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Abstract—As web technologies have evolved, the complexity of
dynamic web applications has increased significantly and web
applications suffer concurrency errors due to unexpected orders
of interactions among web browsers, users, the network, and
so forth. In this paper, we present WAVE (Web Application’s
Virtual Environment), a testing framework to detect concurrency
errors in client-side web applications written in JavaScript.
WAVE generates various sequences of operations as test cases
for a web application and executes a sequence of operations by
dynamically controlling interactions of a target web application
with the execution environment. We demonstrate that WAVE is
effective and efficient for detecting concurrency errors through
experiments on eight examples and five non-trivial real-world
web applications.

I. INTRODUCTION

Web technologies including web browsers, JavaScript, and
client-server technologies, have evolved quickly, and the com-
plexity of client-side dynamic web applications (a.k.a., Ajax
applications) also has increased rapidly. Although JavaScript
has a single thread execution model, a dynamic web applica-
tion written in JavaScript can suffer from concurrency errors
due to unexpected execution orders [6], [13], [18], [23]. This
is because execution of a web application involves operations
with multiple external entities such as users, the network, and
servers that behave non-deterministically.

Because mobile web applications that run on different
platforms (i.e., various web browsers and operating systems,
with various network speeds) are widely used, concurrency
errors due to non-deterministic behaviors of these environ-
ments can provide serious threats to web applications. In
addition, concurrency issues are becoming more serious for
web applications because a new web standard, HTML5, allows
web applications to exploit concurrent features and provide
interactive services by utilizing multi-core CPUs. Thus, it
is important to develop a testing framework that can detect
concurrency errors in JavaScript applications systematically.

In this paper, we present WAVE (Web Application’s Virtual
Environment), a testing framework to detect concurrency er-
rors in client-side JavaScript web applications. WAVE consid-
ers a concurrent execution of a web application as a sequence
of operations, and generates various sequences of operations
as test cases. WAVE causes the web application to exercise
the generated test cases by controlling the virtual environment
of the target web application at runtime. In addition, WAVE
prioritizes test cases for faster detection of concurrency errors.

To demonstrate the effectiveness (in terms of how many
concurrency errors are detected) and efficiency (in terms
of time taken to detect concurrency errors) of WAVE, we
have performed a series of experiments on eight benchmark
applications and five real-world open-source web applications.
In the experiments, WAVE detected concurrency errors in all
eight benchmark programs and detected new concurrency bugs
in the five real-world web applications (these bugs have been
reported to the developers of the web applications).

The contributions of this paper are as follows:
• This paper presents a formal concurrent execution model

for JavaScript web applications that can clearly describe
concurrency problems in those applications.

• The paper proposes a new testing framework that detects
concurrency errors in JavaScript applications effectively
and efficiently by generating and enforcing various se-
quences of operations. In addition, WAVE utilizes three
different test case prioritization heuristics to detect likely
concurrency errors faster.

• The paper presents an empirical evaluation of WAVE
targeting eight benchmark programs and five real-world
JavaScript web applications. The results demonstrate that
WAVE can detect various concurrency errors quickly and
also show that WAVE was able to detect five new bugs
in real-world applications.

The remainder of this paper is organized as follows. Sec-
tion II provides background information on JavaScript appli-
cations, specifically regarding possible concurrency problems.
Section III describes the WAVE framework. Section IV ex-
plains the setup for the experiment to demonstrate the effec-
tiveness and efficiency of WAVE and Section V describes the
results of the experiments. Section VI discusses observations
derived from the experiments. Section VII explains related
work, and Section VIII concludes the paper with future work.

II. BACKGROUND

A. Execution of JavaScript Web Application
A dynamic web application consists of multiple web pages

that contain HTML code and JavaScript code. One web page
can utilize multiple HTML files through iframe elements,
external script elements in a page, and dynamic script load-
ing [4]. Based on the W3C standard specifications [1], we can
model an execution of a web application as a sequence of
parsing operations and event handling operations.



<!‐‐main.html ‐‐>
<html> 
<body>
<button id=“b1” onclick=“fn()”>
Button

</button>
<iframe src=“sub.html” id=“i1”/>
<script src=“lib.js”></script>

</body> 
</html>

<!‐‐ sub.html ‐‐>
<html> 
<body>
<div> Hello </div>
</body> 
</html>

<!‐‐ lib.js ‐‐>
fn = function() { … } ;
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Fig. 1. A JavaScript web application containing a concurrency bug

• A parsing operation interprets the HTML code to generate
a corresponding Document Object Model (DOM) tree to
construct a logical presentation of the page. In addition,
a parsing operation interprets the JavaScript code of
the page to define event handler functions or perform
computations.

• An event handling operation occurs as follows. First, a
user provides an input to the web page by triggering
an event on the DOM tree such as clicking on buttons
or pressing keys on text fields. Then, as a response to
the event, the web browser invokes a JavaScript function
defined as a handler of the event in a web page (i.e., event
handling operation) as follows:

– Operations to handle network events
A web application runs an operation for a onload
event when a corresponding external file (e.g., an
image file) is completely downloaded. A web appli-
cation runs an operation for a response event (i.e.,
onreadystatechange) when a response from a
server is received.

– Operations to handle user input events
A user input event on the element of a target appli-
cation (e.g., a mouse click on a button) invokes an
operation to execute a corresponding event handler
function.

– Operations to handle timed events
A web application runs an operation to ex-
ecute a corresponding event handler for peri-
odic timed events, which are registered by using
setTimeout()/setInterval().

A web browser executes an operation atomically and exe-
cutes only one operation at a time. Note that an execution of a
web application within one page (i.e., without changing URLs)
can contain multiple event handling operations for multiple
events. In addition, an execution of a web application can

contain multiple parsing operations because:
• If the HTML/JavaScript code of a web page is contained

in multiple files, a web browser should parse each file
separately (i.e., repeat a parsing operation multiple times)

• A web browser pauses a parsing operation when it
reaches a waiting point during parsing, and then invokes
a subsequent parsing operation to complete the parsing
from the waiting point. Modern web browsers define the
following three waiting points [8], [9]:

– when parsing a script element for an external file
– when parsing an HTML element whose content is

longer than a buffer size (e.g., 8 KByte for WebKit)
– when executing a JavaScript instruction alert()

that requests a user to click the alert message button.
Unintended scheduling of these operations due to non-

deterministic behaviors of the environment of a target appli-
cation can cause concurrency errors (for example, although
a developer assumes that t1.js is downloaded earlier than
t2.js which calls a function in t1.js, t2.js can be
downloaded earlier than t1.js due to different network
speeds).

For example, Figure 1 illustrates a JavaScript application
example with a concurrency error. Figure 1(a) shows that the
application code consists of main.html, sub.html, and
lib.js. main.html has a button b1 (lines 3–5) for which
a mouse click event is registered to call fn() defined in
lib.js (line 21) and an iframe element (line 6) whose
content is in sub.html. Figure 1(b) shows six sequences
of operations of this application σ0 to σ5, each of which
consists of three parsing operations p1, p2, p3 and one event
handling operation e1. p1 parses lines 1–6 of main.html and
stops to wait for lib.js to be downloaded (line 7). p2 starts
parsing lines 7–9 of main.html and line 21 of lib.js
after lib.js is downloaded. p3 begins parsing sub.html
(line 11–15) after sub.html is downloaded. For example,
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<!‐‐main.html ‐‐>
01  <html> <body>
02    <script>
03      var more = document.createElement(‘more’) ;
04      more.src=“extn.js”;
05      head.appendChild(more) ;  
06    </script>
07    <button id=“b1” onclick=“fn()”>  </button>
08  </body> </html>

<!‐‐ extn.js ‐‐>
11   function fn() { … } 

Error: fn()
is undefined 

Error: fn() is 
undefined 
(line 7)

Fig. 2. An order violation example

<!‐‐main.html ‐‐>
01  <html> <body>
02    <button id=“b1” onclick=“fn()”> b1 </button>
03    <script>
04        function fn() {
05               m = null ;} ;
06       </script>

07       <script src=“lib.js” > </script>
08       <script>
09               m = {data: “” } ;
10       </script>

11       <script src=“extn.js” > </script>
12       <script>
13               m.data = “text” ;
14       </script>
15   </body> </html>
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Fig. 3. An atomicity violation example

σ0 represents an execution where p1, p2, p3 and e1 occur in
the sequence.

In the example, σ3, σ4 and σ5 where e1 precedes p2 are
error executions that fail to run fn(), because fn() is not
defined yet. Note that p1 always occurs before p2, p3, and e1
since a user can click b1 only after b1 is created by p1. The
execution orders between p2, p3, and e1, however, depend on
when lib.js and sub.html are downloaded and when a
user clicks b1. For example, p2 occurs before p3, if lib.js
is downloaded before sub.html (i.e., σ0, σ1, and σ4) or
vice versa if sub.html is downloaded before lib.js (i.e.,
σ2, σ3, and σ5). As we have seen in this example, although
a web browser executes only one operation at a time, a web
application can still suffer from concurrency errors.

B. Concurrency Bug Patterns in JavaScript Web Applications

A concurrency error in a JavaScript web application is
caused by an illegal execution order of operations. There
are two common concurrency bug patterns in JavaScript web
applications: order violations and atomicity violations [25].

An order violation refers to a unintended race condition
among two operations that must be executed in one order,
but due to a programming mistake are executed in the reverse
order. The order violation coincides with the race bug pattern
defined in Petrov et al. [17] and Raychev et al. [19]. Figure 2
shows an order violation example. main.html dynamically
loads the external file (extn.js) (lines 3–5) that contains
fn() function definition (line 11). Thus, invoking fn()
should not occur before extn.js is loaded and fn()

is defined. Figure 2(b) shows a correct execution scenario
where the web page works correctly because extn.js is
loaded before clicking b1. However, clicking button b1 before
extn.js is loaded causes an error. Figure 2(c) shows such
an erroneous execution scenario.

An atomicity violation refers to a unintended race condition
that permits an operation to be scheduled between two oper-
ations that should be executed consecutively [25]. Figure 3
describes an example of an atomicity violation. main.html
creates a button b1 whose event handler is a function fn().
As main.html has two external script elements (at line 07
and at line 11), the parsing of main.html consists of the
following three operations: parsing lines 01-06, parsing lines
07-10, and parsing lines 11-15. The third parsing operation
should be executed only when m.data is defined by the
second parsing operation (line 09). As shown in Figure 3(b),
the web page does not produce any error when the second
and the third parsing operations are executed consecutively.
However, as shown in Figure 3(c), if a user clicks b1 between
the second and the third parsing operations, the execution
raises an error because m is set to null by fn().

III. WAVE FRAMEWORK

A. Overview

Figure 4 illustrates the Web Application’s Virtual Environ-
ment (WAVE) framework. First, WAVE monitors an execution
of a target web application with a given user input scenario
(called the execution σ0). Then, WAVE generates various



feasible operation sequences as test cases by alternating the
order of the operations in σ0 systematically. Finally, WAVE
executes the application with these test cases and checks
whether these different test cases produce different results (i.e.,
a concurrency error). WAVE determines that a web application
has a concurrency error if, with the same sequence of user
input events, the final DOM tree states of the application are
different. Since WAVE generates all test cases based on σ0
that keep the same sequence of user input events as σ0, the
results of the test cases should be the same. We assume that the
given execution σ0 shows the correct behavior. WAVE detects
concurrency errors in a target application in the two phases, a
test generation phase and a test execution phase.

In the test generation phase, the execution recorder obtains
a monitored execution σ0 by monitoring an execution (i.e.,
a sequence of operations) that contains interactions between
a target application and its environment (e.g., user inputs,
network operations such as sending and receiving packets,
etc.). Then, it constructs an execution model that specifies
constraints on orders between the operations in σ0. One
example of such a constraint is that generated test cases should
not change the sequence of the user input events in σ0. Another
example is that, in Figure 1, p1 should precede p2, p3 and
e1. The test case generator automatically generates a set of
alternative sequences of the observed operations in σ0 that
satisfy the constraints of the execution model (Section III-C).
Then, the test case generator prioritizes these test cases to
detect concurrency errors quickly (Section III-D).

In the test execution phase, the execution scheduler executes
the target application to run the list of test cases in the priori-
tized order. For each test case, the execution scheduler causes
a target application to execute the operations of σ0 in the
order specified in the test case by controlling the interactions
between the application and its environment. Finally, the result
checker reports a concurrency error if one of the following
conditions holds: (1) the target application raises an uncaught
exception, (2) a web browser does not respond within 100
seconds (i.e., the order of operations in a given test case is
infeasible), or (3) the final result page obtained in testing is
different from the original result page obtained in σ0.

B. Implementation

We have implemented WAVE on top of the WebKit
browser framework. Figure 5 describes the structure of WebKit
and WAVE. WebKit provides the WebKitCoreAPI, a set of
event manager modules (GUI event manager, page loader,
XmlHttpRequest manager, and timed event manager), and
the JavaScript engine. WAVE is located between the WebKit-
CoreAPI and the set of event manager modules as an interface
layer to manipulate interactions between the environment and
a web application running on a web browser.

The WebKitCoreAPI receives an external event from the
environment of a target application (i.e., a user, network,
and/or timer) and then invokes the corresponding manager
module to generate an operation to handle the event. The
event manager modules run sequentially (i.e., once an event
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manager is invoked by the WebKitCoreAPI, no other event
manager can be invoked until the event manager completes
its operation). Thus, the order of operations in an execution
is determined by a sequence of event manager invocations by
the WebKitCoreAPI.

In the test case generation phase, the execution recorder
obtains σ0 by monitoring the event manager invocations with
relevant parameters (in addition, it records all information on
user events to replay them later in the test execution phase).
In the test execution phase, to exercise a generated test case,
the execution scheduler intercepts event manager invocations
by the WebKitCoreAPI to rearrange the order of operations
as in the test case. For this purpose, the execution scheduler
maintains a queue that contains all event manager invocations
for external events (i.e., user events, network events, and timer
events) to execute queued invocations in the order specified
in a given test case. In other words, the event scheduler
postpones an invocation of an event manager that handles
an uncontrollable external event until it can invoke the event
managers in the same order of operations in a given test case.
For example, in Figure 1, suppose that the execution scheduler
tries to execute a target application with σ2 as a generated test
case. And suppose that the application receives lib.js first.
Then, the execution scheduler keeps an event manger (i.e.,



page loader) invocation corresponding/reacting to the event of
receiving lib.js in the queue until it receives sub.html.
After receiving sub.html, the execution scheduler invokes a
page loader to execute p3 first, and then invokes a page loader
again to execute p2 in the order specified in σ2. In contrast,
the execution scheduler replays a user input event anytime
according to the generated test cases, since it can replay the
user input event.

We have implemented the WAVE modules by adding 226
functions in C/C++ (2689 LOC) to WebKit rev.141241 on Qt5.

C. Execution Model Construction

The execution recorder monitors the runtime behavior of a
web application and constructs an execution model (Op,→hb

,→ui) of that web application based on σ0. Op is a set of
operations in σ0. →hb is a happens-before relation between
two operations in Op induced by the web application code;
p→hb q means that p should happen before q in all executions.
→ui is a temporal order relation between two user input event
operations. p→ui q indicates that a user input event operation
p precedes the other user input event operation q in σ0.
→hb indicates the constraints on the temporal order between

operations, which should be satisfied in all executions. For
example, in Figure 1, p1 →hb p2, p1 →hb p3, p1 →hb e1,
but p2 6→hb p3 since p3 can precede p2. WAVE generates
various executions σis as test cases, whose operation orders
are different from the monitored execution σ0, but still satisfy
→hb. The execution recorder determines p→hb q by checking
whether one of the following conditions on p and q holds in
σ0:
• For two parsing operations p and q:

– p initiates q. In other words,
◦ A file parsed by p contains <iframe
src=x.html> where x.html is parsed
by q, or

◦ A target file parsed by p contains a script loading
of x.js that is parsed by q.

– Or, p and q parse the same file, and p precedes q.
• For a parsing operation p and a user input event operation
q:

– p creates a DOM object(e.g., a button) on which q
is defined, or

– p registers an event handler on a DOM object d and
q executes the event handler for a user input event
on d.

• For a network event operation q:
– p creates a DOM object d (e.g., an image file), and
q handles an onload event on d, or

– p registers an event handler of an onload event on
a DOM object d, and q handles the onload event,
or

– p sends a request to a server, and q handles the
response event to the request.

• For an operation q to run a registered event handler for
a timed event:

– p registers a handler for timed events by
setTimeout()/setInterval(), and q
executes the handler for the timed events.

The event recorder determines p →ui q for operations to
handle user input events p and q if p precedes q in σ0. →ui

represents a user input scenario that should be the same across
all test cases generated. In other words, a new sequence of
operations σi should follow the order of operations to handle
user input events in σ0; σi can be invalid otherwise. For
example, suppose that p handles a user click on a ‘File menu’
and q handles a user click on a ‘Save file’ button in the ‘File
menu’ sub-window. Then, p should always happen before q
(i.e., p→ui q) since the ‘Save file’ button is created by p.

D. Test Case Generation and Prioritization

The test case generator creates an ordered list of test
cases based on the execution model as follows. First, the test
case generator generates all valid combinatorial sequences of
operations that satisfy a transitive closure of →hb and →ui

(calling the closure relation ⇒= {→hb ∪ →ui}∗). For the
example in Figure 1, WAVE generates a total of 24 (=4!)
different sequences by permuting p1, p2, p3 and e1. However,
18 of these sequences are invalid and discarded because they
violate ⇒ (for example, a sequence p2.p3.e1.p1 violates ⇒
because p1 ⇒ p2).

Thus, we obtain six valid sequences that satisfy ⇒ (i.e., σ1
to σ6 in Figure 1(b)). Each generated sequence of operations
is used as a test case to detect concurrency errors.

Next, the test case generator prioritizes the generated test
cases to detect concurrency errors quickly using two heuristics:
a precedence first (PF) heuristic and an adjacency first (AF)
heuristic.

Precedence first heuristic: The precedence first heuristic
utilizes precedence relations for test cases. The precedence
relation for test case σ is a set of precedence pairs of two
operations in σ defined as follows:

Pr(σ) = {(p, q) | σ[i] = p ∧ σ[j] = q for 1 ≤ i < j ≤ |σ|}

where σ[i] indicates the ith operation in σ. For example, for
σ0 = p1.p2.p3.e1 in Figure 1, Pr(σ0) = {(p1, p2), (p1, p3),
(p1, e1) (p2, p3), (p2, e1), (p3, e1)}.

The precedence first (PF) heuristic selects a test case σmax
first such that Pr(σmax) has the largest number of uncovered
precedence pairs. In other words, the PF heuristic selects σmax
first such that |Pr(σmax) − ∪σj∈TCsel

Pr(σj)| is the largest,
where TCsel is the set of test cases that have been already
selected (initially TCsel = {σ0}).

Algorithm 1 describes how the precedence first heuristic
prioritizes test cases. The algorithm receives a set of test cases
Σ and a monitored operation sequence σ0 as input and returns
a list of prioritized test cases TC. After the initialization of
C and σmax by using σ0 (lines 1–2), the algorithm repeatedly
selects a test case σmax ∈ Σ that covers a largest number of
uncovered precedence pairs (line 4) until Σ becomes empty
(lines 3–8). A selected test case σmax is moved from Σ to TC



Algorithm 1: Precedence first prioritization heuristic
Input: A set of valid test cases Σ and a monitored

operation sequence σ0
Output: A list of prioritized test cases TC (initially ∅)

1 C = Pr(σ0) // already covered precedence pairs
2 σmax = σ0// a test case that covers the largest number of

uncovered precedence pairs
3 while Σ 6= ∅ do
4 σmax = σ ∈ Σ such that

∀σ′ ∈ Σ.|Pr(σ) \ C| ≥ |Pr(σ′) \ C|
5 Σ = Σ \ {σmax}
6 TC = append(TC, σmax)
7 C = C ∪ Pr(σmax)
8 end
9 return TC

(lines 5–6), and then C is updated to include the precedence
pairs of σmax (line 7)

For example, suppose that WAVE generates three test cases
σ1 = p1.p2.e1.p3, σ2 = p1.p3.p2.e1, and σ5 = p1.e1.p3.p2
from the monitored execution σ0 = p1.p2.p3.e1 in Figure 1,
whose precedence relations are as follows: Pr(σ1) =
{(p1, p2), (p1, e1), (p1, p3), (p2, e1), (p2, p3), (e1, p3)}, P r(σ2)
= {(p1, p3), (p1, p2), (p1, e1), (p3, p2), (p3, e1), (p2, e1)}, and
Pr(σ3) = {(p1, p3), (p1, e1), (p1, p2), (p3, e1), (p3, p2), (e1, p2)}.
The PF heuristic selects σ5 first to test, because
|Pr(σ5) − Pr(σ0)| = 3 > |Pr(σ2) − Pr(σ0)| = 2 >
|Pr(σ1)− Pr(σ0)| = 1. Note that σ5 contains a concurrency
error (see Figure 1(b)).

The conjecture behind this strategy is as follows. A lack of
synchronization between two operations p and q often causes
order violations (see Section II-B) that allow unintended
orders between p and q. As test cases cover more precedence
pairs, these test cases have higher probabilities of exercising
unintended orders of operations and triggering concurrency
errors.

Adjacency first heuristic: The adjacency first (AF) heuristic
prioritizes test cases with respect to the adjacency relations of
those test cases. The adjacency relation of σ is a set of pairs
of two operations that are executed consecutively in σ. We
define the adjacency relation as follows:

Ad(σ) = {(p, q) | σ[i] = p and σ[j] = q

for 1 ≤ i < |σ| and j = i+ 1}

where σ[i] indicates the i-th operation in σ. For example, for
σ0 = p1.p2.p3.e1, Ad(σ) = {(p1, p2), (p2, p3), (p3, e1)}. The
adjacency first (AF) heuristic first schedules a test case that
has the largest number of uncovered adjacent pairs. The AF
algorithm is the same as PF except that the adjacency relation
is used instead of the precedence relation at line 4.

The conjecture behind the AF heuristic is that atomicity vi-
olations (see Section II-B) are caused by unexpected operation
executions involving operations that should be executed adja-
cently. We expect that the test cases covering more adjacency
pairs are more likely to detect concurrency errors.

TABLE I
STUDY OBJECT

Type Name (abbreviation) Size Num. user Num. Bug
(LOC) event op. total op. pattern

AjaXplorer (AX) 1217 6 9 atom
Real Feng Office (FO) 13530 10 12 atom
world Gallery3 (GL) 26212 1 4 order
app TYPO3 (TP) 8951 1 8 order

WordPress (WP) 634 1 3 order

Benchmark 1 (B1) 44 2 8 order
Benchmark 2 (B2) 65 2 9 order

Bench- Benchmark 3 (B3) 88 1 8 order
mark Benchmark 4 (B4) 83 3 11 order
app Benchmark 5 (B5) 69 3 8 atom

Benchmark 6 (B6) 34 2 5 atom
Benchmark 7 (B7) 44 3 7 atom
Benchmark 8 (B8) 71 2 8 atom

IV. EXPERIMENT SETUP

A. Research Questions

In this study, we evaluate the effectiveness of WAVE in
terms of the number of concurrency errors it detects in target
JavaScript web applications and its efficiency in terms of the
testing time it requires to detect a concurrency error in a target
application. For this purpose, we design experiments to answer
the following research questions:
• RQ1 (Effectiveness): How many concurrency errors are

detected by WAVE with the two different test case prior-
itization algorithms (PF and AF) for a given number of
test generations, compared to random testing techniques?

• RQ2 (Efficiency): How much test generation time is spent
by WAVE in order to detect a concurrency error with the
two different test case prioritization algorithms (PF and
AF), compared to random testing techniques?

B. Study Object

Table I summarizes the 13 target applications used in this
study. The first and the second columns describe the type of
each study object and its name, respectively. The third column
shows the sizes of the tested modules of the applications
including HTML code and JavaScript code. The fourth column
represents the number of user input event operations, and
the fifth the total numbers of operations in each test case
(i.e., the numbers in σ0 since the operations of test cases are
taken from σ0). The sixth column represents the bug pattern
related to each target application: ‘order’ means the order
violation pattern and ‘atom’ the atomicity violation pattern
(Section II-B).

We used eight benchmark applications and five non-trivial
real-world web applications as target applications in the study.
Each of the following eight benchmark applications has a
concurrency bug originating from an actual bug report by
developers or an example in the related work [9], [13], [17]. 1

• Benchmark 1: Two network event operations are executed
in a unexpected order

1Code and descriptions for the eight benchmark applications are available
at http://swtv.kaist.ac.kr/data/webapp-race.



• Benchmark 2: Dynamic script loading is completed later
than expected

• Benchmark 3: A page in an iframe is parsed in a
unexpected order

• Benchmark 4: Timer events are executed in a unexpected
order

• Benchmark 5: An external script stops parsing unexpect-
edly

• Benchmark 6: A long HTML content makes parsing stop
unexpectedly

• Benchmark 7: An alert() stops parsing unexpectedly
• Benchmark 8: An unexpected operation is executed be-

tween an XmlHttpRequest request and the response
event handler operation

For each application, WAVE generated 359.3 test cases from a
monitored execution σ0, each of which contains 8.0 operations
(including 2.3 user input event operations) on average.

In addition, we tested the following five popular real-world
web applications. AjaXplorer 2 is an open-source file server
that provides a web interface. Feng Office 3 is a project
management tool, and Gallery3 4 is a photo sharing appli-
cation. TYPO3 5 and WordPress 6 are open-source content
management systems. To generate the initial execution σ0
for each program, we utilized standard use case scenarios.
For example, for AjaXplorer, we used a scenario involving
uploading a file to a server. The test case generator created 4.0
test cases per real-world application, each of which contains
7.2 operations (including 3.9 user input event operations) on
average.

C. Testing Setup

We applied WAVE with the PF heuristics and WAVE with
the AF heuristics to the eight benchmark programs and the five
real-world web applications. In addition, to demonstrate the
effectiveness and the efficiency of the PF and AF heuristics,
we also applied WAVE with a random (RD) heuristics (i.e.,
prioritizing test cases randomly) as a baseline prioritization
heuristics. We performed 30 testing runs per application and
per test generation technique. We performed 30 testing runs to
alleviate the random effects of the tie breaking of PF and AF
as well as the random effects of RD. For the eight benchmark
applications, each testing run executed the first 30 test cases of
highest priority according to the three heuristics. For the five
real-world applications, each testing run executed all generated
test cases in the prioritized order since the number of generated
test cases is relatively small (i.e., 4.0).

In addition, using the random network delay (RND) tech-
niques, we performed 30 testing runs per application and per
test generation technique (i.e., RND-50, RND-500, and RND-
1000) and each testing run executed a target program 30
times with various random delays in TCP network operations.

2http://ajaxplorer.info
3www.fengoffice.com
4http://galleryproject.org
5http://typo3.org/
6http://wordpress.org

RND-x techniques inject a random delay between 0 and x
milliseconds into network operations of an execution that
contains the same sequence of user input events as σ0. RND
techniques are recommended for testing Ajax web applications
in practice [10]. We apply RND-50, RND-500, and RND-1000
on Firefox 20.0.1 (FX) and Internet Explorer 10 (IE). We use
these two web browsers because different web browsers may
exhibit different temporal behaviors, which can influence the
effectiveness and the efficiency of the RND techniques. For the
RND techniques, we used WANem 2.3 7 to generate random
packet delays and Selenium 2.32.0 8 to record and replay user
actions. The machine used for running all experiments had a
3.4 GHz quad-core CPU and 2GB RAM.

V. EXPERIMENT RESULTS

Using WAVE, we detected new concurrency errors in all
five real-world web applications (we reported these five bugs
to the application developers and three were confirmed by the
developers; we have not received responses for the other two
bug reports). Section V-A uses Feng Office as an example.
Then, we explain the experiment results regarding the effec-
tiveness and the efficiency of WAVE.

A. Example:Concurrency Bug in Feng Office

Figure 6 describes a concurrency error in Feng Office. Feng
Office provides a workspace, a directory shared among users,
where users can upload files and browse the list of files.
Feng Office allows a user to conduct other activities such as
browsing other workspaces while a file is being uploaded to
a current workspace. WAVE detected that Feng Office fails to
upload file1.txt with the following user input scenario
where the server has two workspaces ws1 and ws2.

1) A user selects ws1 as a current workspace.
2) A user uploads a file file1.txt to ws1.
3) A user changes a current workspace from ws1 to ws2.
4) A user selects ws1 again.
5) A user browses the file lists of ws1.
Figure 6(a) and Figure 6(b) show a correct execution

scenario and an erroneous one, respectively. The key difference
between these two scenarios is that the correct execution
scenario changes a workspace after file1.txt is com-
pletely uploaded, but the incorrect execution scenario changes
the workspace before file1.txt is completely uploaded.
Figure 6(c) shows simplified code of the event handler cb()
(lines 2∼6) for the response network event that handles
the completion of a file transmission at the server. cb()
accesses the DOM object named genid + ‘addfile’
(line 3) to request the server to submit the transmitted file
to the workspace (line 5). However, in Figure 6(c), since the
current workspace is changed from ws1 to ws2, the DOM
object of ws1 is deleted and an exception saying “Error:
genid is not defined” is raised. As a result, although
file1.txt is fully transmitted to the server, ws1 does not

7http://wanem.sourceforge.net/
8http://code.google.com/p/selenium/
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Fig. 6. Concurrency bug in Feng Office

contain file1.txt, which results in data loss. This bug is
classified as an atomicity violation because the error is caused
by executing the operation to change a workspace between
the two enclosing operations, one that starts the file1.txt
transmission and one that completes the transmission. Note
that this error is likely to occur when a file transmission takes
a long time due to a large file size, long network delay, or
slow server speed, etc. Since a target application cannot control
these environmental factors, the detected concurrency bug is
a realistic threat.

We detected other concurrency errors in the other four real-
world applications. AjaXplorer contains a concurrency bug
such that the response event handler operation updates the
DOM object unexpectedly between the two user input event
operations that manipulate the same DOM object (atomicity
violation). In TYPO3, a user input event operation invokes
an event handler function before its definition because an
external script element stops parsing before the event handler
function definition (order violation). Gallery3 and WordPress
contain similar bugs – a user input event operation can invoke
a JavaScript function defined in an external file before the
external file is parsed (order violation). The bug reports for
AjaXplorer, Feng Office and Gallery3 were confirmed as real
faults by the developers. Thus, to detect such concurrency
errors, developers should test their applications systematically
and include various sequences of operations involving multiple
entities such as users, networks, and servers.

B. RQ1: Regarding Effectiveness

Table II shows the error detection ability of the three RND
techniques and WAVE. The first column shows the abbreviated
object names. The second to seventh columns show the error
detection results of RND-50, RND-500, and RND-1000 with
firefox (FX) and internet explorer (IE). The eighth to tenth
columns show the error detection results of WAVE with the
three different prioritization strategies – WAVE with the ran-
dom (RD), precedence first (PF), and adjacency first (AF) test
case prioritization heuristics, respectively. Each cell represents
the ratio of testing runs that detected a concurrency error out
of the total 30 testing runs per object and per technique.

TABLE II
ERROR DETECTION ABILITY OF THE TECHNIQUES

RND-50 RND-500 RND-1000 WAVE

FX IE FX IE FX IE RD PF AF

AX 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FO 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
GL 1.00 0.00 1.00 0.00 1.00 0.07 1.00 1.00 1.00
TP 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
WP 0.00 0.00 0.80 0.00 1.00 0.00 1.00 1.00 1.00

B1 0.13 0.07 0.80 0.33 0.93 0.40 1.00 1.00 1.00
B2 0.00 0.00 0.00 0.00 0.13 0.00 1.00 1.00 1.00
B3 0.73 0.80 0.87 0.73 0.73 0.67 1.00 1.00 1.00
B4 0.00 0.00 0.00 0.07 0.00 0.00 0.90 1.00 0.87
B5 0.00 0.00 0.07 0.00 0.00 0.00 1.00 1.00 1.00
B6 0.60 0.00 0.93 0.00 1.00 0.00 1.00 1.00 1.00
B7 0.00 0.13 1.00 0.00 1.00 0.00 1.00 1.00 1.00
B8 0.07 0.07 0.20 0.80 0.80 1.00 1.00 1.00 1.00

Avg 0.27 0.16 0.51 0.23 0.58 0.24 0.99 1.00 0.99

Note that WAVE with PF detected all concurrency errors
in every testing run for all 13 target objects (i.e., all cells in
the eighth column are 1.00), but the RND techniques did not.
For example, for WordPress (WP), all three RND techniques
using IE could not detect a concurrency error in any testing run
(i.e., 0.00), but RND-500 and RND-1000 using FX detected
a concurrency error at the ratio of 0.80 and 1.00, respectively
(this difference between the RND techniques using FX and
IE was due to the limitation of Selenium on IE, which does
not allow user input event operations until a main page is
completely parsed). Thus, we can confirm that WAVE with
PF is highly effective for detecting concurrency errors.

Among the three test case prioritization heuristics, PF shows
the highest error detection ability; WAVE with RD and AF
failed to detect a concurrency error of Benchmark 4 in 3
and 4 out of 30 testing runs, respectively. We conjecture
that WAVE with AF could not detect the bug in Benchmark
4 completely because the bug is an order violation, not an
atomicity violation for which the AF heuristic was developed.

C. Regarding Efficiency

Table III shows the efficiency results of the RND techniques
and the WAVE techniques. The results of WAVE with RD, PF,



TABLE III
TIME TO DETECT THE FIRST ERROR(IN SECONDS)

RND-50 RND-500 RND-1000 WAVE

FX IE FX IE FX IE RD PF AF

AX 186.8 35.3 284.9 58.5 56.5 34.6 38.0 27.0 41.3
FO - - - - - - 108.8 22.9 46.4
GL 15.1 - 4.4 - 7.5 101.7 4.0 4.2 4.0
TP - - - - - - 11.2 3.2 8.2
WP - - 48.5 - 5.7 - 8.5 8.5 8.4

B1 100.1 108.5 64.1 346.2 103.4 196.5 6.5 1.6 5.1
B2 - - - - 141.3 - 8.3 1.7 9.8
B3 43.0 32.1 61.6 110.7 136.1 166.4 4.0 1.4 5.6
B4 - - - 330.6 - - 196.2 13.2 245.8
B5 - - 216.8 - - - 8.4 1.7 12.9
B6 50.3 - 28.3 - 14.8 - 2.8 1.6 1.6
B7 - 155.0 11.5 - 6.8 - 4.1 1.5 4.0
B8 99.1 104.8 131.3 109.7 97.9 55.9 4.6 4.9 2.6

Avg 82.4 87.1 94.6 191.2 63.3 111.0 31.2 7.2 30.4

and AF are shown in the eighth to tenth columns of the table,
respectively. Each cell represents the average time (in seconds)
taken to detect the first concurrency error per target object and
per technique over 30 testing runs. A ‘-’ denotes the case in
which no testing run detected a concurrency error. The result
shows that WAVE with PF detected a concurrency error in 7.2
seconds on average over 13 target objects, which is 9 (63.3/7.2)
times faster than RND-1000, the fastest RND technique (i.e.,
63.3 seconds on average). WAVE with AF and RD spent 30.4
and 31.2 seconds on average, respectively. Considering that the
average time of the RND techniques does not include the ’-’
cases where the RND techniques fail to detect any concurrency
errors, WAVE is far more efficient than the RND techniques.
Thus, we can confirm that WAVE with PF is highly efficient
for detecting concurrency errors.

VI. DISCUSSION

A. Comparison with Race Bug Detector
We have compared WAVE with EventRacer [19], the lat-

est race bug detection technique for JavaScript applications.
EventRacer reports possible race bugs each of which consists
of pairs of code elements based on a runtime trace of a target
JavaScript web application. It reports a race bug with a risk
level (roughly speaking, a higher risk level indicates a higher
probability that the reported bug is real). We have applied
EventRacer to the 13 study objects with the same user input
scenario used for our experiments. Table IV summarizes the
results. The second column shows whether or not EventRacer
detected the bug that was detected by WAVE. The third column
presents the risk level of the reported bugs. The fourth column
presents the number of alarms for each study object. The table
shows that EventRacer reported many false alarms and failed
to detect two out of the 13 race bugs that WAVE detected.

EventRacer generated many false alarms. After manual
review of the 32 bug reports on the eight benchmark appli-
cations, we found that 24 out of the 32 bug reports were
false alarms. 9 The main reason for the high ratio of false
alarms is that EventRacer assumes that every two script

9We could not review the alarms on the five real world applications due to a
large number of the alarms and the high complexity of the target applications.

TABLE IV
BUG DETECTION RESULT BY EVENTRACER

Program The bug Risk Num. total
detected? level alarms

AjaXplorer Yes High 3604
Feng Office No - 254

Gallery3 Yes Low 228
TYPO3 No - 1501

WordPress Yes Low 158

Benchmark 1 Yes High 6
Benchmark 2 Yes High 4
Benchmark 3 Yes Low 2
Benchmark 4 Yes Low 5
Benchmark 5 Yes High 3
Benchmark 6 Yes High 3
Benchmark 7 Yes Low 7
Benchmark 8 Yes High 2

elements in a single HTML file can be parsed separately (i.e.,
by multiple parsing operations), but this assumption is only
partially true (Section II-A). In contrast, WAVE utilizes an
execution model to model parsing operations of modern web
browsers in a realistic way (Section III-C). Also, WAVE is a
testing framework working on real execution scenarios, which
can prevent false alarms.

In addition, the bug detection capability of EventRacer was
lower than WAVE. EventRacer failed to detect the atomicity
violation bug in Feng Office and the order violation bug in
TYPO3. Furthermore, the five bugs (i.e., the bugs in Gallery3,
WordPress, B3, B4, and B7) were reported as “low” risk level
bugs. We guess that EventRacer does not handle complex
constructs of JavaScript in the target applications, which
weakens the bug detection capability of EventRacer.

B. Lessons Learned for Web Application Developers

Through our study, we have learned the following lessons:
1. Prepare to handle various network delays to download

external files: As we have seen in the Feng Office example,
unexpectedly long network delays in transmitting files can
raise concurrency errors due to unexpected sequences of opera-
tions. Since network delays are non-deterministic (particularly
in mobile networks), various sequences of operations should
be systematically tested.

2. Be careful when you change the location of JavaScript
code: Web application developers often recommend moving
JavaScript code to the bottom of the web page to shorten the
time needed to display the page because parsing JavaScript
code is a time-consuming task [22]. However, changing the
location of JavaScript code can alter the order between pars-
ing operations and other operations (e.g., user input event
operations); thus, introducing concurrency bugs (for example,
such a change may allow references to undefined JavaScript
functions, as described in Figure 1). Thus, relocation of
JavaScript code should be carefully planned.

3. Do not overlook the potential harmfulness of concurrency
errors: We have learned that concurrency bugs in the real-
world JavaScript applications can cause serious damage such
as loss of user-provided data, invalid data updates to servers,
and transitions to invalid web pages, etc. Therefore, developers



should be careful to avoid concurrency bugs by using an
automated testing framework like WAVE.

VII. RELATED WORK

Automated Test Generation Techniques for Web Applications
Conventional automated testing techniques for web applica-
tions focus on generating user input event sequences and user
input values, but not on testing diverse concurrent behaviors.
Artemis [2], Marchetto et al. [11], and Crawljax [12] generate
a set of user input event sequences as test cases for web
applications and utilize feedback from the executions of the
generated test cases (e.g., code coverage, state-flow graphs) to
create next test cases with which to explore untested program
behaviors. Apollo [3] and Kudzu [20] generate test input
values by using symbolic execution techniques to cover large
portions of a target application’s code.

Concurrency Bug Detection Technique for Web Applications
There are bug detection techniques that identify suspicious
code elements in a target web application that may cause
concurrency errors through static analysis or dynamic analysis.
Zheng et al. [25] propose a static analysis technique to detect
possible atomicity violations in asynchronous communications
(i.e., XmlHttpRequest operations) of web applications.
WebRacer [17] uses a dynamic analysis technique to check
whether two accesses to a DOM object (or a JavaScript
function/variable) can occur in non-deterministic order, which
is considered a concurrency bug. EventRacer [19] enhances
WebRacer by improving computation efficiency and adding
heuristics to prioritize bug reports.

As discussed in Section VI-A, bug detection techniques can
generate spurious false alarms because these techniques do
not actually check the results of target application executions.
WAVE generates and tests various execution scenarios of a
web application involving parsing operations, user actions, and
network operations without generating false alarms.

Concurrent Test Generation for Multithreaded Program
There are techniques to generate various thread schedulings
to detect concurrency bug for multi-threaded programs [7],
[5], [14], [15], [16], [21], [24]. These techniques generate
concurrent executions to achieve certain sequences of oper-
ations by controlling the execution orders of running threads.
CalFuzzer [7], [15], [21], CTrigger [16], and Narayanasamy et
al. [14] control thread scheduling to trigger suspicious inter-
leaving scenarios. To test diverse behaviors of multi-threaded
programs, Hong et al. [5] and Maple [24] generate concurrent
executions to achieve high concurrent coverage. WAVE is
similar to these techniques since Hong et al.’s technique,
Maple, and WAVE generate various executions by controlling
the execution order of threads/operations. However, WAVE
utilizes a different concurrent execution model and different
test generation targets specific for JavaScript applications.

VIII. CONCLUSION AND FUTURE WORK

We have presented a testing framework, WAVE, that can
find concurrency errors in JavaScript web applications. We
demonstrate the effectiveness and the efficiency of WAVE

in concurrency error detection through experiments on eight
benchmark applications and five real-world applications.
WAVE detected more concurrency errors nine times faster than
the random network delay techniques. Furthermore, WAVE
detected new concurrency errors in all five real-world web
applications and the bug reports were highly valued by the
developers of the applications. As future work, we will extend
WAVE to test more concurrency features supported by HTML5
and other dynamic features of web applications.
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