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Abstract. Flash memory has become a virtually indispensable component for
mobile devices in today’s information society. However, conventional testing
methods often fail to detect hidden bugs in flash file systems due to the difficul-
ties involved in creating effective test cases. In contrast, the approach of model
checking guarantees a complete analysis, but only on a limited scale. In the previ-
ous work, the authors applied concolic testing to the multi-sector read operation
of a Samsung flash storage platform as a trade-off between the aforementioned
two methods.

This paper describes our continuing efforts to develop an effective and efficient
verification framework for flash file systems. We developed a scalable distributed
concolic algorithm that utilizes a large number of computing nodes. This new
concolic algorithm can alleviate the limitations of the concolic approach caused
by heavy computational cost. We applied the distributed concolic technique to the
multi-sector read operation of a Samsung flash storage platform and compared the
empirical results with results obtained with the original concolic algorithm.

1 Introduction

On the strengths of characteristics such as low power consumption and strong resis-
tance to physical shock, flash memory has become a crucial component for mobile
devices. Accordingly, in order for mobile devices to operate successfully, it is imper-
ative that the flash storage platform software (e.g., file system, flash translation layer,
and low-level device driver) operates correctly. However, conventional testing methods
often fail to detect hidden bugs in flash storage platform software, since it is difficult to
create effective test cases (i.e., test cases that provide a check of all possible execution
scenarios generated from complex flash storage platform software). Thus, the current
industrial practice of manual testing does not achieve high reliability or provide cost-
effective testing. As another testing approach, randomized testing can save human effort
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for test case generation. However, it does not achieve high reliability, because random
input data does not necessarily guarantee high coverage of a target program. These de-
ficiencies of conventional testing incur significant overhead to manufacturers. In spite
of the importance of flash memory, however, little research work has been conducted
to formally analyze flash storage platforms. In addition, most of such work [12, 9] has
focused on the specifications of file system design, not real implementation.

In the previous work [14], the authors applied concolic (CONCrete + symbOLIC)
testing [17, 10, 7] (also known as dynamic symbolic execution [18] or automated white-
box fuzzing [11]) to the multi-sector read operation (MSR) of the Samsung OneNAND
flash storage platform [3] and tested all possible execution paths in an automatic and
exhaustive manner. We used CREST [6] (an open source concolic testing tool for C)
in the experiments and confirmed that concolic testing was effective to detect bugs.
However, CREST consumed a large amount of time to analyze all possible execution
paths, which is not acceptable in an industrial setting. For example, it took more than
three hours to test a MSR with a small explicit environment consisting of 5 physical
units and 6 logical sectors, which generated 2.8 x 10° test cases in total. Although
concolic testing effectively detects bugs through the full path coverage, the required
heavy computational cost prohibits the use of concolic testing in real world applications.

This paper describes our continuing efforts to develop an effective and efficient ver-
ification framework for flash file systems by alleviating the limitations caused by heavy
computational cost. One solution is to develop a scalable distributed concolic algo-
rithm that can utilize a large number of computing nodes with high efficiency. Thus
far, most of automated formal verification techniques such as model checking have
suffered heavy computational costs. Consequently, this heavy overhead often prevents
practitioners from adopting these valuable techniques. The concolic approach is a suit-
able technique to exploit the benefits of parallel computing. We modified the original
concolic algorithm to utilize multiple computing nodes in a distributed manner so as to
reduce time cost significantly. In addition, this distributed concolic algorithm is scal-
able to utilize a large number of computing nodes, achieving linear speedup with an
increasing number of computing nodes. We applied this distributed concolic technique
on the multi-sector read operation (MSR) of a Samsung flash storage platform with 16
computing nodes. This paper reports experimental results obtained with the new con-
colic approach and compares them with the results derived with the original concolic
algorithm to demonstrate the former’s performance gain and scalability.

The organization of this paper is as follows. Section 2 explains the original con-
colic testing algorithm. Section 3 describes the distributed concolic algorithm. Section 4
overviews the multisector-read (MSR) function of the Samsung flash storage platform.
Section 5 presents the experimental results obtained by applying the distributed con-
colic algorithm to MSR. Section 6 concludes the paper along with directions for future
work.



2 Original Concolic Testing Algorithm

This section presents the original concolic testing algorithm [17, 10, 7]. Concolic testing
executes a target program both concretely and symbolically [16, 19] at the same time.
Concolic testing proceeds via the following five steps:

1. Instrumentation
A target C program is statically instrumented with probes, which record symbolic
path conditions (PCs) from a concrete execution path when the target program is
executed. Note that PCs correspond to conditional statements (i.e., i f) in the target
program.

2. Concrete execution
The instrumented C program is executed with given input values and the concrete
execution part of the concolic execution constitutes the normal execution of the
program. For the first execution of the target program, the initial inputs are as-
signed with random values. For the second execution and onward, input values are
obtained from step 5.

3. Obtaining a symbolic path formula ¢;
The symbolic execution part of the concolic execution collects symbolic path con-
ditions over the symbolic input values at each branch point encountered along the
concrete execution path. Whenever each statement s of the target program is exe-
cuted, a corresponding probe inserted at s updates the symbolic map of symbolic
variables if s is an assignment statement, or collects a corresponding symbolic path
condition pc, if s is a branch statement. Thus, a complete symbolic path formula
¢, of the ith execution is the conjunction of all PCs pci, pca, ...pc, where pc; is
executed earlier than pc;; forall 1 < j < n.

4. Generating a symbolic path formula ¢/, for the next input values
Given a symbolic path formula ¢; obtained in Step 3, to obtain the next input values,
¢ is generated by negating the path condition pc; (initially j = n) and removing
the subsequent PC (i.e., pc;11,...pc,) of ¢;. If ¢ is unsatisfiable, another path
condition pc;_1 is negated and the subsequent PCs are removed, until a satisfiable
path formula is found. If there are no further available new paths, the algorithm
terminates.

5. Selecting the next input values
A constraint solver such as a Satisfiability Modulo Theory (SMT) solver [4] gener-
ates a model that satisfies ¢}. This model decides concrete next input values and the
entire concolic testing procedure iterates from Step 2 again with these input values.

Algorithm 1 describes the original concolic algorithm in detail, which corresponds
to Step 2 to Step 5. Algorithm 1 negates all PCs of a given path one by one in
descending order (see line 3 to line 13) and new paths (path’ in line 9) are ana-
lyzed recursively (see line 10). To prevent redundant analysis of a given path, subse-
quent recursive Concolic() negates PCs of path’ up to neg_limit th PC (i.e., only
DClpath’|s PClpath!|—15 -++» PClneg_limit| OF path’ are negated one by one). Note that this
concolic algorithm operates in a similar manner to the depth first order (DFS) traversal
of the execution tree of a target program.



Input:

path: a sequence of PCs executed in the previous execution

neg-limit: a position of a PC in path beyond which PCs should not be negated
Output:

a set of generated test cases (i.e., I’s of line 7)

Concolic(path, neg_limit) {
Jj = path|;
while j >= neg_limit do
/I ¢ is a symbolic path formula of path
/I pcy; is kth path condition of path and pc; is executed first
¢ =pci A ... \pcj—1 A\ —pcj
I = SMT_Solver(¢) // returns NULL if ¢ is unsatisfiable
if 7 is not NULL then
path’ = execute a target program on I ;
Concolic(path’,j + 1);
end
J=J—-L
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Algorithm 1: Original concolic algorithm

3 Distributed Concolic Algorithm

This section describes a distributed concolic algorithm that can utilize a large number
of computing nodes. The main concept underlying the new algorithm is based on the
feature that symbolic path formulas in the loop (line 3 to line 13 of Algorithm 1) of the
original concolic algorithm are analyzed independently. Therefore, in order to analyze
these symbolic path formulas in a distributed manner, Algorithm 2 generates and stores
symbolic path formulas in queue,s (line 15) without analyzing these symbolic path
formulas recursively (line 10 of Algorithm 1). If queue,y is empty (exiting the loop of
line 5 to line 25) and there are no more paths to analyze in all distributed nodes, the
algorithm terminates (line 31). Otherwise, the current node requests a symbolic path
formula from another node n’ (line 27) and receives a symbolic path formula from n’
(line 28). The received symbolic path formula is then added into queue,; (line 29)
and the algorithm continues from line 5 again. If the current node receives a request
for symbolic path formulas (line 17), it sends one from queuey,y (lines 19 and 20)
immediately as long as queue, s is not empty. !

Note that communication between nodes occurs only when queue, s is empty. Since
queue, s is non-empty for most of the analysis time, the number of communications is
small compared to the number of analyzed symbolic path formulas. In addition, the
communicated message contains only one symbolic path formula, whose size is small
(proportional to the length of the corresponding execution path). Furthermore, this al-
gorithm is not affected by the complexity and/or characteristics of a target program.

!'In a real implementation, there is a server to coordinate communications between computing
nodes; this is not described in this paper for the sake of providing a simple description.



Input:

orig_path: a sequence of PCs executed in the previous execution
Output:

a set of generated test cases (i.e., I’s of line 12)

DstrConcolic(orig-path) {

queue,y = 0; // queue containing symbolic path formulas

Add (orig_path, 1) to queuepy;

repeat

while queue,y is not empty do

Remove (path, neg_limit) from queue,y;

J = path |;

while j >= neg_limit do

/I ¢ is a symbolic path formula of path

/l pcy; is kth path condition of path and pc; is executed first
¢ =pc1 A... \pcj_1 A pc;

I = SMT_Solver(¢); // returns NULL if ¢ is unsatisfiable
if I is not NULL then

path’ = execute the target program on I;

Add (path', j + 1) to queuepy;
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end
if there is a request for a symbolic path formula from other node n then
if queue, is not empty then
Remove (path”, neg_limit") from queue,y;
Send (path”,neg-limit") to n;
end
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end

if there are uncovered paths in any distributed node then

Send a request for a symbolic path formula to n’ whose queue, ¢ is not empty;
Receive (path, neg-limit) from n';

Add (path, neg_limit) to queueyy;
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30 end
31 until all execution paths are covered;

2}

Algorithm 2: Distributed concolic algorithm

Therefore, Algorithm 2 is scalable to utilize a large number of computing nodes with-
out performance degradation.

4 Overview of Multi-sector Read Operation

Unified storage platform (USP) is a software solution to operate a Samsung flash mem-
ory device [3]. USP allows applications to store and retrieve data on flash memory
through a file system. USP contains a flash translation layer (FTL) through which data



and programs in the flash memory device are accessed. The FTL consists of three layers
- a sector translation layer (STL), a block management layer (BML), and a low-level
device driver layer (LLD). Generic I/O requests from applications are fulfilled through
the file system, STL, BML, and LLD, in order. MSR resides in STL. 2

4.1 Overview of Sector Translation Layer (STL)

A NAND flash device consists of a set of pages, which are grouped into blocks. A unit
can be equal to a block or multiple blocks. Each page contains a set of sectors.

When new data is written to flash memory, rather than overwriting old data directly,
the data is written on empty physical sectors and the physical sectors that contain the
old data are marked as invalid. Since the empty physical sectors may reside in sepa-
rate physical units, one logical unit (LU) containing data is mapped to a linked list of
physical units (PU). STL manages this mapping from logical sectors (L.S) to physical
sectors (PS). This mapping information is stored in a sector allocation map (SAM),
which returns the corresponding PS offset from a given LS offset. Each PU has its own
SAM.

.......................
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f.unit7
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Fig. 1. Mapping from logical sectors to physical sectors

Figure 1 illustrates a mapping from logical sectors to physical sectors where 1 unit
consists of 1 block and 1 block contains 4 pages, each of which consists of 1 sector.
Suppose that a user writes LSO of LU7. An empty physical unit PU1 is then assigned
to LU7, and LSO is written into PSO of PU1 (SAM1[0]=0). The user continues to write
LS1 of LU7, and LS1 is subsequently stored into PS1 of PU1 (SAMI1[1]=1). The user
then updates LS1 and LSO in order, which results in SAM1[1]=2 and SAM1[0]=3.
Finally, the user adds LS2 of LU7, which adds a new physical unit PU4 to LU7 and
yields SAM4[2]=0.

4.2 Multi-sector Read Operation

USP provides a mechanism to simultaneously read as many multiple sectors as possible
in order to improve the reading speed. The core logic of this mechanism is implemented

2 This section is taken from [13].



in a single function in STL. Due to the non-trivial traversal of data structures for logical-
to-physical sector mapping (see Section 4.1), the function for MSR is 157 lines long and
highly complex, having 4-level nested loops. Figure 2 describes simplified pseudo code
of these 4-level nested loops. The outermost loop iterates over LUs of data (line 2-
18) until the numSct s amount of the logical sectors are read completely. The second
outermost loop iterates until the LSes of the current LU are completely read (line 5-16).
The third loop iterates over PUs mapped to the current LU (line 7-15). The innermost
loop identifies consecutive PSes that contain consecutive LSes in the current PU (line
8-11). This loop calculates conScts and of fset, which indicate the number of such
consecutive PSes and the starting offset of these PSes, respectively. Once conScts
and of fset are obtained, BML_READ rapidly reads these consecutive PSes as a whole
(line 12).

0l:curlLU = LUO;
02:while (numScts > 0) {

03: readScts = # of sectors to read in the current LU

04: numScts —-= readScts;

05: while(readScts > 0 ) {

06: curPU = LU->firstPU;

07: while (curPU != NULL ) {

08: while(...) {

09: conScts = # of consecutive PSes to read in curPU
10: offset = the starting offset of these consecutive PSes
11: }

12: BML_READ (curPU, offset, conScts);

13: readScts = readScts - conScts;

14: curPU = curPU->next;

15: }

16: }

17: curlU = curLU->next;

18:}

Fig. 2. Loop structures of MSR

For example, suppose that the data is “ABCDEF” and each unit consists of four
sectors and PUO, PU1, and PU2 are mapped to LUO (“ABCD”) in order and PU3 and
PU4 are mapped to LU1 (“EF”) in order, as depicted in Figure 3(a). Initially, MSR
accesses SAMO to find which PS of PUO contains LSO(‘A’). It then finds SAMO[0]=1
and reads PS1 of PUO. Since SAMO[1] is empty (i.e., PUO does not have LS1(‘B’)),
MSR moves to the next PU, which is PU1. For PU1, MSR accesses SAM1 and finds that
LSI1(‘B’) and LS2(°C’) are stored in PS1 and PS2 of PU1 consecutively. Thus, MSR
reads PS1 and PS2 of PU1 altogether through BML_READ and continues its reading
operation.



Sector 0
Sector 1
Sector 2
Sector 3

The requirement property for MSR is that the content of the read buffer should be
equal to the original data in the flash memory when MSR finishes reading, as given by
assert (Vi.LS[ i]==buf[i]) inserted at the end of MSR. 3

SAMO~SAM4  PUO~PU4 SAMO~SAM4 PUO~PU4 SAMO~SAM4  PUO~PU4
1 0 E 3 3| B 1 0
1 1] AB F 0 2 D 1 1| FIE A
2 C 3 F 2 D
3 D 1 AIC| E 3 C
(a) A distribution of (b) Another distribution of (c) A distribution of
“ABCDEF" “ABCDEF" “FEDCBA”

Fig. 3. Possible distributions of data “ABCDEF” and “FEDCBA” to physical sectors

In these analysis tasks, we assume that each sector is 1 byte long and each unit
has four sectors. Also, we assume that data is a fixed string of distinct characters (e.g.,
“ABCDE” if we assume that data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). We apply this data abstraction, since the values of logical sectors
should not affect the reading operations of MSR, but the distribution of logical sec-
tors into physical sectors does. For example, for the same data “ABCDEF”, the reading
operations of MSR are different for Figure 3(a) and Figure 3(b), since they have dif-
ferent SAM configurations (i.e., different distributions of “ABCDEF”). However, for
“FEDCBA” in Figure 3(c), which has the same SAM configuration as the data shown
in Figure 3(a), MSR operates in exactly same manner as for Figure 3(a). Thus, if MSR
reads “ABCDEF” in Figure 3(a) correctly, MSR reads “FEDCBA” in Figure 3(c) cor-
rectly too.

In addition, we assume that data occupies 2 logical units. The number of possible
distribution cases for [ LSes and n physical units, where 5 < [ < 8 and n > 2, increases
exponentially in terms of both n and [, and can be obtained by

n—1

D ((axiyCa X 41) X ((ax (n—i))Ci—ay X (1 = 4)")

i=1

For example, if a flash has 1000 physical units with data occupying 6 LSes, there exist
a total of 3.9 x 1022 different distributions of the data. Table 1 shows the total num-
ber of possible cases for 5 to 8 logical sectors and various numbers of physical units,
respectively, according to the above formula.

MSR has the characteristics of a control-oriented program (4-level nested loops) and
a data-oriented program (large data structure consisting of SAMs and PUs) at the same
time, although the values of PSes are not explicitly manipulated. As seen from Figure 3,

3 [15] describes a systematic method to identify this test oracle for MSR.




Table 1. Total number of the distribution cases

[PUs[[ 4 5 6 7 8

=5[] 61248 [ 290304 [9.8 x 10°[2.7 x 10%[6.4 x 10°
1 =6 239808 | 1416960 [5.8 x 10°]1.9 x 107[5.1 x 107
1="7|[8.8 x 10°]7.3 x 10°[3.9 x 107[1.5 x 10%[5.0 x 10°
1=28|[3.4 x 10°[4.2 x 107(2.9 x 10%[1.4 x 10°|5.6 x 10°

the execution paths of MSR depend on the values of SAMs and the order of PUs linked
to LU. In other words, MSR operates deterministically, once the configuration of the
SAMs and PUs is fixed.

5 Case Study on Paralleized Concolic Testing of the Flash Storage
Platform

In this section, we describe a series of experiments for testing the multisector read
(MSR) operation of the unified storage platform (USP) for a Samsung OneNAND flash
memory [3]. Also, we compare the empirical results of applying distributed concolic
testing with the results of the original concolic testing [14].

Our goal is to investigate the distributed concolic algorithm, focusing on its perfor-
mance improvement and scalability when applied to MSR. We thus pose the following
research questions.

— RQ1: How does the distributed concolic algorithm improve the speed of concolic
testing the MSR code?

— RQ2: How does the distributed concolic algorithm achieve scalability when applied
to the MSR code?

5.1 Environment Model

MSR assumes that logical data are randomly written on PUs and the corresponding
SAMs record the actual location of each LS. The writing is, however, subject to several
constraint rules; the following are some of the representative rules. The last two rules
can be enforced by the constraints in Figure 4.

1. One PU is mapped to at most one LU.

2. If the 44y, LS is written in the &y, sector of the j;;, PU, then the (i mod m)yy, offset
of the j;, SAM is valid and indicates the PS number &, where m is the number of
sectors per unit (4 in our experiments).

3. The PS number of the i;;, LS must be written in only one of the (i mod m)., offsets
of the SAM tables for the PUs mapped to the | - |;; LU.

To enforce such constraints on test cases, a test driver/environment model generates
valid (i.e., satisfying the environment constraints) test cases explicitly by selecting a PU



Vi, 4, k (LS[i]| = PU[j].sect[k] — (SAM][j].valid[i mod m] = true
& SAM{jl.of fset[i mod m] = k
& Vp.(SAM [p.valid[i mod m] = false)

where p # j and PU[p] is mapped toL%Jth LU))

Fig. 4. Environment constraints for MSR

and its sector to contain the [ th logical sector (PU[1] .sect [j]=LS[1]) and setting
the corresponding SAM accordingly (SAM[1] .offset [1]=]).
For example, Figure 3(a) represents the following distribution case:

S| LS[1]='B’, LS[2]='C’", LS[3]='D’, LS[4]=‘E’,and

S

Ul sect[1]=‘A’, PU[1l].sect[1l]='B’, PU[1l].sect[2]='C",

U[2].sect[3]="D", PU[3].sect[0]="E’,andPU[4].sect[1]="F".

- SAM[O] .valid[O0]=true, SAM[1] .valid[l]=true, SAM[1] .valid[2]
=true, SAM[2].valid[3]=true, SAM[3].valid[0]=true,and
SAM[4] .valid[1]=true (all other validity flags of the SAMs are false).

— SAM[O0] .offset[0]=1,SAM[1].offset[1]=1,SAM[1] .offset[2]=2,
SAM[2] .offset [3]=3,SAM[3] .0offset[0]=0,and SAM[4] .offset [1]=1.

0]=
5]= ‘F’
0].
2].

Thus, the environment contraints for ¢ = 2, 7 = 1, and k = 2 are satisfied as follows:

LS[2] = PU[1].sect]2] — (SAM|[1]).valid[2 mod 4] = true
& SAM1]).o0f fset[2 mod 4] = 2
& SAM[0].valid[2 mod 4] = false
& SAM|2).valid[2 mod 4] = false
& SAM[3].valid[2 mod 4] = false)

5.2 Test Setup for the Experiment

All experiments were performed on 64 bit Fedora Linux 9 equipped with a 3.6 GHz Intel
Core2Duo processor and 16 gigabytes of memory. We utilized 16 computing nodes
connected with a gigabit ethernet switch. We implemented Algorithm 2 in the open
source concolic testing tool CREST [2]. However, since the CREST project is in its
early stage, CREST has several limitations such as lack of support for dereferencing
of pointers and array index variables in the symbolic analysis. Consequently, the target
MSR code was modified to use an array representation of the SAMs and PUs. We
used CREST 0.1.1 (with DFS search option), gcc 4.3.0, Yices 1.0.24 [8], which is an
SMT solver used as an internal constraint solver by CREST for solving symbolic path
formulas. Although CREST does not correctly test programs with non-linear arithmetic,



we could apply CREST to MSR successfully, because MSR contains only linear integer
arithmetic.

To evaluate the effectiveness of parallelized concolic testing (i.e., bug detecting ca-
pability), we applied mutation analysis [5] by injecting the following three types of
frequently occuring bugs (i.e. mutation operators), as we did in our previous study [14].
The injected bugs are as follows:

1. Off-by-1 bugs

— b11: while (numScts>0) of the outermost loop (line 2 of Figure 2) to
while (numScts>1)
— bio: while (readScts>0) of the second outermost loop (line 5 of Figure 2)
towhile (readScts>1)
— b3 for (i=0; i<conScts; i++) of BML_READ () (line 12 of Figure 2)
to for (1=0; i<conScts-1;i++)
2. Invalid condition bugs

— byy: if (SAM[i].offset[j]!=0xFF) in the third outermost loop to
if (SAM[i] .offset[]j]==0xFF)

— bgg: readScts=((4-7j)>numScts) ?2numScts:4-7j in the innermost
loop to readScts=( (4—-7j) <numScts) ?numScts:4—]j

— bog:if ((firstOffset+nScts)==SAM[i].offset[]j]) inthe inner-
most loopto if ( (firstOffset+nScts)!=SAM[i].offset[]])

3. Missing statement bugs

— b31: missing nScts=1 in the second outermost loop
— b3o: missing nReadSct s—-— in the second outermost loop
— bz3: missing nLun++ corresponding the line 17 of Figure 2

To evaluate the efficiency of parallelized concolic testing, we measured the total
testing time to cover all possible execution paths.

5.3 Experimental Results

Regarding RQ1: How does the distributed concolic algorithm improve the speed
of concolic testing the MSR code We performed 4 series of experiments with 4 to 5
PUs with 5 to 6 LSes and with 1, 4, 8, 12, and 16 computing nodes. The total numbers of
test cases generated and corresponding time costs are reported in Table 2. For example,
1.1 x 10° test cases were generated for MSR with 4 PUs w/ 5 LSes (see the last column
of Table 2). 1 computing node took 643 seconds to generate 1.1 x 10° test cases for
the experiment with 4 PUs and 5 LSes. However, 4, 8, 12, and 16 nodes took only 186,
89, 60, and 45 seconds for the same experiment, respectively (see the second row of
Table 2). Therefore, compared to the original concolic testing (the second column of
Table 2), the distributed concolic testing reduced time cost significantly.

In a similar manner, we can analyze speedup achieved by the distributed concolic
algorithm. Figure 5 illustrates speedup results with a different number of computing



Table 2. Total number of generated test cases and time costs (seconds)

I 1] 4] 8] 12] 16]]  # test cases
4 PUs w/ 5 LSes 643] 186 89 60 45 1.1 % 10°
4 PUs w/ 6 LSes 3194 919 441 204 222 53 x10°
5 PUs w/ 5 LSes 3242  927] 451 301]  225]] 49 x10°
5PUsw/6LSes|| 19225] 5369] 2718] 1777] 1336 2.8 x 10°

nodes. For example, with an environment containing 5 PUs and 6 LSes (the last row of
the table in Figure 5), 4 computing nodes completed all testing 3.58 times faster than
1 computing node (3.58 = 1225). Similarly, 8, 12, and 16 computing nodes with the
same environment completed concolic testing 7.07, 10.82, 14.39 times faster, respec-

tively.

16.00
Node# | 4 8 12 16 14.00 /x
APUSW/ 346 722 1072 14.29 o 1200 /
5 LSes >
&5 1000 / ——(4 PUs, 5 LSes)
gEsU:sW/ 348 7.24 1086 14.39 ® 800 (4 PUs, 6 LSes)
& £.00 / ——(5 PUs, 5 LSes)
5 PUs w/ ’ =>=(5 PUs, 6 LSes)
s lses 350 719 1077 1441 400 X/ 5, 6 LSes
ZE;J:SW/ 358 7.07 10.82 14.39 2.00
4 8 12 16
# of nodes
(a) Table of speed-up ratios for (b) Graph of speed-up ratios for
different numbers of nodes different numbers of nodes

Fig. 5. Speed-up ratios for different numbers of nodes

Regarding the effectiveness of bug detection, the results of the distributed concolic
algorithm are the same as the ones of the original concolic testing. The distributed
concolic testing detected violations of the requirement property (assert ( Vi.LS [
1]==buf [4])) due to the all 9 bugs in a few seconds. Thus, the distributed concolic
testing reduces time costs significantly without loss of effectiveness compared to the
original concolic testing.

Regarding RQ2:How does the distributed concolic algorithm achieve scalability
when applied to the MSR code As shown in the table of Figure 5, the efficiency of
parallelism (%) is almost 90% regardless of the number of nodes. For example,
MSR with an environment consisting of 5 PUs and 6 LSes showed almost the same



parallelism efficiency for different numbers of nodes (see the last row of the table in
Figure 5 where 228 ~ T0T ~ 1082 ~ 1239 ~ 90%). Furthermore, as shown in the
graph of Figure 5, the distributed concolic algorithm achieved almost identical paral-
lelism efficiency regardless of the environment configurations. In other words, 4 PUs
with 5 LSes, 4 PUs with 6 LSes, 5 PUs with 5 LSes, and 5 PUs with 6 LSes achieve al-
most identical parallelism efficiency. This observation indicates that the performance of
the distributed concolic algorithm is not affected by the complexity of a target program
either, which is another advantage of our distributed concolic algorithm.

We expect that a high parallelism efficiency can be achieved even with a large num-
ber of computing nodes (saying hundreds of thousand computing nodes of cloud com-
puting), since there is little dependency among computing nodes. Communication be-
tween two nodes occurs only when one of the nodes has completely generated and
analyzed all possible subsequent symbolic paths from a given symbolic path (i.e., when
queue, s is empty). Thus, each node can concentrate on its own computational task with
little waiting/blocking for other nodes. For the similar reason, communication costs
caused by the distributed concolic algorithm are also insignificant.

Table 3 describes overhead caused by the distributed concolic algorithm. For ex-
ample, with 4 computing nodes, MSR with an environment model of 4 PUs and 5
LSes spent 2.54% of the whole execution time (on average) by waiting/idling until it
received a symbolic path formula from another node (between line 27 and line 28 of
Algorithm 2). In addition, MSR with the same environment spent 1.09% of the whole
execution time for socket communication. Thus, these two overheads of the distributed
concolic algorithm constitute 3.64% of the whole execution time. The remaining 6%
(=~ 10% — 3.64%) of overhead is caused by the increased complexity of the distributed
concolic algorithm such as maintaining queue,y and handling communication at user
process level, etc. Considering that the current implementation of the distributed con-
colic algorithm is not optimized, this overhead can be reduced further.

Table 3. Overhead due to the distributed concolic testing

Waiting time (%) ||Communication (%) Waiting +

Communication (%)
4[ 8[ 12[ 16 4[ 8[ 12[ 16 4[ 8[ 12[ 16
4 PUs w/ 5 LSes||2.54|2.63|2.65(2.79(/1.09]1.22{1.84| 1.72||3.64|3.85|4.49| 4.51
4 PUs w/ 6 LSes||2.46|2.56|2.58|2.61|[1.31{1.42{1.45| 1.78||3.77|3.98]4.03| 4.39
5 PUs w/ 5 LSes||2.23|2.28|2.30(2.33|[1.49|1.56|1.53| 1.21||3.72|3.85|3.83| 3.54
5 PUs w/ 6 LSes||2.19|2.11|2.16|2.17|[1.15|3.55|1.50| 1.46||3.35|5.67|3.66| 3.64

Another evidence of the scalability of the algorithm can be found in Table 4, which
describes the numbers of iterations (test case generations) performed by the computing
nodes. For example, with MSR with an environment model of 4 PUs and 5 LSes, nodes
1,2, 3, and 4 performed 27.4 x 103,31.5 x 103,27.0 x 103, and 25.3 x 102 iterations,
respectively. The numbers of iterations for different nodes are roughly similar, which



means that an equal amount of work was assigned to each node, which improves global
utilization of computing nodes. Note that time cost for each iteration may vary depend-
ing on the length of a corresponding symbolic path formula. Measured time costs of
nodes (not shown in this paper) are even more identical.

Table 4. Numbers of iterations performed by nodes

#nodes [ (PUs, | Node ID [[ Avg[[Stdev
LSes)|[ 1] 2] 3] 4 5] 6 7] 8 O] 10] 1] 12[ T3] T4 15[ 16|

4 4,5) || 27.4| 31.5| 27.0| 25.3 27.8 2.6

(x 103) (4,6) ||1122.6|136.6{124.2|151.4 133.7|| 134

(5,5 ||117.3]121.1]134.8[116.0 122.3 8.6

(5,6) [|771.0]690.0|645.4[670.7 694.3]| 54.3

8 4,5)]| 13.4] 14.0 13.0| 13.6] 14.6] 13.5| 15.1| 14.0 14.0 0.7

(x10%)[(@.6) ][ 63.5] 633| 63.6] 69.6] 67.6] 62.6] 715 72.6 69| 4.0

(5,5) || 59.8] 68.9] 58.5| 59.0] 59.3] 60.4| 62.3| 60.9 61.1 34

(5,6) [|335.3|334.5(355.4(332.7[399.1{347.0{332.9(340.2 347.1)| 22.5

12 4,5) 89| 9.2| 104| 89| 9.2| 8.6/ 9.0/ 88| 9.7 10.5| 92| 9.0 9.3 0.6

(x 103) (4,6) || 42.7| 42.9| 48.4| 42.3| 49.3| 42.8| 45.5| 43.0| 42.4| 41.5| 44.2| 49.7 44.6 3.0

(5,5) || 42.9] 39.2| 40.8] 38.7[ 40.1] 39.3| 42.4| 40.3| 39.5| 40.3] 39.6] 46.2 40.8 2.1

(5,6) [|216.21239.0{219.8]221.6{220.7{239.8|233.0(249.8(|272.9]222.0(222.6{219.5 231.4]| 16.7

16 4,5) 72| 73| 74| 69| 7.0 72| 6.8 6.6 63| 6.6 66| 74| 72| 77| 64| 6.8 7.0 0.4

(X 103) (4,6) || 32.2| 31.8| 34.0| 32.7| 34.1| 33.4| 32.2| 37.3| 31.3| 37.3| 32.6| 32.1| 32.7| 32.1| 32.5| 36.5|| 33.4 2.0

(5,5 ]| 30.1] 29.4| 31.8| 29.9| 32.1] 32.4| 29.4| 33.3| 29.7] 29.1| 31.6| 28.9] 29.1| 30.4| 30.9] 31.2|] 30.6 1.4

(5,6) ||1167.21207.5{167.3|189.6|168.5[167.1[166.5|167.9{170.5{176.0(174.4|174.0{165.3|180.3{171.0{163.9([173.6|| 11.2

6 Conclusion and Future Work

We have developed a distributed concolic algorithm which can reduce time cost by
utilizing a large number of computing nodes. Furthermore, we have demonstrated
the improved performance of the algorithm through an industrial case study on the
multisector-read operation of a Samsung flash storage platform. We applied the dis-
tributed concolic algorithm to the MSR code and analyzed the approach empirically.
In this case study, the distributed concolic algorithm achieved an order of magnitude
faster testing speed compared to the original concolic algorithm while maintaining the
effectiveness of bug detection capability. Although these experiments were performed
on only 16 computing nodes, we could observe that the algorithm has good charac-
teristics of scalable distributed algorithms such as linear speedup with an increasing
number of nodes, little blocking time, and nominal communication overheads. There-
fore, we expect that the distributed algorithm can alleviate problems caused by heavy
computational costs in a large degree.

We plan to apply the distributed concolic algorithm to target programs on 10,000
nodes of the Amazon EC2 platform [1] to demonstrate the scalability of the algorithm
in a concrete manner. Furthermore, this experiment can suggest a promising direction
of fighting the state space explosion problem of automated verification techniques. Fi-
nally, we will develop a new concolic algorithm for branch coverage for more practical
applications in an industrial setting.
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