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Abstract. As the complexity of systems grows, the correctness of sys-
tems becomes harder to achieve. This difficulty promotes a run-time mon-
itoring technique as a promising complementary methodology for higher
system assurance. To formalize and understand the computational na-
ture of run-time monitoring is a key to utilize this valuable technique.
In this paper, we formalize the notion of run-time monitoring of reactive
systems in terms of ω-languages and show that the language of Monitor-
ing and Checking (MaC) architecture, called MEDL, is expressive enough
for the run-time monitoring.

First, we provide a descriptive theory for the class of monitorable
languages and show that this class of languages coincides with the class
Π0

1 of the Arithmetic hierarchy. Second, we introduce a class of automata
with storage that can be used to describe the class of monitorable lan-
guages using connections to the Arithmetic hierarchy. Finally, we show
that MEDL can express the class of monitorable languages via the cor-
respondence between MEDL and the automata with storage.

1 Introduction

Reactive systems are systems which perform ongoing interaction with an envi-
ronment rather than generate output with given input. Computation is, there-
fore, typically seen as being non-terminating. Such systems are notorious for
its complex behavior and difficulty of testing. As the complexity of systems
grows, the correctness of systems becomes harder to achieve. This difficulty
promotes a run-time monitoring technique not only as a performance mea-
surement method, but also as a promising complementary method for higher
system assurance. The monitor examines interaction of systems, rather than
a result at the end of computation and determines whether the behavior is
correct.

It is customary to model the behavior of such systems as an infinite sequence
of letters from some finite alphabet. This sequence can be seen as either the
sequence of program states visited by the reactive system, or as the sequence
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of request-response pairs that is generated by the system’s interaction with its
environment. Certifying the correctness of reactive systems, therefore, involves
checking to see if the set of execution sequences of the reactive system satisfies
certain constraints/properties.

Past research in monitoring [1] has tried to identify the class of monitorable
properties1 with the class of safety properties. We instead identify the class of
properties that can be monitored with the class Π0

1 in the Arithmetic hierarchy.
Π0

1 consists of properties whose violation can be detected by a Turing machine
by examining a finite prefix of the errant behavior. We will also introduce a class
of automata that can be used to specify these properties, and that can serve as
monitors for such properties.

Section 2 shows that the class of languages run-time monitoring can deter-
mine, say M, is a strict subset of the class of safety languages. Section 3 describes
the class of monitorable languages M in the Arithmetic hierarchy. Section 4 in-
troduces the model of finite state machines with storage which can specify M.
Section 5 briefly describes the Monitoring and Checking (MaC) architecture and
the specification language Meta Event Definition Language (MEDL) of the MaC
architecture. Then, we show that MEDL is expressive enough for M. Finally,
we enumerate related works in Sec 6 and Sec 7 concludes this paper.

2 A Class of Monitorable Languages M
It is obvious that run-time monitoring cannot evaluate liveness properties be-
cause a monitor decides the correctness of system based on what has been ob-
served. We generally presume that the class of properties which run-time mon-
itoring can evaluate is safety properties. In this section, however, we study the
class of properties run-time monitoring can evaluate more precisely.

2.1 Notations

We use standard notations of ω-languages. Σ is a finite alphabet. The set of
finite words over Σ, including the empty word ε, is denoted by Σ∗, while the set
of ω-words is Σω; Σ∞ = Σ∗ ∪ Σω. A subset of Σ∗ is called a finitary language,
and a subset of Σω is an infinitary language (or ω-language).

For a (finite or infinite) word α, α(i) (or αi) denotes the (i + 1)st letter of α.
Segments of words are denoted as follows: α(m, n) = α(m) ·α(m+1) · · ·α(n−1)
and α(m, ω) = α(m) · α(m + 1) · · ·. The concatenation of a finite word u with
another word (finite or infinite) α, u · α, is defined by u · α(i) = u(i) if i ≤ |u|
and u · α(i) = α(i − |u|) otherwise. A finite word u is said to be a prefix of
another word α if there is β ∈ Σ∞ such that u · β = α. pref(α) is the set
of all finite prefixes of α, and for a (finite or infinite) language L, pref(L) =
∪α∈Lpref(α).

1 In this paper, we use two terms “property” and “language” for the same meaning
depending on its context.
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2.2 Safety Languages and Monitorable Languages

Informally speaking, safety languages are languages that require that nothing
bad happens during an execution; if an execution is faulty, then the monitor
should be able to reject it after looking at a finite prefix. Safety languages are
formally defined by [2] as

Definition 1 (Safety language). A language L ⊆ Σω is a safety language
if for every σ ∈ Σω, σ ∈ L if and only if ∀i∃β ∈ Σω(σ(0, i) · β ∈ L).

It is clear from Definition 1 that a monitorable property is a safety language.
A safety language, however, is not necessarily a monitorable language. The def-
inition of safety language makes no computational assumptions. It is possible to
define a language that is a safety language, but which is unlikely monitorable.
For example, safety closure of the halting problem is a safety language but not
a monitorable language.

Example 1. Let Σ = {0, 1, a, b}. Consider a finite language H∗ = {x · a ·
y | x, y ∈ {0, 1}∗, the Turing Machine encoded by x halts on input y}. We de-
fine a language Hω = H∗ · bω ∪ {0, 1}∗ · a · {0, 1}ω ∪ {0, 1}ω.

The language Hω, defined above is a safety language. In order to see this, we
only need to observe that for any execution not in Hω, there is a finite prefix
when this violation can be detected. Executions not in Hω are those that are
not in the “right format”, or where the finite prefix before the sequence of b’s
is not in H∗; in both cases there is a finite prefix that provides evidence of the
execution not being in the language.

However, in order to detect that an execution σ is not in Hω, we have to
check for membership in H∗. Since membership in H∗ (or the Halting problem)
is not decidable, it is impossible for us to design monitors that would be able to
detect a violation of this language. This suggests that the class of monitorable
language is a strict subset of a class of safety languages; they should be such
that sequences not in the languages should be recognizable by a Turing Machine,
after examining a finite prefix. Therefore, we can define a monitorable language
as follows.

Definition 2 (Monitorable language). A language L ⊆ Σω is said to be
monitorable if and only if L is a safety language and Σ∗ \ pref(L) is recursively
enumerable. The class of monitorable languages is denoted by M.

3 M in the Arithmetic Hierarchy

In our study of ω-languages, we will find it useful to discuss definability relative
to classical hierarchies in recursion theory and descriptive set theory. Such hier-
archies have been extensively studied in the context of formal languages[3, 4, 5].
In the language theoretic context, the usual set-up of these hierarchies is modi-
fied slightly. The relations that we consider are not defined over natural numbers
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and functions over natural numbers, but are rather over the finite and infinite
words over a finite alphabet. While this change is irrelevant due to the presence
of standard recursive encodings from Σ∗ to N, it provides a cleaner presentation
for questions arising in automata theory.

A relation R is said to be finitary over Σ, if R ⊆ (Σ∗)m. We write Ru1u2 . . . um

instead of (u1, u2, . . . um) ∈ R. We will define our hierarchy in terms of a class
of finitary relations, C. This class C will be assumed to be closed under boolean
operations.

First, we will consider finitary languages over Σ. A languages L ⊆ Σ∗ is said
to be in Σ0

n(C) if and only if for some relation R ∈ C,

L = {u | ∃v1∀v2 . . . QnvnRv1v2 . . . vnu}

where Qn is either ∃ (if n is odd) or ∀ (if n is even). The languages in Π0
n(C) are

defined analogously. L ⊆ Σ∗ is in Π0
n(C) if and only if for some relation R ∈ C,

L = {u | ∀v1∃v2 . . . QnvnRv1v2 . . . vnu}

where Qn is either ∀ (if n is odd) or ∃ (if n is even).
The hierarchy of infinitary languages over C is defined as follows. A language

L ⊆ Σω is in Σ0
n(C) if and only if for some R ∈ C,

L = {α | ∃v1∀v2 . . . Qn−1vn−1Q
′
niRv1v2 . . . vn−1α(0, i)}

where, once again, Qn−1 and Q′
n are quantifiers, and i is an natural number.

The languages in Π0
n(C) are defined similarly in terms of logical formulae with

alternating quantifiers, with the leading quantifier being ∀. Though we use the
same notation for the hierarchy of infinitary languages, as in the case of finitary
languages, it will often be clear from the context which hierarchy we are referring
to.

By instantiating C to specific families, we obtain the classical hierarchies
from recursion theory and descriptive set theory. If C is taken to be the class
of recursive relations (REC), then we get the arithmetic hierarchy. For finitary
languages, Σ0

1(REC) coincides with the class of recursively enumerable (R.E.)
languages, while Π0

1 (REC) is the class of co-R.E. languages. For notational
convenience, we will denote the classes Σ0

n(REC) and Π0
n(REC), simply as, Σ0

n

and Π0
n, respectively.

Now we are ready to describe the class of monitoring languages M in terms
of the Arithmetic hierarchy.

Proposition 1. M = Π0
1

Proof. [M ⇒ Π0
1 ] Consider L ∈ M. From the definition of M, we know that

Σ∗ \pref(L) is recursively enumerable. Therefore, there is a recursive relation R
such that u ∈ Σ∗ \ pref(L) if and only if ∃vRvu. In other words, u ∈ pref(L) if
and only if ∀vR′vu, where R′ = ¬R. Furthermore, we know that L is a safety lan-
guage, which implies that L ∈ adh(pref(L)) where adh(L) = {α ∈ Σω|pref(α) ⊆
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pref(L)} [6]. Hence, α ∈ L if and only if ∀iα(0, i) ∈ pref(L) if and only if
∀i∀vR′vα(0, i). By contracting the quantifiers we can see that L ∈ Π0

1 .
[Π0

1 ⇒ M] Let L ∈ Π0
1 . Hence α ∈ L if and only if ∀iRα(0, i), for some

recursive relation R. From the definition of safety language (see Sect 2.2), it is
clear that L is a safety language. Also, u ∈ Σ∗ \pref(L) if and only if ¬Ru. Thus
Σ∗ \ pref(L) is recursively enumerable, and L ∈ M. �

4 ω-Automata with Storage

Finite state machines on infinite words, are very similar to those which accept
finite words. On an ω-word, α, the machine works as if α were a “very large”
finite word. The only difference is the criteria that these machines use to accept
a language (clearly, acceptance by final state cannot be used).

The general notion of an automaton on ω-words, using some kind of storage,
was first introduced and studied Engelfriet and Hoogeboom [7]. We use defini-
tions and concepts described there, to develop our theory. Before defining finite
state machines on ω-words formally, we first define the notion of a storage type,
and give an example.

Definition 1. A storage type is a 5-tuple X = (C, C0, P, F, [[·]]), where

– C is a set of storage configurations,
– C0 ⊆ C is a set of initial storage configurations,
– P is a set of predicate symbols,
– F is a set of function symbols, and
– [[·]] is a function that defines the semantics of the predicate and function

symbols. For each p ∈ P , [[p]] : C → {true, false}, and for each f ∈ F ,
[[f ]] : C → C, is a partial function.

The set of all Boolean expressions over P , built using connectives ∧,∨, and
¬, constants {true, false}, and the predicates in P , is denoted by BE(P ). The
function [[·]] is extended to BE(P ) in the standard way. [[·]] is also extended to
finite words over F , by interpreting concatenation as function composition. In
other words, [[f · ϕ]] = [[ϕ]] ◦ [[f ]], where ϕ ∈ F ∗ and f ∈ F .

Example 2. The storage type, accumulator, is AC = (N, {0}, {zero}, {+k,−k|k
∈ N}, [[·]]). It is the storage type of integers with a test for zero, and ability to
add and subtract constants. More precisely,

[[zero]](c) = true if and only if c = 0
[[+k]](c) = c + k
[[−k]](c) = c − k, if c ≥ k, and undefined otherwise.

We will now define the notion of the product of storage types. It is a way
obtaining a new storage type that combines two storage types and uses them
independently.
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Definition 2. Let X1 = (C1, C10, P1, F1, [[·]]1) and X2 = (C2, C20, P2, F2, [[·]]2)
be two storage types with P1 ∩ P2 = ∅ and F1 ∩ F2 = ∅. The product of these
two storage types, X1 × X2, is the type (C, C0, P, F, [[·]]), where C = C1 × C2,
C0 = C10 × C20, P = P1 ∪ P2 and F = F1 ∪ F2. The function [[·]] is then defined
naturally, as follows.

[[p]](c1, c2) =
{

[[p]]1(c1) if p ∈ P1
[[p]]2(c2) if p ∈ P2

[[f ]](c1, c2) =
{

([[f ]]1(c1), c2) if f ∈ F1
(c1, [[f ]]2(c2)) otherwise

We will often use the above definition to get finitely many copies of the same
storage type. In such a case, we first rename the predicate and function symbols
of the storage type, by adding subscripts, and then taking repeated products.
The n-fold product (n ≥ 1) of a storage type X will be denoted by Xn. In order
to extend the definition consistently, we take X0 = ({c}, {c}, ∅, ∅, ∅).

We are now ready to define automata with storage type X. We will consider
only one acceptance condition for such machines (see Def 4) 2

Definition 3. Let X = (C, C0, P, F, [[·]]) be a storage type. An X-automata is a
5-tuple A = (Q, Σ, δ, q0, c0), where

– Q is a finite set of states,
– Σ is a finite input alphabet,
– δ is the transition function, which is a finite subset of Q×(Σ∪{ε})×BE(P )×

Q × F ∗,
– q0 ∈ Q is the initial state, and
– c0 ∈ C0 is the initial storage configuration.

The instantaneous description of such a machine A, is a tuple (q, α, i, c) ∈
Q × Σω × N × C, where q is the current state of the machine, α is the input to
the machine, i is the position of the symbol being currently scanned, and c is the
current configuration. In one step the machine either reads a symbol from the
input or makes a “silent” transition, according to the transition function δ. More
precisely, we say (q, α, i, c) � (q′, α, i′, c′), if there exists a transition (q, a, ϕ, q′, h),
such that [[ϕ]](c) = true, [[h]](c) is defined, and [[h]](c) = c′. Furthermore, we
require that, either a = ε and i = i′, or a = α(i) and i′ = i+1. An infinite run of
the automaton A, on an input α, is an infinite sequence 〈Ii〉i∈N of instantaneous
descriptions, such that I0 = (q0, α, 0, c0), Ii � Ii+1, for each i ∈ N, and for every
j ∈ N, there is a k such that Ik is scanning a position beyond j.

Definition 4. An ω-word, α ∈ Σω, is said to be accepted by an X-automaton
A, if there is an infinite run of the automaton on the input α. The language
accepted by A, LA, is the set of all ω-words accepted by A.

2 For a discussion of the relative power of the various other acceptance conditions,
readers are directed to [3, 4].
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The above definition of acceptance coincides with Landweber’s [8] 1′-acceptance
and with the “always” acceptance of [7].

An automaton A is deterministic if for any state and storage configuration
there is at most one possible next state and storage configuration. More formally,
for any two tuples (q1, a1, ϕ1, q

′
1, h1) and (q2, a2, ϕ2, q

′
2, h2) in δ, with q1 = q2,

either a1 �= a2 and a1, a2 �= ε, or [[ϕ1 ∧ϕ2]](c) = false, for every c ∈ C. Automata
of particular interest to us will be what are called real-time automata. A is a
real-time automata if it has no ε-transition, i.e., δ ⊆ Q × Σ × BE(P ) × Q × F ∗.
A slightly more general class of automata than real-time automata is the finite
delay automata. An automaton A is said to be finite-delay, if there is no infinite
run of the automaton on a finite word.

The class of ω-languages accepted by X-automata will be denoted by XL;
X∗L = ∪nXnL, where Xn is the n-fold product of the storage type X. The
prefixes d-, r-, and f - will be used to denote the class of languages accepted
by deterministic, real-time, and finite delay automata respectively. Similarly the
prefix dr- (and df -) will be used for languages accepted by automata that are
both deterministic and real-time (deterministic and finite delay).

Before presenting the automata theoretic characterization of M, we define
a storage type that will play an important role. This is the type of storage
where one has finitely many integer locations that one can manipulate using
addition, subtraction, multiplication and division. We will then prove a re-
sult relating the powers of real-time and finite delay automata with such a
storage.

Definition 5. The storage type of m integer variables Nm is given by Nm =
(C, C0, P, F, [[·]]). C = N

m is the set of m-tuples of natural numbers, and C0 =
〈0, . . . , 0〉. P consists of predicates zeroi, which test if the ith element of the
current configuration is 0, i.e., [[zeroi]](〈c0, . . . , cm−1〉) = true if and only if ci =
0. There are various operations that one can perform on these configurations;
one can add, subtract, and multiply integers to some element of the tuple, find
the quotient or remainder when dividing an entry by an integer, and also add and
subtract one entry in the tuple to another. The operation ADRi,j (add register)
adds the ith entry to the jth entry; SBRi,j (subtract register) subtracts the ith
entry from the jth entry. ADCi,k adds constant k to ith entry; similarly, SBCi,k

and MLCi,k subtract and multiply constants k, while QCi,k and RMCi,k find
the quotient and remainder when divided by k.

As usual, NmL is the class of languages accepted by automata with storage
type Nm. By N∗L we denote the class of languages ∪mNmL.

Theorem 1. The following classes of ω-languages are equivalent.

1. M = Π0
1

2. df -N∗L
3. dr-N∗L

Proof. [(1) ⇒ (2)] For a language L ∈ Π0
1 , we know that α ∈ L if and only if

∀iRα(0, i), where R is a recursive language. Since R is a recursive language, there
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exists a deterministic finite delay Nm-automaton, A, that has runs on exactly
the same finite words as R. It is easy to see that the language accepted by A isL.

[(2) ⇒ (3)] A real-time automaton may not have the “time” to do the computa-
tion performed by a finite delay machine. However, if the real-time machine can
simulate a buffer, it has enough time to do everything done by the finite delay
machine. The real-time automaton, then, reads an input symbol every time and
puts it into the buffer, while the actual computation is then performed on the
buffered input.

We basically show that df -NmL ⊆ dr-Nm+2L. The two extra integer loca-
tions will be used by the real-time machine to simulate a buffer. The operations
for manipulating a queue can be performed in one step using two locations, one
storing the contents of the queue and the other storing some measure of the
number of elements in the queue. Detailed proof is omitted.

[(3) ⇒ (1)] Let A be the deterministic real-time automaton that accepts L.
Observe that since A is real-time, it cannot distinguish between infinite runs
that read the whole input and runs that do not read the whole input (because
there are no such runs). Thus α ∈ L if and only if ∀iα(0, i) has a run. Hence,
L ∈ Π0

1 . �

5 The Language of the Monitoring and Checking
Architecture

5.1 Overview of the MaC Architecture

The Monitoring and Checking (MaC) architecture [9, 10] is a framework for mon-
itoring and checking a running system with the aim of ensuring that the target
program is running correctly with respect to a formal requirement specification.
Fig 1 shows the overview of the MaC architecture.

The MaC architecture consists of three components: filter, event recognizer,
and run-time checker. The filter extracts low-level information (such as values of
program variables and time when variables change their values) from the instru-
mented code. The filter sends this information to the event recognizer, which
detects primitive events and conditions where primitive events are changes of
values, beginnings of functions, and endings of functions and primitive condi-
tions are boolean variables or boolean statements composed by primitive typed
variables. These events and conditions are then sent to a run-time checker. The
run-time checker determines whether the current execution history satisfies the
requirement specification.

Monitoring and checking as well as target program instrumentation are au-
tomatically performed from a given requirement specification, which makes the
run-time analysis rigorous. In addition, monitoring program-dependent low-level
behavior and checking high-level behavioral requirements are separated. This
separation allows the specification of high-level requirements independent of the
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Fig. 1. Overview of the MaC architecture

implementation since implementation specific details are confined to the low-
level specification. Furthermore, this modularity of the MaC architecture and
well-defined interfaces among the components makes it easy to extend the ar-
chitecture to incorporate third-party tools.

We have demonstrated the effectiveness of the MaC architecture using Java-
MaC, a prototype implementation of the MaC architecture for Java programs,
through several case studies [11, 12].

5.2 Specification Languages of the MaC Architecture

In this section, we give a brief overview of the formal specification languages
used to describe specifications. The language for low-level specification is called
Primitive Event Definition Language (PEDL). PEDL is used to define what infor-
mation is sent from the filter to the event recognizer, and how it is transformed
into events used in high-level specification by the event recognizer. High-level
specifications are written in Meta Event Definition Language (MEDL). This
separation ensures that the architecture is portable to different implementation
languages and specification formalisms. Before presenting the two languages, we
first define the notions of event and condition, which are fundamental to the
MaC languages.

Events and Conditions. The MaC architecture assumes that it is possible to
observe the behavior of the target system and evaluate the observed behavior to
check whether required properties are satisfied or not. The observation is based
on the occurrence of “interesting” state change in the target system. We use the
notions of event and condition to capture interesting state changes.
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Events occur instantaneously during the system execution, whereas condi-
tions represent information that holds for a duration of time. For example, an
event denoting return from method RaiseGate occurs at the instant the control
returns from the method, while a condition (position == 2) holds as long as
the variable position does not change its value from 2. The distinction between
events and conditions is very important in terms of what the monitor can in-
fer about the execution based on the information it gets from the filter. The
monitor can conclude that an event does not occur at any moment except when
it receives an update from the filter. By contrast, once the monitor receives a
message from the filter that variable position has been assigned the value 2,
we can conclude that position retains this value until the next update.

We assume a countable set C = {c1, c2, . . .} of primitive conditions. For ex-
ample, these primitive conditions can be Java boolean expressions built from the
monitored variables. In MEDL (see Sec 5.2), these will be conditions that were
recognized by the event recognizer and sent to the run-time checker. We also
assume a countable set E = {e1, e2, . . .} of primitive events. Primitive events
correspond to updates of monitored variables and calls/returns of monitored
methods. The primitive events in MEDL are those that are reported by the
event recognizer. Table 1 shows the syntax of conditions (C) and events (E).

Table 1. The syntax of conditions and events

〈C〉 ::= c | defined(〈C〉) | [〈E〉,〈E〉) | !〈C〉 | 〈C〉&&〈C〉 | 〈C〉||〈C〉 | 〈C〉⇒〈C〉
〈E〉 ::= e | start(〈C〉) | end(〈C〉) | 〈E〉&&〈E〉 | 〈E〉||〈E〉 | 〈E〉 when 〈C〉

During execution, variables routinely become undefined when they are out of
scope. We choose to use a three-valued logic, where the third value is taken to
represent undefined (Λ). We interpret conditions over three values, true, false,
and Λ. The predicate defined(c) is true whenever the condition c has a well-
defined value, namely, true or false. Negation (!c), disjunction (c1||c2), and
conjunction (c1&&c2) are interpreted classically whenever c, c1 and c2 take val-
ues true or false; the only non-standard cases are when these take the value
Λ. In these cases, we interpret them as follows. Negation of an undefined con-
dition is Λ. Conjunction of an undefined condition with false is false, and
with true is Λ. Disjunction is defined dually; disjunction of undefined condi-
tion and true is true, while disjunction of undefined condition and false is
Λ. Implication (c1 ⇒ c2) is taken to !c1||c2. For events, conjunction (e1&&e2)
and disjunction (e1||e2) are defined classically; so e1&&e2 is present only when
both e1 and e2 are present, whereas e1||e2 is present when either e1 or e2 is
present.

There are some natural events associated with conditions, namely, the instant
when the condition becomes true (start(c)), and the instant when the condition
becomes false (end(c)). Notice that the event corresponding to the instant when
the condition becomes Λ can be described as end(defined(c)). Also, any pair of
events define an interval of time, so forms a condition [e1, e2) that is true from
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event e1 until event e2. Finally, the event (e when c) is present if e occurs at a
time when condition c is true.

Notice that MaC reasons about temporal behavior and data behavior of the
target program execution using events and conditions; events are abstract repre-
sentation of time and conditions are abstract representation of data. For formal
semantics of events and conditions, see [9].

Primitive Event Definition Language (PEDL). PEDL is the language for
writing low-level specifications. The design of PEDL is based on the following
two principles. First, we encapsulate all implementation-specific details of the
monitoring process in PEDL specifications. Second, we want the process of event
recognition to be as simple as possible. Therefore, we limit the constructs of
PEDL to allow one to reason only about the current state in the execution trace.
The name, PEDL, reflects the fact that the main purpose of PEDL specifications
is to define primitive events of requirement specifications. All the operations on
events can be used to construct more complex events from these primitive events.
PEDL is dependent on its target programming language.

Meta Event Definition Language (MEDL). The safety requirements are
written in MEDL. Primitive events and conditions in MEDL specifications are
imported from PEDL specifications. The overall structure of a MEDL specifica-
tion is given in Fig 2.

ReqSpec <spec_name>

/* Import section */
import event <e>;
import condition <c>;

/*Auxiliary variable declaration*/
var int <aux_v>;

/*Event and condition definition*/
event <e> = ...;
condition <c>= ...;

/*Property and violation definition*/
property <c> = ...;
alarm <e> = ...;

/*Auxiliary variable update section*/
<e> -> { <aux_v’> := ... ; }

End

Fig. 2. Structure of MEDL
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Importing events and conditions. A list of events and conditions to be imported
from an event recognizer is declared.

Defining events and conditions. Events and conditions are defined using im-
ported events, imported conditions, and auxiliary variables, whose role is ex-
plained later in this section. These events and conditions are then used to define
safety properties and alarms.

Safety properties and alarms. The correctness of the system is described in terms
of safety properties and alarms. Safety properties are conditions that must be
always true during the execution. Alarms, on the other hand, are events that
must never be raised (all safety properties [13] can be described in this way). Also
observe that alarms and safety properties are complementary ways of expressing
the same thing. The reason that we have both of them is because some properties
are easier to think of in terms of conditions, while others are in terms of alarms.

Auxiliary variables. The language described in Sec 5.2 has a limited expressive
power. For example, one cannot count the number of occurrences of an event, or
talk about the ith occurrence of an event. For this purpose, MEDL allows users
to define auxiliary variables, whose values may then be used to define events and
conditions. Updates of auxiliary variables are triggered by events. For example,

e1 -> {count e1’ := count e1 + 1;}
counts occurrences of event e1.

5.3 Expressive Power of MEDL

In this section, we show that MEDL is expressive enough for the monitoring
purpose. More specifically, we show that for every dr-N∗-automaton AM , there
exists a MEDL script MA which accepts exactly the same strings.

Theorem 2. MEDL is expressive enough for M.

Proof. Consider a dr-N∗-automaton A. The elements of Σ (the input alphabet
of A) will be all the imported events, and there will be an auxiliary variable cor-
responding to each of the m storing locations of the automaton A. In addition,
there will be an auxiliary variable state that will store the state of the automa-
ton. Let Pr be the set of all boolean expressions that label the edges of the au-
tomaton A. Corresponding to each such boolean expression b ∈ Pr, we will define
a condition Cb = b and an event Eb = start(Cb); note, that the expression b con-
tains no primed variable. A transition (q1, a, b, q2, f) is transformed into a guard

(a&&Eb) when (state ==q1) -> {state′ :=q2; f ′; }
where, f ′ is the sequence of updates that produces the same result as function
f . Finally, the automaton accepts only those strings that do not cause it to be
stuck at any point; this is captured by defining the safety property of the MEDL
script to be something that says if state == q, then the boolean expression la-
beling one of the out-going transitions must be true. It is clear that this MEDL
script will behave exactly like the automaton. �
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6 Related Work

Monitoring systems at runtime to ensure correctness has received a lot of atten-
tion recently, and many systems have been developed. There are monitoring sys-
tems that analyze programs written in C [14, 15] and Java [16, 17, 18, 9], by in-
strumenting the program to extract information. Different specification languages
with varying expressive powers have been used to specify monitoring requirements
ranging from simple boolean expressions [14] to some versions of propositional
temporal logic [17] to extensions of propositional temporal logic [9] and logics for
partial-order traces [19]. However, there has been very little work in understanding
the fundamental limitations of what properties can and cannot be monitored. In
the seminal paper [1], monitorable properties are identified with safety properties.
This was refined in [6]. More recently, Hamlen et. al. [20] have identified the class
of properties that can be enforced; namely properties that can be detected and for
which corrective action can be taken before a serious violation happens. The class
of properties they identify as enforceable is strict subset of the class identified in
this paper. The difference between these classifications stems from the fact that in
this paper, we are only concerned with the problem of monitoring to detect errors
(possibly after the violation has occurred) and not in enforceable properties.

7 Conclusion and Future Work

Run-time monitoring can serve as a complementary method, in addition to formal
verification and testing, for assurance of the systems’ correctness. In this paper, we
have formalized the computational nature of run-time monitoring, which is nec-
essary for utilizing this valuable technique. We have provided a descriptive theory
for the class of monitorable languages M and showed that MEDL, the specifi-
cation language of the MaC architecture, is expressive enough for M. We showed
that M is a strict subset of the class of safety languages and M corresponds to Π0

1
in the Arithmetic hierarchy. Also, we introduced a class of automata with storage
which can specify M, then showed that there exists a MEDL specification which
can express such automaton. Therefore, the MaC architecture, whose specifica-
tion language is MEDL, can be a general framework for run-time monitoring.

Although the MaC architecture provides an expressive language MEDL, it is
sometimes awkward to express certain features like temporal ordering of complex
events in MEDL. Extending MEDL for specifying requirements more easily could
be one further research direction. For example, [21] extends MEDL for describing
regular expressions more conveniently.
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