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Abstract—Software testing techniques have advanced signifi-
cantly over several decades; however, most of current techniques
still test a target program as it is, and fail to utilize valuable
information of diverse test executions on many variants of the
original program in test generation.

This paper proposes a new direction for software testing –
Invasive Software Testing (IST). IST first generates a set of target
program variants m1, ...,mn from an original target program p
by applying mutation operations µ1, ..., µn. Second, given a test
suite T , IST executes m1, ...,mn with T and records the test runs
which increase test coverage compared to p with T . Based on the
recorded information, IST generates guideposts for automated
test generation on p toward high test coverage. Finally, IST
generates test inputs on p with the guideposts and achieves higher
test coverage. We developed DEMINER which implements IST
for C programs through software mutation and concolic testing.
Further, we showed the effectiveness of DEMINER on three real-
world target programs Busybox-ls, Busybox-printf, and
GNU-find. The experiment results show that the amount of
the improved branch coverage by DEMINER is 24.7% relatively
larger than those of the conventional concolic testing techniques
on average.

Index Terms—automated test generation, concolic testing, mu-
tation analysis, test coverage

I. INTRODUCTION

Software testing has been a de-facto standard method to
assess and improve software quality. Although software testing
techniques have advanced significantly over several decades,
most of them (either manual or automated ones) still test a
target program as it is without modifying the target program.
In contrast, other engineering disciplines such as mechanical
engineering have used invasive testing (or destructive testing)
as a standard technique to obtain information on a target object
(i.e., analyzing a target object by inducing physical forces on
it) which cannot be provided by a non-invasive testing.

Note that a software program has the following ideal
characteristics for invasive testing:
• it is almost free to make copies of a software program.
• it is easy to modify/destroy a software program (in a

source code or binary level).
However, owing to high complexity of software, it is non-
trivial to re-interpret/re-analyze various dynamic information

obtained from many modified variants of the original target
program (e.g., what conclusion can we make on an original
program p by observing crashes on a variant m1 of p with a
test case t1? For example, crash of m1 with t1 does not neces-
sarily mean that p will crash with t1). Consequently, software
testing so far has failed to improve testing effectiveness further
by utilizing useful information from diverse test executions on
many variants of a target program.

To resolve the aforementioned problem, this paper proposes
a new direction for software testing: Invasive Software Testing
(IST). This technique consists of the following three stages:

1) extract/learn useful information of an original target
program p for high test coverage through the diverse
test exploration of various variants of p

2) create guideposts by using the extracted information,
which can guide test generation for high test coverage

3) generate test executions on p following/satisfying the
guideposts inserted in p

A core idea of IST is to create guideposts by learning
knowledge on an original target program p from diverse test
executions of many mutated versions m1, . . . ,mn of p, which
can effectively lead test generation to cover various executions
of p that achieve high test coverage.

We developed DEMINER (guiDEed test generation using
MutatIoN ExploRation) which realizes IST to improve test
coverage. DEMINER operates as follows:

1) DEMINER generates target program variants
m1, . . . ,mn from an original target program p by
applying mutation µ1, . . . , µn, respectively.

2) given a test suite T , DEMINER executes m1, . . . ,mn

with T and records test runs covering new lines not cov-
ered on p with T and corresponding mutation operator
instances.

3) Based on the recorded information, DEMINER con-
structs guideposts to guide test generation on p to
improve test coverage.

4) DEMINER applies concolic testing on p with an inserted
guidepost to generate new test executions that follow the
guideposts and achieve high test coverage.



1

2

muta-
tion

2

guide-
post
const.

test
gen.

Fig. 1. DEMINER overview

Figure 1 shows an overview of DEMINER. Suppose that
nodes l4 and l6 in the leftmost box indicate uncovered lines
in a target program p with a test case t ∈ T . Also, suppose that
DEMINER generates a mutant m1 from p via mutation µ1 (i.e.,
replace l1 with l′1), and t covers l6 on m1. From this mutant
execution, DEMINER captures a partial state c1 infected by
µ1 as a key for t to covering l6, and then DEMINER inserts
guidepost(c1) right before the mutation site of µ1 in p.
Finally, DEMINER automatically generates new tests on p
(e.g., t1) with the inserted guidepost which follow/satisfy the
guidepost condition c1. DEMINER repeats this process for all
other coverage-increasing mutants each of which increases line
coverage by covering lines that were not covered on p with t.

We studied the effectiveness of DEMINER on three real-
world target programs Busybox-ls, Busybox-printf,
and GNU-find. The experiment results show that the amount
of the improved branch coverage by DEMINER is 24.7%
relatively larger than those of the conventional concolic testing
techniques on average. (Section V-D).

The contributions of this paper are as follows:
1) As far as the authors know, this paper is first to tech-

nically proposes invasive software testing to explicitly
generate highly effective test inputs.

2) We developed DEMINER which realizes IST by generat-
ing diverse test executions guided by guideposts created
by learning coverage-increasing conditions from various
mutant executions.

3) We performed case studies to demonstrate that DEM-
INER can increase branch and line coverage com-
pared to the conventional concolic testing through
three real-world C programs (i.e., Busybox-ls,
Busybox-printf, and GNU-find).

The remainder of this paper is organized as follows. Sec-
tion II shows a motivating example showing a limitation of a
current automated test generation technique and how IST can
overcome it. Section III explains DEMINER, and Section IV
describes research questions and the experiment setup to study
the effectiveness of DEMINER. Sections V and VI report and
discuss the experiment results. Finally, Section VII concludes

01 get_max(int* a, unsigned int sz) {
02 max = 0 ;
03 for (i = 0 ; i < sz ; i++) {
04 if (max < a[i])
05 max = a[i] ;
06 }
07 if (max > 0)
08 printf ("%d\n", max) ;
09 else
10 error() ;
11 }

Fig. 2. Example whose Lines 9–10 are difficult to cover by concolic testing

this paper with future work.

II. MOTIVATING EXAMPLE

Although automated test generation techniques such as
concolic testing [1]–[3] generate test inputs achieving high
test coverage, they sometimes fail to cover target branches
due to several limitations of the techniques (e.g., external
binary library APIs [4]–[6], symbolic pointers [7]–[9], loop
conditions with symbolic bound variables [10]–[12]).

For example of get_max in Figure 2, concolic testing
(almost) fails to cover the branch consisting of Lines 9–10.
Figure 2 shows get_max which receives an array of integers
a and an unsigned integer sz that represents the number
of valid target elements in a. Suppose that concolic testing
declares every element of a and sz as symbolic values, and
uses DFS (Depth First Search) as a concolic search strategy.

Suppose that an initial input for get_max has
• sz=100, and
• a is sorted in a strictly ascending order, and
• every element of a is positive

Then, the symbolic path formula φ1 obtained from an execu-
tion with the initial input is as follows:

φ1 = (0 < sz) ∧ (0 < a[0]) ∧ (1 < sz) ∧ (a[0] < a[1]) ∧ . . . ∧
(99 < sz) ∧ (a[98] < a[99]) ∧ (100 6< sz) ∧ (a[99] > 0)

Note that the subsequent concolic executions (almost) fail to
cover Lines 9–10 for the following reason.

After the initial execution, concolic testing negates the last
branch condition (i.e., a[99] > 0) and the resulting symbolic
path constraint φ′1 is unsatisfiable. This is because a[0] should
be positive (i.e., 0 < a[0] in φ′1) and a is sorted in a strictly
ascending order (i.e., a[0] < a[1] < . . . < a[99] in φ′1).
Subsequently, concolic testing negates second last condition
in φ1 (i.e.,100 6< sz) and generates the second input with
sz=101, which still does not cover Lines 9–10. The symbolic
path formula φ2 obtained from the second input is longer than
φ1 by iterating the for-loop (Lines 3–5) one more time with
i = 100 as follows:

φ2 = (0 < sz) ∧ (0 < a[0]) ∧ (1 < sz) ∧ (a[0] < a[1]) ∧ . . . ∧
(100 < sz) ∧ (a[99] < a[100]) ∧ (101 6< sz) ∧ (a[100] > 0)



Similarly, concolic testing keeps increasing the loop bound sz
and generates a large number of test inputs but fails to cover
Lines 9–10.

In contrast, DEMINER can cover Lines 9–10 by generating
a guidepost by learning from mutant executions as follows.
Suppose that DEMINER generates a mutant of get_max
(saying m3) that replaces the loop condition at Line 3 (i.e.,
i < sz) with i==sz. The execution of m3 with the initial
input does not enter the loop and covers Lines 8–9. Then,
DEMINER learns from this mutant execution and generates a
guidepost guidepost(0==sz) between Line 2 and Line 3
of get_max (see Section III-C for the detail of guidepost
construction).

Since guidepost(c) is a macro of if (!c)
exit(0);, the initial execution terminates at the guidepost
because the execution does not satisfy the guidepost condition
(i.e., 0==sz). After that, the concolic testing generates a next
test input which has sz==0 by solving the symbolic path
constraint obtained by negating the last branch condition (i.e.,
the guidepost condition 0==sz). Finally, get_max reaches
Lines 8–9 with this test input generated with the guide of the
guidepost.

III. DEMINER FRAMEWORK

A. Overview

DEMINER employs mutation to generate diverse vari-
ants/mutants m1, ...,mn of a target program p to generate
various mutant executions to reach corner-case unreached
statements of p. By using the information on mutant executions
that reach new lines, DEMINER infers a precondition to cover
the unreached lines. Then, it feeds these program conditions in
the form of a guidepost to concolic testing to guide symbolic
executions to cover these new lines in p.

We conjecture that, even with limited test inputs, program
mutation can effectively diversify program executions by
applying various mutation operations at different execution
points, because there exists a large set of mutation operators
that induce diverse program changes at various program loca-
tions. The generation of mutant executions is scalable, because
mutant generation does not require sophisticated semantic
analysis and it can be parallelized over a large number of
computing nodes.

Figure 3 describes the DEMINER process generating new
test inputs T ′. Initially, DEMINER takes source code of an
original target program p, and a set of test inputs T =
{t1, t2, . . . , tk} as inputs. Then, DEMINER operates in the
following three phases:

1) Discovery of coverage-increasing mutants
DEMINER generates and runs various mutants of a target
program with T so that some mutant executions cover
unreached lines of p as the mutation turns a program
state to a new one leading to the unreached lines by
chance.

2) Guidepost construction
Based on the mutant executions that cover unreached

TABLE I
MUTATION OPERATORS USED BY DEMINER

Category Mutation operator names

Change a value or constant CRCR, VTWD

Change a variable or VGAR, VLAR, VGSR, VLSR, VSCR
memory access OAAA, OAAN, OABA, OABN, OAEA,

OALN, OARN, OASA, OASN, OBAA,
OBAN, OBBA, OBBN, OBEA, OBLN,
OBNG, OBRN, OBSA, OBSN, OEAA,

Change an operator OEBA, OESA, OLAN, OLBN, OLLN,
in an expression OLNG, OLRN, OLSN, ORAN, ORBN,

ORLN, ORRN, ORSN, OSAA, OSAN,
OSBA, OSBN, OSEA, OSLN, OSRN,
OSSA, OSSN, OIPM

Change a branching condition OCNG, OCOR

lines, DEMINER infers program conditions of the execu-
tions covering the unreached lines as guideposts. Then,
DEMINER generates multiple copies of p each of which
has one guidepost.

3) Guided test generation
DEMINER runs concolic testing on the copies of p
with the guideposts to generate test executions that
follow/satisfy the guideposts to achieve the unreached
lines covered at Phase 1.

The remainder of this section describes each phase in detail.

B. Phase 1. Discovery of coverage-increasing mutants

This phase aims at finding mutants whose executions cover
some code lines that are not covered by running the original
program p with a set of test input T . DEMINER constructs mu-
tants m1,m2, . . . ,mn by mutating expressions e1, e2, . . . , en
in p respectively, and then runs the mutants with T .

As the first step, DEMINER runs p with T to measure
baseline coverage Cp of p with T . Then, total 52 mutation
operators (see Table I) are applied to every mutation point of
p to generate mutants. DEMINER generates mutants at line l
only if l is reached by at least one test input in T .

Table I shows names and categories of the mutation opera-
tors [13] used by DEMINER. DEMINER uses only expression-
level mutation operators because DEMINER focuses on a
single expression change that increases coverage. DEM-
INER does not use statement-level mutation operators (e.g.,
SSDL(statement deletion), SBRC(replacement of break with
return)). This is because they may change evaluations of
multiple expressions/variables at the same time, which makes
monitoring and formulating mutation effect as a guidepost
difficult. Also, DEMINER does not employ mutation operators
on pointer dereference or pointer arithmetics. This is because
a corresponding guidepost condition will be an expression on
a pointer variable but concolic testing may not generate test
inputs to satisfy such guidepost condition (i.e., concolic testing
tools do not support a general symbolic pointer).



Fig. 3. The overall process of DEMINER

DEMINER runs each mutant mi with test inputs T to
measure Cmi (i.e., lines of mi covered by T ) 1. After the
mutant executions, it collects all mutants whose executions
cover at least one unreached line as a set of coverage-
increasing mutants MAll = {mi|Cmi − Cp 6= ∅}.

Finally, DEMINER selects a subset of the coverage-
increasing mutants M ⊆ MAll that are passed to the next
phase (see Section III-C). DEMINER tries to select M as a
minimal set of the coverage-increasing mutants which covers
the same set of the unreached lines covered by MAll. We found
that many coverage-increasing mutants redundantly cover the
same set of unreached lines. Thus, we believe that this mutant
selection method reduces the runtime cost of the subsequent
analyses while not hurting testing effectiveness much.

The mutant selection is made by a greedy heuristic al-
gorithm, which initially defines M and CM as empty sets.
M holds selected mutants and CM contains the unreached
lines covered by the mutants in M . After initialization, the
algorithm selects a mutant m in MAll−M that covers the most
unreached lines, and then updates M and CM by including m,
correspondingly (i.e., M ←M ∪{m} and CM ← CM ∪Cm).
If ties exist, the algorithm randomly picks one of them.
The selection continues until the set of the unreached lines
covered by the mutants in M is equal to that of MAll (i.e.,
CM − Cp = CMAll

− Cp).

C. Phase 2. Guidepost construction

From the executions of the coverage-increasing mutants
obtained from Phase 1, DEMINER infers a precondition at
a program location to cover the unreached lines. DEMINER
expresses such a precondition as a guidepost encoded as
an if-statement that continues the execution if the condi-
tion is satisfied, or terminates the execution otherwise (i.e.,
guidepost(exp) ≡ if(!exp) exit(0);). A guidepost
embeds the knowledge on the coverage-increasing executions
of the mutants. Note that a guidepost prunes executions
without changing the behaviors of a target program. Thus,
a guidepost guides concolic testing on a target program p
to generate tests toward the observed coverage-increasing
executions.

To infer guideposts from the selected mutants M =
{m1,m2, . . . ,ml}, DEMINER first re-runs each mutant mi ∈

1The line coverage of mi is compatible with that of p as DEMINER
carefully mutates p to keep the line numbers the same (see Section IV-D).

M to inspect the mutation effects (i.e., infection) to cover
the unreached lines. Since mi has a mutation on a single
expression ei, we suspect that a cause of the coverage increase
is the evaluation of ei to a different value.

For each mi, DEMINER identifies all runtime evaluations
of the mutated expression as coverage-increasing values Vi =
{vi1, vi2, . . . , viu}. To extract Vi from the executions of mi,
DEMINER instruments mi by inserting a probe exporting
evaluation results of the mutated expression.

Once the coverage-increasing values of mi are captured
as Vi, DEMINER constructs guideposts in p. Each guidepost
is inserted immediately before the mutation site of mi (i.e.,
ei) such that a guidepost executes immediately before ei is
evaluated. A guidepost checks if ei is evaluated to one of the
values in Vi. DEMINER constructs two types of guideposts
from Vi as follows:
• Single-value guidepost

For each vij ∈ Vi, a single-value guidepost is created
to check if ei is evaluated to vij for the first time. This
condition is encoded as guidepost(ei == vij) for
vij ∈ Vi.

• Multi-value guidepost
For mi with multiple coverage-increasing values (i.e.,
|Vi| > 1), DEMINER additionally creates a multi-value
guidepost that checks ei is always evaluated to one of the
coverage-increasing values in Vi. Thus, the condition of a
multi-value guidepost is formed as guidepost((ei ==
vi1)∨ . . .∨ (ei == viu)). A multi-value guidepost allows
a target expression to have multiple value choices when
it is evaluated multiple times (e.g., in a loop).

Figure 4 illustrates how DEMINER generates guideposts
from monitoring mutant executions and inserts them to a target
program p. Suppose that DEMINER created a mutant m from p
by changing an operator at Line 1 (i.e., e is x+y). With a test
cases t that executes func(0,1), Line 3 was not covered
on p, but covered on m as z is -1 on m. Once DEMINER
finds that m covers an unreached Line 3, it inserts a probe
to m to monitor values of the mutated expression (i.e., x -
y) (Figure 4-(c)). By re-running m with a monitoring probe,
DEMINER finds that the mutated expression is evaluated to
−1 (v1 = −1) and expects that an execution of p may cover
Line 3 if e is evaluated to -1. To reproduce the mutation effect,
DEMINER inserts a single-value guidepost to constraint x +
y (i.e., e) to become -1 (i.e., v1) right before e.



Fig. 4. Example of guidepost construction

Suppose that there is another test case t′ that executes
func(1,1). Then, DEMINER will find 0 as the second
coverage-increasing value for e (i.e., v2 = 0 ). From the two
coverage-increasing values associated, DEMINER generates a
multi-value guidepost that constraints x+ y to become either
-1 or 0 (Figure 4-(e)).

For each guidepost g, DEMINER generates a version of p
which embeds g.

D. Phase 3. Guided concolic testing

The last phase takes multiple versions of p each of which
is augmented with a guidepost and runs concolic testing to
generate test inputs. For the multiple versions of p with
guideposts (e.g., g1, ... gl), DEMINER applies concolic testing
to pi (p augmented with gi) with each test input in T as an
initial test input. DEMINER uses a new prioritized concolic
search strategy which hybridizes depth-first search (DFS) and
random branch negation (RND) strategies as follows:
• The search algorithm first performs concolic testing us-

ing DFS until the inserted guidepost is reached. If the
guidepost condition c is violated, the target program
execution immediately terminates. Then, the search algo-
rithm negates the last branch condition (i.e., unsatisfied
guidepost condition ¬c) and generates a test execution
that satisfies c. If concolic testing fails to generate a test
execution satisfying c, the concolic testing continues to
use DFS until reaching the guidepost again through a
different test execution.

• If concolic testing generates a test execution satisfying
c, the concolic testing uses RND to negate only those
branches executed after the guidepost. This is to focus
on execution space satisfying a guidepost condition c and,
thus, has high probability to increase coverage.

IV. EXPERIMENT SETUP

We have designed the following four research questions
to evaluate DEMINER in terms of increased coverage and
execution time.
• RQ1. With given test inputs, how many unreached

lines/branches of an original program are covered by
mutant executions?

• RQ2. How many unreached lines/branches of an original
program are covered by DEMINER?

• RQ3. How many unreached lines/branches covered by
the mutant executions are also covered by DEMINER?

• RQ4. How many unreached lines/branches of an
origianl program does DEMINER cover, compared to
conventional concolic testing techniques?

• RQ5. To what extent does the mutant selection of
DEMINER affect execution time and line/branch
coverage?

RQ1 is to validate our conjecture that mutant execu-
tions cover a meaningfully large amount of unreached
lines/branches that given test inputs do not cover on an original
program p.

RQ2 is to check the coverage improvement of DEMINER.
RQ3 is to check how effectively the guideposts guide con-

colic testing on p to cover the target unreached lines/branches
covered by the coverage-increasing mutant executions.

Regarding RQ4, we compared DEMINER with the con-
ventional concolic testing techniques that use three search
strategies depth-first search (DFS), random branch negation
(RND), and control-graph based heuristic for fast branch
coverage increase (CFG) [14].

RQ5 evaluates the efficiency and the effectiveness of the
greedy mutant selection method of DEMINER. We compared
DEMINER with a variant that randomly selects the same
number of mutants selected by DEMINER and another variant
that selects all mutants.

To answer RQ1 to RQ5, we performed experiments on the
three real-world C programs (see Table II). The following
subsections explain the details of the experiment setup.

A. Study Objects

We used recent versions of three well-known, real-world C
programs as study ojects.
Busybox-ls is a file listing utility and

Busybox-printf is a formatted data printer in BusyBox
version 1.24.0 2. GNU-find is a file search utility in GNU
FindUtils version 4.6 3. These three programs are utilities
for UNIX-like operating systems. Table II shows the size of
the target code in executable lines (LoC) and branches, a

2https://busybox.net
3https://www.gnu.org/software/findutils



TABLE II
STUDY OBJECTS

Program Lines Branches Num. Covered Covered
TCs lines branches

Busybox-ls 404 303 6 257 135
(63.6%) (44.6%)

Busybox-printf 169 105 17 140 75
(82.8%) (71.4%)

GNU-find 3616 2091 120 2192 1061
(60.6%) (50.7%)

number of given test cases used, and line and branch coverage
achieved by running the all given test cases for each study
object.

All test cases were obtained from the regression test suites
in the program packages. The experiments use all test cases
given in the package, except 11 test cases of GNU-find due
to technical difficulties 4. We used gcov to measure LoC, and
the line and the branch coverage throughout the experiments.

B. Mutant Generation Setup

DEMINER generates mutants of a target program using a
C source code mutation tool MUSIC [15] (see Section IV-D).
After mutant generation, DEMINER eliminate trivially equiv-
alent and duplicated mutants [16]. An equivalent mutant is
identified by checking whether or not the MD5 checksum
of the compiled binary object is the same as that of the
original target program. Similarly, two mutants are identified
as duplicated if their compiled binary objects have the same
MD5 checksum value.

The experiments used all generated mutants for
Busybox-ls and Busybox-printf, To save experiment
time, the experiments with GNU-find randomly select and
use five mutants per code line, because a total amount of time
spent for the experiments on GNU-find will be significantly
larger than that of Busybox-ls or Bubybox-printf.

C. Test Generation Setup

We declared command-line arguments and file-metadata
such as file mode, file size, permission, modification time
as symbolic inputs for concolic testing. Table III shows
the symbolic input setup for the study objects. The second
column shows the maximum number of symbolic command-
line arguments, and the third column shows the maximum
length of each symbolic command-line argument of the ex-
periment setup. A number of symbolic file-metadata structures
is same to a number of files used in a given regression test
case. The last column shows the maximum number of sym-
bolic file-metadata structures in the experiments. Each sym-
bolic file-metadata consists of 13 symbolic integer variables
(Busybox-printf does not use symbolic file-metadata
because it does not take a file as an input).

4Nine test cases were excluded as they re-execute the main routine multiple
times, which complicate concolic testing with initial test case seeding (see
Section IV-C). Also, to save testing time, two test cases were executed since
they consume more than 15 longer execution times than the other test cases,
while the two test cases do not increase the total line/branch coverage.

TABLE III
SYMBOLIC INPUT SETUP FOR THE STUDY OBJECTS

Program Max. # Max. len. Max. # sym.
sym-args sym-args file-metadata

Busybox-ls 4 6 5 × 13
Busybox-printf 7 11 -
GNU-find 6 10 6 × 13

For each pair of a generated guidepost gi and a given test
case tj , DEMINER applies concolic testing to a target program
having gi with tj as an initial seed test case for generating 500
test cases further.

In addition, we compared DEMINER with the conventional
concolic testing techniques with three search strategies DFS,
RND, and CFG. They also use the given test cases as initial
seed test cases. For fair comparison, we run each of the three
concolic testing techniques for the same amount of time that
DEMINER consumes which includes the followings:

1) mutant generation and selection
2) mutant executions with the given test cases
3) guidepost constructions
4) guided concolic testing for 500 test cases per guidepost

and initial test case.
For example of Busybox-printf, as DEMINER spent
total 23,394 seconds, each of the three conventional concolic
testing techniques is executed for 23,394 seconds with the 17
initial test cases (i.e., for each initial test case, a conventional
technique is executed for 1,376 seconds (=23494/17)).

D. Implementation

The DEMINER implemenentation is written in C++ and
Python. The component for mutation analyses (i.e., in Phase 1,
see Section III-B) consists of the mutant generation part and
the mutant execution part. For mutant generation, we used
MUSIC (MUtation analySIs tool with high Confiurability and
extensibility) [15]. 5 MUSIC implements 73 expression-level
and statement-level mutation operators for modern C programs
(63 of them are defined in Agrawal et al. [13]). MUSIC
preserves the source code line numbering in an expression-
level mutation to make coverage information on mutants and
the original program comparable. The mutant execution part
is implemented in 540 lines of Python script code.

The component for guidepost construction (i.e., Phase 2) is
implemented in 1,620 lines of C++ code using Clang/LLVM
3.4 [19]. The component for guided concolic testing (i.e.,
Phase 3) is implemented upon CROWN [20]. CROWN
(Concolic testing for Real-wOrld softWare aNalysis) is a
lightweight easy-to-customize concolic testing tool for real-
world C programs, which is extended from CREST-BV [21]. It
supports complex C features such as bitwise operators, floating

5We failed to use Proteum [17] and MILU [18] for the experiments.
Proteum (last release on 2001) does not recognize C99 standard and often
fails to parse target C programs. MILU also frequently generated uncompilable
mutants from the target C programs.



Fig. 5. Diagrams showing the relation among coverages by regression test
cases (C0), mutant executions (Cµ), and DEMINER (CD)

point arithmetic, bitfields and so on. We added 230 lines of
C/C++ code to implement the prioritized search strategy which
hybridizes DFS and RND (see Section III-D).

E. Data Collection

All the experiments were performed on machines equipped
with Intel quad-core i5 4670K and 8GB ram, running Ubuntu
16.04.3 64 bit version. For each mutant execution, we setup
timeout as 0.5 seconds which is almost 10 times of the average
execution time of each regression test execution time.

To limit random effects of the greedy coverage-increasing
mutant selection and the RND and CFG concolic searcch
strategies, we repeated the same experiment five times and
report the average of the results.

We used gcov to measure line and branch coverage. Since
MUSIC performs line-preserving mutation (Section IV-D)
and DEMINER uses only expression level mutation operators
(Section III-B), covered line/branch information of a generated
mutant is comparable to that of an original target program.

F. Threats to Validity

A primary threat to external validity is the representativeness
of the study objects used for the experiments, because we have
examined only three C programs. We believe that this threat
is limited because the target programs are non-trivial real-
world C programs which have different characteristics. We
will address this threat to external validity in future work by
applying DEMINER to more target programs. Another exter-
nal threat involves the representativeness of the conventional
concolic testing techniques that we compared with DEMINER
(DEMINER might yield different results compared to concolic
testing techniques other than DFS, RND, and CFG). We think
that this threat is limited because these three search strategies
are representative ones for concolic testing.

A primary threat to internal validity is possible bugs in the
implementation of DEMINER. Since we have spent signifi-
cant effort for testing and debugging the implementation, we
believe that this threat is limited.

V. EXPERIMENT RESULTS

This sections describes the results of the experiments to
answer the research questions in Section IV. Note that, in

TABLE IV
THE NUMBER OF COVERED LINES AND BRANCHES BY THE MUTANT

EXECUTIONS

Program Total Cov-incr. # of cov. line # of cov. br.
mutants mutants (line cov.) (br. cov.)

Busybox-ls 17313 1280 363 (89.9%) 247 (81.5%)
Busybox-printf 5728 118 163 (96.4%) 99 (94.3%)
GNU-find 5501 172 2505 (69.3%) 1257 (60.1%)

the following discussion, we denote the sets of lines/branches
covered by the given test cases as C0, and that of all mutant
executions as Cµ, and that achieved by DEMINER as CD.
Figure 5 shows the relation among C0, Cµ, and CD

A. RQ1. With given test inputs, how many unreached
lines/branches of an original program are covered by mutant
executions?

The experiment results on RQ1 show that mutation effec-
tively diversifies program executions in a large degree, so that
many unreached lines and branches are covered on the mutants
with the given test cases. (i.e., |Cµ − C0| >> 0 in Figure 5).

Table IV shows the results on coverage-increasing mutants.
The second column shows a number of all mutants used for
the experiments, and the third column shows the number of
coverage-increasing mutants. The forth and the fifth columns
report a number of the lines and branches that are covered by
at least one mutant execution, respectively (i.e., |Cµ|).

The results shows that, with the same given test cases, the
executions on mutants cover meaningfully large amount of
additional lines and branches compared to the execution on the
original program. For example of GNU-find, the given 120
test cases cover 2,505 lines on the 172 mutants (i.e., covering
313 (=2505-2192) more lines than the original program). The
mutant executions increase line coverage by 41.2% (=(363-
257)/257), 16.4% (=(163-140)/140), and 14.3% (=(2505-
2192)/2192) for Busybox-ls, Busybox-printf, and
GNU-find, respectively. Also, the mutant executions improve
branch coverage by 83.0% (=(247-135)/135), 32.0% (=(99-
75)/75) and 18.5% (=(1257-1061)/1061) for Busybox-ls,
Busybox-printf, and GNU-find, respectively. Note that
these coverage increments appear on the mutants, not on the
original target program.

B. RQ2. How many unreached lines/branches of an original
program are covered by DEMINER?

The experiment results on RQ2 show that DEMINER effec-
tively increases test coverage by utilizing the knowledge on
the mutant executions.

In Table V, the second column represents a number of
generated guideposts for each study object. The third and
forth columns show a total numbers of lines and branches
that DEMINER covers in generating 500 test cases for each
guidepost with each initial test case, respectively.

For example of Busybox-ls, DEMINER generates 3,087
guideposts and covers 348 lines, which increases cover-
age of all given test cases by 35.4% (=(348-257)/257).



TABLE V
THE NUMBER OF COVERED LINES AND BRANCHES BY DEMINER

Program # of # of cov. line # of cov. br.
guideposts (line cov.) (br. cov.)

Busybox-ls 3087 348 (86.1%) 231 (76.2%)
Busybox-printf 183 161 (95.3%) 93 (88.6%)
GNU-find 475 2458 (68.0%) 1198 (57.3%)

TABLE VI
COVERAGE INCREASE BY MUTANT EXECUTIONS AND DEMINER

Program Cov |Cµ − C0| |CD − C0|
|(CD − C0)∩
(Cµ − C0)|

Busybox-ls Line 106 91 91
Br. 112 96 96

Busybox-printf Line 23 21 21
Br. 24 18 18

GNU-find Line 313 266 251
Br. 196 137 108

For Busybox-printf and GNU-find, DEMINER in-
creases line coverage 15.0% (=(161-140)/140) and 12.1%
((2458-2192)/2192), respectively. In addition, it increases
branch coverage of Busybox-ls, Busybox-printf, and
GNU-find by 71.1% (=(231-135)/135), 24.0% (=(93-75)/75),
and 12.9% (=(1198-1061)/1061), respectively.

C. RQ3. How many unreached lines/branches covered by the
mutant executions are also covered by DEMINER?

Table VI compares the coverage of the mutant executions
and DEMINER. The third and fourth columns show a number
of the unreached lines/branches covered by mutant executions
(i.e., |Cµ − C0|) and DEMINER (i.e., |CD − C0|), respec-
tively. The fifth column shows a number of the unreached
lines/branches covered by both mutant executions and DEM-
INER (i.e., |(CD − C0) ∩ (Cµ − C0)|)

For example of Busybox-ls, DEMINER covers 85.8%
(= |(CD−C0)∩(Cµ−C0)|

|Cµ−C0| =91/106) of the unreached lines cov-
ered by the mutant executions. For Busybox-printf
and GNU-find, DEMINER covers 91.3% (=21/23) and
80.2% (=251/313) of the unreached lines that the mu-
tant executions cover (see the fifth column). Similarly, for
Busybox-ls, Busybox-printf, and GNU-find, it cov-
ers 85.7% (=96/112), 75.0% (=18/24), and 55.1% (=108/196)
of the unreached branches that the mutant executions cover
(see the third and fifth columns).

This result shows that the guideposts effectively guide
concolic testing in DEMINER to cover most unreached lines
and branches covered by the mutation executions.

Note that, for GNU-find, DEMINER covers 15 lines
(=266-251) and 29 branches (=137-108) which are covered
neither by the initial test cases nor by the mutant execu-
tions. This fresh coverage increase is because DEMINER can
explore diverse execution space beyond the ones reached
by the mutant executions. Regarding Busybox-ls and
Busy-printf which has relatively smaller execution space
than GNU-find, we conjecture that there exist only too few

TABLE VII
THE NUMBER OF UNREACHED LINES AND BRANCHES COVERED BY THE

CONVENTIONAL CONCOLIC TESTING AND DEMINER

Program Cov Conventional Concolic DEMINERDFS RND CFG

Busybox-ls Line 81 77 77 91
Br. 84 79 78 96

Busybox-printf Line 18 18 19 21
Br. 14 14 15 18

GNU-find Line 204 233 210 266
Br. 83 98 89 137

lines/branches left for DEMINER to cover beyond the mutant
executions.

D. RQ4. How many unreached lines/branches of an origianl
program does DEMINER cover, compared to conventional
concolic testing techniques?

Table VII compares the coverage achievements of DEM-
INER with the three conventional concolic testing techniques.
The third to fifth columns show the number of newly covered
lines/branches (compared to the initial test cases) by concolic
testing with DFS, RND, and CFG search strategies, respec-
tively. The last column represents the result of DEMINER.

The experiment results show that DEMINER covers more
lines and branches than all three studied concolic testing
techniques.

For example of Busybox-ls, DEMINER covered 96
unreached branches which are 14.3% (=(96-84)/84) more
branches than the conventional concolic testing using DFS,
which is the best conventional concolic testing technique
for Busybox-ls. Similarly, for Busybox-printf and
GNU-find, DEMINER outperformed the three concolic test-
ing techniques by covering 20.0% (=(18-15)/15) and 39.8%
(=(137-98)/98) more unreached branches than CFG and
RND which are the best concolic testing techniques for
Busybox-printf and GNU-find, respectively. 6 On av-
erage, the amount of the improved branch coverage by DEM-
INER is 24.7% (=(14.3+20.0+39.8)/3) relatively larger than
those of the conventional concolic testing techniques.

In addition, Figure 6 shows the increase of covering un-
reached lines for 1,000 test input generations of the three con-
ventional concolic testing techniques and DEMINER. The X-
axis represents a number of test cases generated by DEMINER
for each guided concolic testing instance (i.e., concolic testing
of a target program having one guidepost using one initial
test case). The Y-axis represents a number of unreached lines
covered.

The result shows that, for all target programs and all
levels of the numbers of generated test cases, DEMINER
always covers the largest number of unreached lines among
the conventional concolic testing techniques. For example
of GNU-find with 1,000 test cases generation, DEMINER

6For GNU-find, we found that DEMINER generated test inputs that cover
22 unreached empty else branches (i.e., if without else) and, thus,
increase branch coverage but not line coverage.



Fig. 6. The number of unreached lines covered with different numbers of test cases generated per different techniques

TABLE VIII
EFFECT OF COVERAGE-INCREASING MUTANT SELECTION METHODS

Program
Unreached lines covered Time (in hour)

(branches)
Greedy Rand. All Greedy Rand. None

Busybox-ls 91 85 91 9.5 8.6 776.5
(96) (90) (96)

Busybox-printf 21 18 21 6.5 6.7 123.8
(18) (14) (18)

GNU-find 266 211 338 244.8 247.6 6960.0
(137) (91) (162)

covers the unreached lines around 27% (=(332-261)/261) more
than the best conventional concolic testing technique (i.e.,
RND) (see the right end of the find graph in the figure).

E. RQ5. To what extent does the mutant selection of DEM-
INER affect execution time and line/branch coverage?

Table VIII shows the effects of the coverage-increasing
mutant selection. The second to fourth columns show the line
and branch coverage that DEMINER achieves with the greedy
mutant selection algorithm, a random mutant selection which
selects the same number of mutants selected by the greedy
one, and using all coverage-increasing mutants, respectively.
The fifth to seventh columns show the execution time in hours
taken by DEMINER with the corresponding methods.

The experiment results show that the greedy selection of the
mutants effectively reduces the runtime cost without hurting
coverage much (except GNU-find) 7. DEMINER with the
greedy mutant selection consumes only 1.2% (=9.5/776.5)
(Busybox-ls) to 5.3% (=6.5/123.8) (Busybox-printf)
of the execution time of DEMINER with all coverage-
increasing mutants.

Also, DEMINER with the greedy selection covers more
lines and branches than DEMINER with random selection
for all cases. For example of Busybox-ls, DEMINER with

7Because GNU-find has larger room to increase coverage than
Busybox-ls and Busybox-printf, using more coverage-increasing
mutants and more guideposts can effectively increase coverage.

// format points to a character array whose
// elements are symbolic input characters
160 static void print_direc(char *format, ...){
...
168 // guide(format[fmt_length] == ’X’)
169 ch = format[fmt_length]; //M1:fmt_length
... //-> precision
172 have_prec = strstr(format, ".*");
173 have_width = strchr(format, ’*’);
...
179 switch (ch) {
...
201 // hard-to-cover for conventional concolic
202 case ’X’:
203 llv = my_xstrtoull(argument);

Fig. 7. An example of hard-to-reach lines of Busybox-printf for
conventional concolic testing

the greedy mutant selection covers 91 unreached lines while
DEMINER with the random selection does only 85 lines.

VI. DISCUSSION

A. Hard-to-reach Lines which DEMINER can cover

Figure 7 shows an example of hard-to-reach lines
of Busybox-printf for conventional concolic testing.
print_direc takes a character pointer format which
points to a character array whose elements are symbolic input
characters as the first parameter (Line 160). print_direc
assigns a symbolic input character of format to ch (Line
169). Then, it calls strstr to check if format contains
‘.’ or ‘*’(Line 172) and calls strchr to get a position of
‘*’ in format (Line 173). print_direc converts input
data according to the format string character using switch
statement on Line 179. Lines 202–203 are not covered by the
regression test inputs provided in Busybox-printf 1.24.0.

Conventional concolic testing using DFS and RND could
not cover Lines 202–203 in 23,394 seconds, due to the loops
inside strstr at Line 172 and strchr at Line 173. Both
of the loops have symbolic variables in their loop conditions,



because they iterate over a symbolic input string format
until they reach any specified character (i.e., ‘.’, ‘*’, or ‘\0’).
Therefore, conventional concolic testing keeps increasing the
loop bound and fails to cover Lines 202–203 within a given
time bound.

Note that DEMINER covers these hard-to-cover lines
as follows. DEMINER generates a mutant m which
mutates a variable fmt_length to another variable
precision. One of the mutant executions of m cov-
ers Lines 202–203 and the monitoring probe for m (i.e.,
probe(format[precision]) at right before Line 169)
reports ‘X’ as a value of the mutated target expression. Using
the reported value ‘X’, DEMINER inserts a guidepost at
Line 168 and guided concolic testing of DEMINER tries to
satisfy the guidepost condition with high priority instead of
negating branches of the loops inside strstr and strchr
at Lines 172–173 (see Section III-D). Therefore, DEMINER
effectively covers Lines 202–203.

Furthermore, for GNU-find, DEMINER covers 16 lines
that seems not reachable by the conventional concolic testing
by any means. We ran each of the conventional concolic
testing techniques using DFS, RND and CFG for one week
(i.e., 168 hours) per each initial test case (i.e., execution
time is 120 weeks in total). Then, we found that there are
16 lines which are covered by DEMINER, but they were
never covered by any test executions by conventional concolic
techniques with 120 weeks of the testing time. DEMINER
can cover these 16 lines successfully because the guideposts
prune the search space that is not relevant to cover new lines,
and effectively guide concolic testing toward execution paths
that reach unreached lines observed from diverse coverage-
increasing mutant executions.

B. Application of Mutation Analysis

Program mutation has been a popular method for evalu-
ating how given test cases detect subtle program changes.
Traditional research on software mutation [22] mainly focuses
on evaluating bug finding effectiveness of a test suite by
measuring how many mutants the test suite can kill.

Fraser and Zeller [23] presents a search-based unit test
generation technique that targets mutants as a way to generate
diverse unit tests. The technique directs test case generation
toward finding output and coverage differences between a
target program and its mutants. Both our approach and that
by Fraser and Zeller [23] are common in that both analyze
mutant executions. The difference is that in our approach, the
dynamic information on mutants is used for inferring internal
conditions of a target program to increase test coverage, rather
than measuring the difference between the target program and
a mutant.

Program mutation has also been used to generate and
evaluate test oracles. Mutation analysis is used to examine
which properties are invariants of the correct program. Fraser
and Zeller [23] utilizes mutation analysis to infer test oracles
from the mutant execution information. Jahangirova et al. [24]
presents a method to assess and improve the quality of a

given test oracle by utilizing program mutation. Recently,
mutation analysis has been used to precisely localize a fault in
a program. Mutation-based fault localization [25]–[28] locates
a fault in the target program code by observing how the
behaviors of the faulty program change according to the
program code chances.

A few research work have focused on mutating program
code or runtime states to derive diverse executions for better
dynamic analyses [29], [30]. These techniques utilize values
and execution paths observed from mutated program execu-
tions directly during the analyses of the original program
without validating whether these observations also hold for
the original program. Thus, these techniques may produce
unsound analysis results because mutated program executions
may be infeasible on the original program.

Our approach alleviates this false positive problem by
generating only feasible test inputs by leveraging concolic
testing techniques with the discovered knowledge from the
mutation analyses.

VII. CONCLUSION

This paper presents DEMINER which is an automated
test generation technique that realizes the invasive software
testing paradigm by utilizing information from diverse mutant
executions. We demonstrated that DEMINER can effectively
increase test coverage by applying DEMINER to three real-
world C programs.

We plan to extend DEMINER in the following directions.
First, to enhance the knowledge discovery, we will improve
DEMINER to employ more mutation operators, including
statement-level and higher-order mutation operators. Second,
to learn the converage-increasing conditions more efficiently
and effectively, we will utilize the automated unit test genera-
tion technique using concolic testing [31] which can generate
the coverage-increasing conditions at an entry of a function.
Third, we will leverage program invariant inference tech-
niques, such as Daikon [32], to generate various kinds of
guideposts from mutant execution information. In addition,
we will explore what kinds of guidepost condition structures
are effective for capturing useful knowledge from mutant
executions. Finally, we will apply DEMINER to more real-
world programs to show that DEMINER is generally effective
in finding unknown bugs in real-world programs.
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