl.acm.org/citation.cfm?id=2818754.2818862
http://dl.acm.org/citation.cfm?id=2818754.2818862
http://dl.acm.org/citation.cfm?id=2818754.2818832
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1145/1273463.1273478

	Abstract
	1 Introduction
	2 Illustrating Example
	3 Focused Compositional Concolic Testing Technique (FOCAL)
	3.1 Overview
	3.2 Function Relevance Metric
	3.3 Identification of a Target Failure Line v
	3.4 Function Summary Construction
	3.5 Construction of System-level SPFs to Validate a Failure at v

	4 Experiment Setup
	4.1 Research Questions
	4.2 Target Bugs
	4.3 FOCAL Setup
	4.4 Automated Test Generation Techniques to Compare
	4.5 Measurement
	4.6 Testbed Setting
	4.7 Threats to Validity

	5 Experiment Results
	5.1 RQ1: Bug Detection Ability
	5.2 RQ2: Effect of the Craig Interpolants in FSR
	5.3 RQ3: Effect of the Extended Units on Bug Detection and Execution Time
	5.4 RQ4: New Crash Bug Detection

	6 Discussion
	6.1 Effectiveness of the Craig Interpolants Guided FSR for Bug Detection Ability
	6.2 Effectiveness of Function Relevance-Based Extended Units for Execution Time and Bug Detection Ability
	6.3 Comparison of the Directed Compositional Concolic Testing Techniques

	7 Related Work
	7.1 Compositional Symbolic Analysis
	7.2 Directed Symbolic Analysis

	8 Conclusion
	References

