
Formal Verification of Robot Movements
- a Case Study on Home Service Robot SHR100

Moonzoo Kim, Kyo Chul Kang
Computer Science and Engineering Department
Pohang University of Science and Technology

Pohang, South Korea
{moonzoo,kck}@postech.ac.kr

Hyoungki Lee
Interaction Lab.

Samsung Advanced Institute of Technology
Suwon, South Korea

twinclee@samsung.com

Abstract— Home service robots have received much atten-
tion from both academia and industry because home service
robots have wide range of potential applications such as
home security, cleaning, etc. The robots need to add or
update services frequently according to the changing needs of
human users. Furthermore, reactive nature of the robots add
complexity to develop robot applications. These challenges
raise safety issues seriously. Considering that safe operation
of home service robots is crucial, current practice of validating
robot applications is, however, not mature enough for wide
deployment of home service robots.

In this paper, we present our experience of developing
and formally verifying discrete control software of Samsung
Home Robot (SHR) using Esterel. We give a brief background
on Esterel, then illuminate our result in formally verifying
stopping behavior of SHR. Through the verification, we could
detect and solve a feature interaction problem which caused
the robot not to stop when a user commanded the robot to
stop.

Index Terms— robot programming, formal verification, dis-
crete controller synthesis

I. INTRODUCTION

Accompanying advances in robotics, control theory, and
computer science, personal robots (e.g. health care and
home security, etc) have received strong support from both
academia as well as industry. Home service robots have
immediate impacts on increasing quality of human life in
a wide range of potential applications.

Home service robots are required to achieve task goals in
various situations. For example, during navigation, a robot
must recognize obstacles that appear suddenly (e.g. pets or
babies) and modify its path without damaging the obstacles.
In addition, interaction between a user and a robot should
be user-oriented, i.e., a robot should be intelligent enough
to recognize various forms of commands such as voice and
motion and generate output in a convenient way to the user.
Furthermore, service features are dynamically changing to
address the needs of the application areas, some of which
are still being developed. Finally, many applications should
satisfy stringent safety requirements.

Due to the above complicated challenges, the robot
applications become increasingly complex. Thus, the appli-
cations and services are created by integrating technology
intensive components (vision, speech, path planning, etc).
Due to limited development resources, robot developers,

however, tend to concentrate on technology oriented com-
ponents at the early stage of product development without
considering how they will be integrated. Consequently,
initial products are often developed by integrating these
components in an ad-hoc way, which often creates feature
interaction problems [1] [2]. Feature interaction problems
are hard to solve because it is difficult to see how com-
ponents behaviors are coordinated by traditional validation
methods such as code inspection or testing. Code inspection
is effective to find static bugs such as missing initialization
or type mismatches, but weak at detecting faulty behaviors.
Testing has incomplete coverage and always leaves unde-
tected bugs. Furthermore, building a test environment for
robots is highly complicated, because reproducing the same
fault is difficult due to nondeterministic behaviors of the
robots caused by timing and concurrency. Consequently,
testing and debugging processes often take more than half
of total development time.

Therefore, it is a challenging task to validate and verify
quality requirements such as safety and real-time properties
of home service robots [3] [4] [5]. This task is, however, a
prerequisite for wide deployment of home service robots.
Necessity of formal validation and verification (V&V) has
been well-recognized in robotics areas [6] [7]. Also, robot
domain specific V&V frameworks such as ORCAAD [8]
and MAESTRO [9] have been developed. In robot industry,
however, a practice of applying formal V&V is not popular
because there are not enough field experiences of formal
V&V in the industry yet. We belive, however, that formal
V&V can be a complementary solution for increasing
quality of products.

In this paper, we describe our experience in formally
verifying Samsung Home Robot (SHR) developed by Sam-
sung Advanced Institute of Technology (SAIT). We re-
engineered a discrete controller of SHR using Esterel [10]
and performed formal V&V about stopping behaviors of
SHR. After explaining brief background of the Esterel
framework, we illuminate our verification results on SHR
and describe a feature interaction problem detected and
solved during the verification process.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 4739

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:05 from IEEE Xplore. Restrictions apply.

II. BACKGROUND OF SHR

SHR is a prototype of home service robot for daily home
services such as vacuum cleaning and controlling home
appliances, etc. HW components and services of SHR are
described in Sec II-B and Sec II-C respectively.

A. Project Background

SHR100 is a successor of SHR50 and SHR00. De-
velopment of SHR00 started in 2002 by four separate
teams of SAIT consisting of 13 people working on speech
recognition, vision recognition, map building, and actuator
control. SHR50 as well as SHR00, however, exhibited
often unstable behaviors such as missing user commands
and stuttered movement although each part had worked
successfully when not integrated (this kind of failure is
not uncommon in robotics field [3]). As a consequence,
SAIT decided to give up SHR50 and SHR00 and develop
SHR100 from scratch. To prevent similar problems, SAIT
requested POSTECH to design a software architecture after
ten months into the new development (at that point, high-
level specifications of SHR100 was documented. Also a
part of control software was implemented including “call
and come” service (see Sec II-C) and related features).

At that request, POSTECH reviewed the specifications
and the implementation of SHR100, and then re-engineered
existing implementation. 1 POSTECH focused on produc-
ing working code of high reliability. With conventional
programming framework using C/C++, it seemed difficult
to achieve this goal. We decided to use the Esterel frame-
work for its concise language for programming reactive
systems and its support of formal verification by model
checking. Furthermore, Esterel is a mature framework with
commercial support [12].

B. Components of SHR100

SHR100 has a single board computer (Pentium IV
2.4Ghz with 512MB memory running embedded Win-
dowsXP) controlling peripherals as follows.

• Input peripherals

– 1 ceiling camera for building a map (640x480
resolution and 5 frames/s)

– 1 front camera for recognizing users and remote
surveillance (320x240 resolution and 15 frames/s)

– 8 microphones for speaker localization and
speech recognition (8 Khz sampling rate)

– 1 structure light sensor for obstacle detection

• Output peripherals

– 1 LCD display for information display
– 1 speaker for speech generation
– 2 actuators for right and left wheels

• Input/output peripheral

– Wireless LAN for communicating to a home
server

The components of SHR100 are illustrated in Figure 1.

1For more details on the re-engineering process of SHR100, see [11].

Fig. 1. Components of SHR100

C. Services of SHR100

Some of the primary services of SHR100 are described
as follows.

• Call and Come (CC)
This service first analyzes audio data sampled from
eight microphones attached to the surface of the robot,
to detect predefined sound patterns (e.g., hand clap or
voice command). There are two commands “come”
and “stop”. Once a “come” command is recognized,
the robot tries to detect the direction of sound source
by comparing the strength of sound captured by the
eight microphones. Then, the robot rotates to the
direction of sound source and tries to recognize a
human face by analyzing video data captured by the
front camera. If the caller’s face is detected, the robot
moves forward until it reaches within 1 meter from
the caller. A “Stop” command makes the robot stop.
If command recognition, sound source detection, or
face recognition fails, CC resets to the initial state.
CC is preemptible, i.e., while CC is executed, newly
recognized command makes the robot ignore a previ-
ous command and follow the new one.

• User Following (UF)
This service is triggered right after CC is completed.
The robot uses two inputs to locate the user: the front
camera and the structured light sensor. Once UF is
triggered, the robot constantly checks vision data from
the front camera and sensor data from the structured
light for locating the user. At the same time, the robot
keeps following the user within 1 meter range. If
the robot misses a user, the robot notifies user by
speaking “I lost you” and UF turns into CC. Then,
the user makes a “come” command to let the robot
recognize the user and restart UF. Similar to CC, UF
is a preemptible service.

• Security Monitoring (SM)
The robot patrols around a house for surveillance
using the map generated by Simultaneous Localiza-
tion and Map building (SLAM) module. Intrusion or
accidents are defined as patterns recognizable from
vision and sound data. For example, intrusion can
be detected by watching images and sounds from
doors and windows. Once such an event is detected,

4740

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:05 from IEEE Xplore. Restrictions apply.

the robot notifies the user directly via an alarm or
indirectly through a home server.

• Tele-presence (TP)
A remote user can control the robot using a PDA.
The robot sends the remote user a map of the house
generated by the SLAM module periodically. The user
can command the robot to move to a specific position
in the map displayed at the PDA. In addition, the robot
can send images obtained from the front camera to the
remote PDA for surveillance.

III. BACKGROUND OF THE ESTEREL FRAMEWORK

A. The Esterel Language

Esterel is a programming language for reactive systems
that wait for a set of inputs, and react to the inputs by
computing and producing outputs, and then wait for new
inputs again. Since Esterel is based on the “synchrony
hypothesis” [10], every reaction to a set of inputs should
be instantaneous. In practice, this means that a system
should react to input signals before input signals of the next
cycle arrive. Synchrony hypothesis considerably simplifies
the specifications of reactive systems. Furthermore, many
application areas satisfy this hypothesis.

A program written in Esterel specifies components
(called modules) running in parallel. Modules communicate
with each other and the outside world through input/output
signals. Signals are broadcasted and may carry values of
arbitrary types. Operators in the Esterel language have pre-
cisely defined mathematical semantics. An Esterel program
has its “meaning” as a finite state Mealy machine (FSM)
whose transition edges are labeled with pairs of input
and output signals. The Esterel compiler automatically
performs the interleaving between parallel modules and
generates a single FSM in C regardless of numbers of paral-
lel modules. Thus, the parallelism in Esterel is a structuring
tool for programming convenience. For example, a program
ABRO [13] emits an output O as soon as two inputs A and B
have occurred. The ABRO program resets this behavior each
time an input R occurs. Fig 2 shows the ABRO program and
the corresponding FSM.

Fig. 2. An ABRO example and the corresponding FSM

B. The Esterel Toolset

Esterel toolset consists of three components: the
esterel Esterel-to-C compiler, the xes graphical simu-
lator, and the xeve [14] model checker.

1) The esterel Compiler: One advantage of Esterel
over other formal modeling languages such as CCS or
PROMELA is efficient C code generation. Once a devel-
oper has verified the correctness of an Esterel program,
he/she can automatically generate correct C code without
manual conversion from a formal specification to working
code. Furthermore, esterel generates platform neutral
C code so that a developer can port an Esterel program
to different OS/HW platforms (e.g. Windows to Linux, or
vice versa) without difficulty. Finally, esterel compiler
provides interfaces between Esterel and C so that an Esterel
program can call external C functions and existing C
code can emit/receives signals to/from the Esterel program
seamlessly.

2) The xes Graphical Simulator: xes supports in-
teractive simulation as well as session recording/replay.
Given an Esterel program, a user can execute the program
symbolically selecting input signals to emit and advancing
ticks (time instants) (see Fig 3). Thus, without detailed C
implementation for hardware, software controller specified
in Esterel can be simulated and tested. xes is also used to
examine the execution trace of a counter example generated
from xeve.

Fig. 3. Snapshot of xes

3) The xeve Model Checker: xeve minimizes and
analyzes a FSM generated from an Esterel program. Basic
verification process of xeve is to check presence of an
output signal with given configuration of input signals by
model checking [15]. First, a user selects input signals as
“always present”, “always absent”, or “randomly present”.
Then, the user selects an output signal to check if it can
be emitted with given configuration of the input signals.
Simple properties such as “if a user does not give a
command to a robot, the robot must not move” (see Sec IV-
B) can be checked simply in this way. More complex
property can be checked by building an observer module
which emits a violation signal when the property is violated
(See Sec IV-C).

IV. FORMAL VERIFICATION OF SHR100

In this section, we describe safety properties P1, P2, and
P3 regarding stopping behavior of SHR100. We describe

4741

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:05 from IEEE Xplore. Restrictions apply.

the most primitive safety property P1 first, then incremen-
tally refine P1 into P2 and P3. Sec IV-B and Sec IV-C
show if the controller running CC only satisfies P1, P2,
and P3. Sec IV-D shows if the controller running CC with
UF together satisfies P1, P2, and P3.

A. Overview of the CC Implementation

We re-implemented a discrete controller of SHR100
written in C++ into Esterel after separating control oriented
parts from data oriented parts (e.g., vision and speech
recognition). In this section, we describe the CC service
implementation in the control software as an example. 2

A main control procedure for the CC service was imple-
mented in ProcessState() illustrated in Fig 4.

01:void processState() {
02: ...
03: switch(m_order) {
04: case 0: STOP();
05: m_order++;
06: break;
07: case 1: ROTATE();
08: m_order++;
09: break;
10: case 2: static int nCount = 0;
11: if (abs(m_befO-curO)==0) nCount++;
12: else nCount = 0;
13: if (nCount > 2) m_order++;
14: break;
15: ...
16: case 9: CNC_DONE();
17: m_order = -1;
18: break;
19: ...
20:}/* End of processState()}

Fig. 4. A main control procedure for CC service in C++

ProcessState() is called periodically once in every
100 miliseconds to react an input from a user. Given a user
command, CC executes through sequential “steps”. Each
step is identified by the value of m order and represented
by corresponding case statements block. At the end of each
case statements block, m order is updated to indicate the
next step. After one step is executed, ProcessState()
is terminated and called again after 100 miliseconds. If
a new command is given between these two adjacent
invocations, a previous command is ignored and the new
command is processed.

This pattern of reactive programming is an straight-
forward way of implementing preemtion, but error prone.
For example, at line 13, nCount is used for testing two
times whether SHR stops rotation. Testing may happen
, however, only one time. This is because nCount is
declared as a static local variable at line 10 and can be
greater than two all the time. This error decreases accuracy
of user recognition due to blurred image captured while the
robot does not stop rotation completely. As more service
features are added to SHR, the complexity of C/C++
code increases exponentially. Soon, a developer can hardly
manage and debug the program.

2The size of complete CC implementation was around 4000 lines of
C/C++.

Esterel prevents such errors by handling a preemp-
tive event e with a preemption operator EVERY e DO
statements END EVERY (see line 10 to line 21 in Fig 5).
Fig 5 is a skeleton of the re-implemented CC service in

01:module control_plane: % Control software
02:input COME_COMMAND, STOP_COMMAND, ...
03:output STOP, ROTATE, GO, CNC_DONE, UF_DONE,...
04: run cc||run uf || run tp || run sm ...
05:end module
06:
07:module cc: % Call and Come service
08:input COME_COMMAND, STOP_COMMAND;
09:output STOP,ROTATE,GO,CNC_DONE,...
10: every [COME_COMMAND or STOP_COMMAND] do
11: present
12: case COME_COMMAND do % come command
13: emit STOP; pause;
14: run rot_det;
15: ...
16: emit CNC_DONE;pause;
17: case STOP_COMMAND do % stop command
18: emit STOP;
19: emit CNC_DONE;pause;
20: end present;
21: end every
22:end module
23:...

Fig. 5. Skeleton Esterel code for the CC service

Esterel. A module control plane (line 1 to line 5)
represents a whole control software including a CC service
cnc, a UF service uf, and so on (see line 4). Communi-
cation among modules is implemented using input/output
signals declared at line 2 and line 3. COME COMMAND
and STOP COMMAND are input signals corresponding to
the “come” and “stop” commands respectively. A “come”
command is handled from line 12 to line 16 and a
“stop” command is handled from line 17 to line 19. A
task of rotating and recognizing the user is implemented
as a submodule rot det and executed at line 14. As
we have seen, Esterel implementation defines components
concretely using modules and shows interaction among the
components clearly using explicit input/output signals. This
feature facilitates testing and debugging interactions among
components easily.

B. Verification of the CC Service without an Observer

Fig 6 shows the snapshot of xeve verifying the CC
service only, not together with other services. Consider a
following property P1. 3

P1 : If a user does not give a command to the
robot, the robot must not move.

There are only two input commands - COME COMMAND
and STOP COMMAND . Also, there are only two out-
put signals which can move the robot - GO and
ROTATE. We can verify P1 by setting COME COMMAND
and STOP COMMAND as “always absent” (marked as blue
in the left window of Fig 6), selecting GO as an output

3Notice that P1 should be satisfied all the time and with all internal
configurations/states of SHR100 which may change through executions
(not with just one specific configuration/state).

4742

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:05 from IEEE Xplore. Restrictions apply.

signal to check, and pressing the “Apply” button of xeve.
Then, xeve shows that GO is never emitted by the robot
(indicated in the right window of Fig 6). In the same way,
we can check whether ROTATE is emitted ever and see
that ROTATE is never emitted. Thus, we can conclude that
the CC service satisfies P1.

Although this safety requirement P1 looks obvious, this
requirement is important for ensuring safe operation of the
robot in a house. Violation of P1 means that the robot can
move autonomously without a user’s command and cause
damage to furniture or a human. Furthermore, guaranteeing
satisfaction of P1 is a challenging task without model
checking because a developer has to find out all possible
test cases manually and perform testing one-by-one without
error.

Slightly more refined property regarding movements of
the robot can be described as P2.

P2 : If a user does not give a “come” command,
but may give a “stop” command to the robot, the
robot does not move.

We can verify that the CC service satisfies P2.

C. Verification of the CC Service using an Observer

To verify more complicated properties, we need to build
an observer which is an Esterel module to detect violations
of the properties. Suppose a property P3.

P3 : If a user gives a “stop” command, the
robot stops and does not move without any new
command.

We can incorporate an observer described in Fig 7 with
a cc module in parallel. Programming an observer is more
familiar to most robot developers than writing a temporal
logic (TL) [16] formula. 4

01:module observer:
02:input STOP_COMMAND,COME_COMMAND,ROTATE,STOP,GO;
03:output STOP_VIOLATION;
04:weak abort
05: every immediate STOP_COMMAND do
06: present STOP then
07: loop
08: present [ROTATE or GO]
09: then emit STOP_VIOLATION;
10: end present;
11: pause;
12: end loop;
13: end present
14: emit STOP_VIOLATION;
15: end every
16:when COME_COMMAND;
17:end module

Fig. 7. An observer for detecting STOP VIOLATION

observer emits STOP VIOLATION at line 9 and line
14 if P3 is violated. If a “stop” command is given (line 5)
and the robot stops immediately (line 6), then the observer
keeps watching if the robot rotates or moves forward (line
7 to line 12) unless any new command is given by the user.

4We can translate a safety property written in temporal logic into an
observer in Esterel [17].

We can see that STOP VIOLATION is never emitted with
all possible configurations of input signals through xeve.

D. Verification of the Concurrent CC and UF Services

We checked if the control software consisting of the
CC and UF services satisfied P1 and P2. We could see
that the control software satisfied P1, but surprisingly not
P2. Verification result said that ROTATE and GO could
be possibly emitted when COME COMMAND command was
absent and STOP COMMAND command might be given.
In general, verification result of xes is sound but not
complete because a FSM is generated from an Esterel
program without evaluating expressions. Therefore, a user
should check whether a violation report is a real one or a
false alarm. To support this activity, xeve has a facility of
generating an execution trace of a counter example which
can be simulated by xes. 5

Through simulations of the Esterel program, we could
figure out that UF made the robot rotate and move forward
when a “stop” command was given (i.e., the violation was
a real one). This was because that UF was triggered by
CNC DONE which was emitted by CC when a “come”
command or a “stop” command was successfully processed
(see Sec II-C and line 16 and line 19 of Fig 5). UF
should had been triggered only after a “come” com-
mand was processed, not after a “stop” command was
processed. We refined CNC DONE into CNC COME DONE
and CNC STOP DONE. Then, we modified the UF imple-
mentation so that only CNC COME DONE could invoke UF.
After this modification, we could see that P2 was satisfied
by the concurrent CC and UF services.

We checked if P3 was satisfied by the revised control
software which had CC and UF running concurrently. We
built an Esterel program having a UF module uf, a CC
module cc, and an observer observer in parallel. We
could use observer developed to check P3 with the CC
service only (see Fig 7) without modification. This was
because change of the target system (uf being added) was
not relevant to observer as long as interface between
the target system and observer was identical. We could
see that the control software satisfied P3.

E. Experimental Result in the Verification

We used a WindowsXP machine with Pentium IV 2.8C
and 1GB memory for the verification. Verification of
P1, P2, and P3 took less than 10 seconds and 128 MB
memory, which was not burdensome to developers. Notice
that what we had worked on was real implementation, not
an abstract model. We replaced existing C/C++ implemen-
tation of control software loaded on the SHR100 hardware
with C code generated from the Esterel program. By
running the control software proved correct with regard to
P1, P2, and P3, SHR100 could operate with high reliability.

As we have seen through Sec IV-B to Sec IV-D, defining
safety properties rigorously takes considerable effort. Such

5xeve v5.92 on Windows platform which we used, however, had a bug
that an execution trace of a counter example was not correctly generated.

4743

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:05 from IEEE Xplore. Restrictions apply.

Fig. 6. Snapshot of Xeve verification windows

effort can, however, reduce overall development cost and
field operation cost by increasing reliability of applications
and reducing testing and debugging processes.

V. CONCLUSION

We have reported a case study of developing and veri-
fying discrete controller of a home service robot SHR100.
Given various service requirements of home service robots,
coordinating diverse services in timely and safe manner is a
significant challenge. The gist of our approach is to develop
and verify systems in an integrated framework, not sepa-
rately, to increase reliability of SHR100. We used Esterel
to develop working code of SHR100 and to verify safety
requirements on stopping behaviors. We demonstrated that
formal V&V could increase the reliability of a working
system; using model checking, we detected and solved a
feature interaction problem which caused the robot not to
stop when a user gave a “stop” command. We believe
that the cost of learning and adopting a new programming
language like Esterel can be paid back by increased product
quality as well as reduced testing/debugging time.

We will handle the resource management problem which
is frequent source of unstable behaviors such as stuttering
movement and ignorance of user input under heavy re-
source utilization. For this purpose, Monitoring and Check-
ing framework [18] can be explored as an additional help.

REFERENCES

[1] E. J. Cameron and H. Velthuijsen. Feature interactions in telecom-
munications systems. IEEE Communications Magazine, 31(8):46–
51, Aug 1993.

[2] P. Zave. Architectural solutions to feature-interaction problems in
telecommunications. Feature Interactions in Telecommunication and
Software Systems V, Sep 1998.

[3] A. C. Domı́nguez-Brito, D. Hernández-Sosa, J. Isern-González, and
J. Cabrera-Gámez. Integrating robotics software. IEEE International
Conference on Robotics and Automation, 2004.

[4] E. Coste-Manière and R. Simmons. Architecture, the backbone of
robotic systems. IEEE International Conference on Robotics and
Automation, 2000.

[5] A.C. Domingues, M. Andersson, and H.I. Christensen. A software
architecture for programming robotic systems based on the discrete
event paradigm. Technical Report ISRN KTH/NA/P–00/13–SE
– CVAP 244, Numerical Analysis and Computer Science, KTH,
Stockholm, Sept. 2000.

[6] B. Espiau, K. Kapellos, and M. Jourdan. Formal verification in
robotics: Why and how? International Symposium on Robotics
Research, Oct 1995.

[7] L.E. Pinzon, H.-M. Hanisch, M.A. Jafari, and T. Boucher. A com-
parative study of synthesis methods for discrete event controllers.
Formal Methods in System Design, 15(2):123–267, 1999.

[8] J. Borrelly, E. Coste-Maniére, B. Espiau, K. Kapellos, R. Pissard-
Gibollet, D. Simon, and N. Turro. The orccad architecture. Inter-
national Journal of Robotics Research, 17(4):338–359, 1998.

[9] E. Coste-Maniére and N. Turro. The maestro language and its
environment : Specification, validation and control of robotic mis-
sions. Proceedings of the 10th IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1997.

[10] G. Berry. The foundations of esterel. Proof, Language and
Interaction: Essays in Honour of Robin Milner, 2000.

[11] M. Kim, J. Lee, K. Kang, Y. Hong, and S. Bang Re-engineering
Software Architecture of Home Service Robots: A Case Study To
appear at International Conference on Software Engineering, 2005.

[12] Esterel technology, inc. Technical report, http://www.esterel-
technologies.com/v3/, 2004.

[13] G. Berry. The esterel v5 langauge primer version v5.91. Technical
report, INRIA, France, 2000.

[14] A.Bouali. Xeve: an esterel verification environment. Technical
report, INRIA, Dec. 2000.

[15] E.Clarke, O. Grumberg, and D. Long. Verification Tools for Finite
State Concurrent Systems. In J.W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, A Decade of Concurrency-Reflections
and Perspectives, volume 803, pages 124–175, Noordwijkerhout,
Netherlands, 1993. Springer-Verlag.

[16] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, New York,
1992.

[17] L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety prop-
erty verification of Esterel programs and applications to telecom-
munications software. In P. Wolper, editor, Proceedings of the 7th
International Conference On Computer Aided Verification, volume
939, pages 127–140, Liege, Belgium, 1995. Springer Verlag.

[18] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-
mac: A run-time assurance approach for java programs. Formal
Methods in System Design, 2004.

4744

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 22, 2008 at 06:05 from IEEE Xplore. Restrictions apply.

