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Abstract—Reliability of safety critical systems such as nuclear
power plants and automobiles has become a significant issue to
our society. As more computing systems are utilized in these
safety critical systems, there are high demands for verification
and validation (V&V) techniques to assure the reliability of
such complex computing systems. However, as the complexity of
computing systems increases, conventional V&V techniques such
as testing and model checking have limitations, since such systems
often control highly complex continuous dynamics. To improve
the reliability of such systems, statistical model checking (SMC)
techniques have been proposed. SMC techniques can check if
a target system satisfies given requirements through statistical
methods. In this paper, we propose a new hybrid SMC technique
that integrates sequential probability ratio test (SPRT) technique
and Bayesian interval estimation testing (BIET) technique to
achieve precise verification results quickly. In our experiment, the
new hybrid SMC was up to 20% faster than BIET. In addition,
we demonstrate the effectiveness and efficiency of this hybrid
SMC technique by applying the hybrid SMC technique to three
safety critical systems in the automobile domain.

I. INTRODUCTION

Various areas of our life utilize computing systems such
as smart phones, medical devices, and automobile controllers.
Consequently, the reliability of computing systems becomes
a significant issue to our society and various international
standards have been proposed and applied to assure reliability
of such systems. For example, automobile domain has a
functional safety standard ISO 26262 [7].

However, as computing power increases, the complexity of
computing systems also increases rapidly, which causes many
challenges to assure the reliability of computing systems. In
particular, the size and complexity of software in a computing
system has increased quickly. Although software reliability
has been studied actively [14], conventional verification and
validation (V&V) techniques for software such as testing and
model checking [3] have limitations to assure the reliability
of complex safety critical computing systems. One reason
for this difficulty is that such systems often control highly
complex continuous dynamics to interact with physical en-
vironments. In addition, since safety critical systems consist
of both hardware and software and interact with a physical
environment that often behaves non-deterministically (e.g.,
condition of road surface for automobiles or wind speed for
airplanes), we should analyze target hardware and software
with its environment together as a stochastic process [15].
However, conventional V&V techniques for software have
difficulty analyzing target systems in such contexts.

To improve the reliability of safety critical systems, statis-
tical model checking (SMC) techniques [21], [19], [20], [6],
[23], [4], [8] have been proposed. SMC techniques approx-
imately compute probabilities for a target system to satisfy
given requirements based on randomly sampled execution
traces. Thus, SMC techniques can assure the reliability of
a complex target system statistically without analyzing the
internal logic of a target system.

In our previous work [9], we empirically evaluated the
effectiveness (i.e., precision of verification) and efficiency
(i.e., time cost of verification) of the four state-of-the-art
SMC techniques including single sampling plan (SSP) [19],
sequential probability ratio test (SPRT) [21], Bayesian hy-
pothesis testing (BHT) [8], and Bayesian interval estimation
testing (BIET) [23]. Through the empirical study, we observed
that these SMC techniques have different strong points and
weak points which may complement one another. From this
observation, we developed a new hybrid SMC technique which
combines SPRT, the fastest SMC technique, and BIET, the
most precise SMC technique. This hybrid SMC technique
achieves precise verification result fast. Although precise ver-
ification result is a top priority for safety critical systems,
the time cost of verification cannot be ignored in practice.
Thus, we can improve the reliability of safety critical systems
more practically by applying our new hybrid SMC technique.
To demonstrate the effectiveness and efficiency of this hybrid
SMC technique, we have applied this hybrid SMC technique
to three safety critical systems in the automobile domain - an
automatic transmission control system (ATCS), an anti-lock
braking system (ABS), and a fault-tolerant fuel control system
(FFCS). Through the experiments, we confirmed that our
hybrid SMC technique improves effectiveness and efficiency
compared to a single SMC technique.

Section II overviews related SMC techniques. Section III
describes a new hybrid SMC algorithm. Section IV explains
the three target systems: ATCS, ABS, and FFCS. Section V
describes the SMC results by using single SMC techniques
and the hybrid technique on ATCS, ABS, and FFCS. Sec-
tion VI discusses issues from the empirical study. Section VII
concludes this paper with future work.

II. OVERVIEW OF SMC TECHNIQUES

A. SMC Framework

Figure 1 illustrates a SMC framework. There are two classes
of SMC techniques: hypothesis testing and estimation testing.
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Fig. 1. Framework of SMC techniques

A hypothesis testing technique receives a target system M,
a probabilistic bounded linear temporal logic (PBLTL) [23]
formula P≥θ[φ] with probability threshold θ, and precision pa-
rameters. A hypothesis testing technique produces an ‘accept’
answer if M |= P≥θ[φ] which means that a probability for
M to satisfy φ is greater than or equal to θ; a ‘reject’ answer,
otherwise. An estimation testing technique receives a target
system M and a bounded linear temporal logic (BLTL) [22]
formula φ with precision parameters and produces an esti-
mated probability p regarding M |= φ.

To produce an answer, both classes of SMC techniques pick
a random sample path σi by executingM and collect the result
of checking σi |= φ. SMC techniques request a sample path
repeatedly until the information of sample paths are enough
to determine if M |= P≥θ[φ] or to calculate p for M |= φ
with given precision parameters. Note that SMC techniques
should determine a number of sample paths n to check if
M |= P≥θ[φ] or to calculate p for M |= φ using statistical
techniques. Most SMC techniques calculate n dynamically
through iterative sampling.

B. Probabilistic Bounded Linear Temporal Logic

We define a syntax and semantics of bounded linear tem-
poral logic (BLTL) [22] and PBLTL [23]. For a target model
M, SV is a finite set of real-valued state variables. A Boolean
predicate over SV is a constraint of the form y ∼ v, where
y ∈ SV , ∼∈ {≥,≤,=}, and v ∈ R. The syntax of the BLTL
logic formula φ is given by the following grammar:

φ ::= y ∼ v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where y ∈ SV , ∼∈ {≥,≤,=}, v ∈ R, and t ∈ R≥0.
For other temporal operators, we can define Ftφ as

True Utφ and Gtφ as ¬Ft¬φ. We denote a fact that an
execution σ satisfies a property φ as σ |= φ. We use σk to
denote a suffix trace of σ starting at step k (σ0 denotes the
original execution σ). We denote the value of a state variable
y in σ at step k by V (σ, k, y). We define tk as a time at step
k and t as a time bound. The semantics of BLTL on a trace
σk is defined as follows:
• σk |= y ∼ v iff V (σ, k, y) ∼ v
• σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2
• σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2
• σk |= ¬φ1 iff σk 2 φ1
• σk |= φ1U

tφ2 iff there exists i ∈ N such that
1)

∑
0≤l<i tk+l ≤ t,

2) σk+i |= φ2, and

3) for each 0 ≤ j < i, σk+j |= φ1

A probabilistic bounded linear temporal logic (PBLTL)
formula is a formula of the form P≥θ[φ], where φ is a
BLTL formula and θ ∈ (0, 1) is a probability threshold. We
denote that a model M satisfies PBLTL property P≥θ[φ] as
M |= P≥θ[φ], which means that a probability for M to
satisfy φ is greater than or equal to θ (see [23] for detailed
description).

C. Sequential Probability Ratio Test

Sequential probability ratio test (SPRT) is a hypothesis
testing technique introduced by Younes et al. [21]. SPRT [21],
[19], [20], [16] determines a number of required sample paths
dynamically at runtime. The main goal of SPRT is to decide if
M |= P≥θ[φ] with a small number of sample paths. If another
sample path is needed, SPRT generates one more sample path
by executing a target system. If the information from generated
sample paths is enough, SPRT stops executing the target
program and produces an answer regarding M |= P≥θ[φ].
SPRT uses precision parameter inputs error bounds α and
β, and a half size of indifference region δ. The detailed
description of SPRT is as follows.

Before building a hypothesis for hypothesis testing of SPRT,
we introduce the indifference region. Basically, we build a
hypothesis H : p ≥ θ against an alternative hypothesis
K : p < θ where θ is a threshold over (0,1) and p is a true
probability thatM satisfies φ. Hypothesis testing checks if H
is accepted or not based on the randomly sampled paths. For
testing a hypothesis H , there are two types of errors such as
false negative (also known as a type I error) which rejects a
true hypothesis H and false positive (also known as a type II
error) which accepts a false hypothesis H . We can bound an
error probability of a false negative error within α. Similarly,
we can bound an error probability of a false positive error
within β. We call α and β as error bounds. The left side of
Figure 2 presents the function of probability Lp of accepting
the hypothesis H as a function of p with the probability of a
type I error and type II error as exactly α and β. However, we
want to give similar probability Lp of p = θ and p = θ − ε
for arbitrarily small ε > 0 for reality. To solve this problem,
we introduce an indifference region (p1, p0) around θ where
p0 = θ + δ, p1 = θ − δ, and δ is a half size of indifference
region (see right side function in Figure 2). Therefore, instead
of testing H against K, we use the modified hypothesis

H0 : p ≥ p0

against the alternative hypothesis

H1 : p < p1

If the probability p is in (p1, p0), then p is sufficiently close
to θ so that we do not care which hypothesis is accepted.

Now, we describe the algorithm of SPRT. First, we obtain
a sample path σi of a target system by simulating the target
system and model-check if the sample path σi satisfies the
given property φ (see Section II-A). After generating mth
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Fig. 2. Function of probability Lp of accepting the hypothesis H : p ≥ θ (left side) and function of probability Lp of accepting the hypothesis H0 : p ≥ p0
with indifference region (right side).

sample paths of the test, we calculate the quantity

p1m
p0m

=

m∏
i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=
pdm1 (1− p1)m−dm

pdm0 (1− p0)m−dm

where dm =
∑m
i=1 xi and xi is ith observation of σi |= φ. pjm

is the probability of the sequence x1, ..., xm with Pr[Xi =
1] = pj for j=0,1. Therefore, the above quantity makes the
ratio of two probabilities, the probability ratio. The hypothesis
H0 is accepted if

p1m
p0m

≤ B,

and the hypothesis H1 is accepted if
p1m
p0m

≥ A.

Otherwise, we should generate m + 1th sample path of the
test. A and B are selected to bound error probability α and
β, with A > B. In practice, we choose A = 1−β

α and B =
β

1−α (detailed description is found in [16], [19]).
Note that SPRT can be imprecise with same indifference

region value δ when the threshold θ is close to 1. The reason
for the imprecise result of SPRT is due to the limited size of
indifference region. For example, if the threshold θ is 0.99 and
δ ≥ 0.01, then p0 becomes 1, which causes the denominator
of the probability ratio p1m

p0m
to be 0 when one false sample

path occurs, which can cause imprecise result. Therefore, δ
should be very small when θ is close to 1, which requires
large number of samples.

D. Bayesian Interval Estimation Testing

Bayesian interval estimation testing (BIET) is an estimation
testing based SMC technique. Estimation testing can approxi-
mately compute p, the probability that the model M satisfies
the given property φ expressed by bounded linear temporal
logic (BLTL). With p, we can determine if the probabilistic
bounded linear temporal logic (PBLTL) is satisfied. For that
purpose, we use a following statistical estimation testing
technique.

BIET [23] dynamically determines the number of sample
paths for checking the satisfiability of the model M with
the property φ during simulation as SPRT does. In Bayes’
theorem, we get prior probability using current information
first. After obtaining new information, we can obtain posterior
probability refining prior probability. BIET uses the Bayes’
theorem to determine the number of sample paths of the test.

BIET uses four precision parameter inputs such as a half-
size δ′ of an estimation interval which will contain p with high
probability, the coverage goal c of the estimation interval, and
the parameters α′, β′ of the Beta prior. In fact, BIET estimates
interval around the probability p instead of estimating p, but
we regard the mean of the estimated interval as p̂, the estimated
value of true probability p, i.e., the estimated interval is (p̂−
δ′, p̂+ δ′). We call the estimated interval as (t0, t1). We have
a coverage goal such that the probability that the probability
satisfying M |= φ is in (t0, t1) should be over the coverage
c ∈ ( 12 , 1). The exact description of the coverage goal is as
follows: ∫ t1

t0

f(u|x1, ..., xn)du = c

where xi is ith observation of σi |= φ for i = 1, ..., n and n
is the number of sample paths. We call the coverage goal as
a 100c percent Bayesian interval estimate of p. Since BIET
uses the Bayes’ theorem, we need prior information, i.e., prior
density of p to obtain prior probability. For simplicity, we
focus on the Beta prior with parameters α′, β′.

At mth stage of the test, by Beta prior with α′, β′, we can
calculate the quantity

p̂ =
x+ α′

m+ α′ + β′

where x =
∑m
i=1 xi is the number of success sample paths

during m number of sample paths. Next, using t0 = p̂ −
δ′, t1 = p̂+ δ′, we can calculate the quantity

γ =

∫ t1

t0

f(u|x1, ..., xm)du
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where γ is the coverage of m number of sample paths for
checking M |= φ. If γ ≥ c, then BIET stops the simulation
and outputs t0, t1, and p̂. Otherwise, BIET generates m+1th
sample path and repeats.

Note that BIET is fast when the estimated probability p̂ is
close to 0 or 1 [23], whereas BIET is extremely slow (i.e.,
extremely larger number of samples is required) when p̂ is
close to 1

2 . With this advantage of BIET, BIET can easily apply
the problem for safety critical system since the probability
standard of satisfiability for safety critical system should be
usually close to 1 or 0.

III. HYBRID SMC ALGORITHM

We develop a hybrid SMC technique to improve efficiency
and effectiveness by combining SPRT whose verification speed
is fast (i.e., small number of samples is required) and BIET
whose verification precision is high (i.e., the number of false
positive and false negative results is small) [9]. Algorithm 1
describes how the hybrid SMC technique checks if a tar-
get system model M satisfies a property φ in BLTL for
a probability threshold θ 1 with precision parameters parS
for SPRT and parB for BIET. The algorithm first applies
SPRT multiple times with dynamically increasing probability
threshold θSPRT until a verification result is ‘reject’ (lines 15–
18) or θSPRT becomes larger than or equal to a threshold
thS2B where 0.5 < thS2B ≤ θ (lines 5–20). If θSPRT
becomes larger than or equal to thS2B , the algorithm applies
BIET to obtain a precise verification result (lines 21–34).

The detail of the algorithm is as follows. First, the algorithm
calls SPRT () mS times (lines 6–10), which applies SPRT
to M with regard to φ and θSPRT with parS (line 8). A
result of SPRT () is ‘accept’ (i.e., 1) or ‘reject’ (i.e., 0). After
mS trials of SPRT (), the algorithm calculates an average
accept decision value acceptavg over the mS trials (line 11).
If acceptavg is less than a user-given accept decision threshold
thacpt, the algorithm decides that the verification result of
M |= P≥θ(φ) is ‘reject’ (line 16) and terminates (line 18).
Otherwise (i.e., acceptavg ≥ thacpt), the algorithm increases
θSPRT from the initial value 0.5 (line 3) to 0.75, 0.875, 0.9375
and so on (line 14) until θSPRT becomes larger than or equal
to thS2B through the while loop in lines 5-20.

If θSPRT becomes larger than or equal to a user-given
probability threshold thS2B for applying BIET, the algorithm
calls BIET () for mB times (lines 23–27), which applies
BIET to M for φ with precision parameters parB (line 25).
Based on the estimated probability p obtained from BIET (),
the algorithm calculates an average estimated probability pavg
over the mB trials (line 28). If pavg is greater than or equal
to θ, then the algorithm decides that the verification result is
‘accept’ (lines 29–30); ‘reject’, otherwise (lines 31–32).

Note that the hybrid SMC algorithm can save a large amount
of time cost compared to BIET, if a probability for M to sat-
isfy φ is far from a given probability threshold θ. For example,
if the probability is less than 0.5, the algorithm terminates after

1We assume that θ is close to 1, since we develop a hybrid SMC algorithm
for safety critical systems whose reliability criteria are very high and, thus,
requirement properties are given with high threshold values.

executing SPRT () only once without executing BIET ()
whose time cost is very high (see Table III). The algorithm
executes BIET () if the probability is close to θ (which is
usually close to 1 for requirement properties of safety critical
systems), which is necessary since SPRT becomes imprecise
when θ is close to 1 (Section II-C).

IV. TARGET SAFETY CRITICAL SYSTEMS

This section presents an overview of the following three
safety critical systems in automobile domain:
• Automatic transmission control system (ATCS) [13]
• Anti-lock braking system (ABS) [1]
• Fault-tolerant fuel control system (FFCS) [12]

We selected these systems as target systems to apply SPRT,
BIET, and the hybrid statistical model checking (SMC) tech-
nique (Section III) for the following reasons:
• These three automobile systems [12], [1], [13] are safety

critical systems whose reliability is very important. Many
researchers are working to address the reliability issues
on safety critical systems [2], [14], [18].

• The three automobile systems are complex real-world ap-
plications, not a toy example such as ones in probabilistic
symbolic model checker (PRISM) [11] benchmarks.

• Simulink/stateflow models of the three automobile sys-
tems are publicly available in Matlab R2010a. Thus, it
is convenient to build a prototype tool for the SMC
techniques by using a Simulink/stateflow simulator.

A. Automatic Transmission Control System
An automatic transmission control system (ATCS) changes

an engine gear automatically to drive smoothly. A main task
of ATCS is to select a proper engine gear. As described in
Figure 3, ATCS receives inputs regarding car speed, throttle,
brake pressure (and engine RPM as a feedback) and calculates
an engine RPM and a gear state. ATCS consists of a torque
converter and a transmission control unit. The torque converter
calculates an impeller torque value to deliver power to control
the engine RPM based on the engine RPM and the gear state
(i.e., if the impeller torque increases/decreases, the engine
RPM increases/decreases). With the sensor inputs on car
speed, throttle, and brake pressure, transmission control unit
(TCU) selects a proper gear. Based on throttle and brake
pressure values, TCU calculates a up-threshold and a down-
threshold of a car speed. If a current car speed is greater than
the up-threshold or less than the down-threshold, TCU changes
the engine gear to keep the engine RPM in safe range.

The size and complexity of the Simulink/stateflow ATCS
model in terms of the Halstead metrics [5] are described
in Table I. We counted each atomic block (i.e., a module
of a mathematical function or control logic) as an operator
and each input of an atomic block as an operand of the
Simulink/stateflow ATCS model. The automatically generated
C code from the model has 2353 LOC in 71 functions.

A requirement property for ATCS is that the engine RPM
is less than 6000 for 30 seconds 2 should be greater than or

2We set the time duration to monitor as 30 seconds, since a default
simulation time of the Simulink model of ATCS included in Matlab R2010a
is 30 seconds.
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Input:
M: a model
φ: BLTL property
θ: probability threshold of M |= φ
parS : precision parameters of SPRT
parB : precision parameters of BIET
thacpt: accept decision threshold over [0,1]
thS2B : probability threshold to change from SPRT to
BIET
mS : a number of trials for SPRT
mB : a number of trials for BIET
Output:
answer: result of M |= P≥θ(φ)
pavg: average estimated probability of M |= φ by
BIET if BIET is applied; N/A otherwise

1 SMChyb(M, φ, θ, parS , parB , thacpt, thS2B ,mS ,mB){
2 acceptsum = 0; // sum of accept decisions by SPRT
3 θSPRT = 0.5; // initial probability threshold for SPRT
4 // SPRT for fast verification
5 while θSPRT < thS2B do
6 for i = 1→ mS do
7 // Checks M |= P≥θSPRT

(φ) using SPRT
8 accept = SPRT (M, φ, θSPRT , parS);
9 Add accept to acceptsum;

10 end
11 acceptavg = acceptsum/mS ;
12 if acceptavg ≥ thacpt then
13 // next probability threshold for SPRT
14 θSPRT = θSPRT + (1− θSPRT )/2;
15 else
16 answer = ‘reject′;
17 pavg = N/A;
18 return answer and pavg;
19 end
20 end
21 // BIET for precise verification
22 psum = 0; // sum of estimated probabilities by BIET
23 for i = 1→ mB do
24 // Checks M |= φ using BIET
25 p = BIET (M, φ, parB);
26 Add p to psum;
27 end
28 pavg = psum/mB ;
29 if pavg ≥ θ then
30 answer = ‘accept′;
31 else
32 answer = ‘reject′;
33 end
34 return answer and pavg;
35 }

Algorithm 1: Hybrid SMC algorithm

equal to probability θ. The property is important in real world,
because if the engine RPM is constantly over 6000, the engine
becomes overheated and can be damaged. The property can

Fig. 3. Block diagram of ATCS

be expressed in PBLTL as follows:

P≥θ[G
30(engineRPM < 6000)]

B. Anti-lock Braking System

An anti-lock braking system (ABS) is a safety system
that repeatedly increases and decreases the brake pressure to
allow the wheels of a car to interact with the road surface
continuously as directed by a driver while braking. Thus, ABS
can prevent the wheels from locking up and avoid skidding,
which can enhance the safety of driving by improving vehicle
control and decreasing stopping distances. As described in
Figure 4, ABS has the following three sensors: a car speed
sensor, a wheel speed sensor, and a brake pedal sensor. ABS
receives data from these sensors and generates the brake
pressure and slip as outputs, where slip indicates how properly
a wheel of a car is controlled. ABS consists of a bang-
bang controller and a hydraulic control unit. The bang-bang
controller receives data from the three input sensors and
commands the hydraulic control unit to increase/decrease the
brake pressure. In addition, when the brake pedal is pressed,
the bang-bang controller calculates slip as follows:

slip = 1− wheelspeed

carspeed

When the wheel speed is equal to the car speed, slip becomes
zero. When the wheel speed is zero (i.e., the wheel is locked),
slip becomes one, which means that the driver loses control
of the car. There is an ideal slip value (which is 0.2) that
maximizes the adhesion between the wheel and the road and
minimizes the stopping distance with available friction. The
bang-bang controller tries to adjust slip close to the ideal slip
value by controlling the hydraulic control unit.

The size and complexity of the Simulink/stateflow ABS
model in terms of the Halstead metrics are described in Table I.
The automatically generated C code from the model has 3443
LOC in 27 functions.

A requirement property for ABS is that for 17 seconds 3,
when the brake pedal is pressed and the car speed is greater
than 5 m/s, slip is less than or equal to 0.9, should be larger

3We set the time duration to monitor as 17 seconds, since a default
simulation time of the Simulink model of ABS included in Matlab R2010a
is 17 seconds.
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Fig. 4. Block diagram of ABS

than or equal to probability θ. The property is important in
real world, because if slip becomes close to 1 when a car is
driving, the wheel can be locked and a driver loses control of
the car. The property can be expressed in PBLTL as follows:

P≥θ[G
17((brakepressed ∧ carspeed > 5)→ slip ≤ 0.9)]

C. Fault-tolerant Fuel Control System

Figure 5 is an overall diagram of a fault-tolerant fuel
control system (FFCS). FFCS [12] controls a fuel rate to
inject fuel based on sensor data for best performance, detects
a sensor fault, and shuts down an engine for safety in the
presence of multiple sensor failures. FFCS has the following
four sensors: throttle angle sensor, speed sensor, exhaust gas
oxygen (EGO) sensor, and manifold absolute pressure (MAP)
sensor. FFCS receives these four sensor inputs and generates
a proper fuel rate and an air-fuel ratio. FFCS consists of the
following three components: a fuel rate controller, an air-
fuel ratio calculator, and a sensor failure detector. The fuel
rate controller receives the four sensor data and calculates a
proper fuel rate to make the air-fuel ratio optimal (i.e., 14.6).
The air-fuel ratio calculator receives EGO sensor data and a
fuel rate and calculates the air-fuel ratio. The sensor failure
detector receives all four sensor data and controls the fuel rate
controller to increase/decrease the fuel rate in the presence
of a single sensor fault or shuts down the engine if multiple
sensors fail, since the air-fuel ratio cannot be controlled with
failures of multiple sensors.

The size and complexity of the Simulink/stateflow FFCS
model in terms of the Halstead metrics are described in Table I.
The automatically generated C code from the model has 8266
LOC in 222 functions.

A requirement property for FFCS is that the fuel rate does
not become zero for one second in 100 seconds should be
greater than equal to probability θ. The property is crucial in
a real world, because if the fuel rate is zero for one second,
then the engine stops and can cause a serious accident. This
property can be expressed by PBLTL as follows [23]:

P≥θ[¬(F 100G1(fuelrate = 0))]

V. EXPERIMENTAL STUDY

We have applied SPRT, BIET, and the hybrid SMC tech-
nique to ATCS, ABS, and FFCS with precision parameters as
independent variables to check if these target systems satisfy

Fig. 5. Block diagram of FFCS

the given requirement properties in PBLTL. In addition, we
have compared the results of the hybrid SMC technique with
the results of SPRT and BIET. We used Simulink/stateflow
models of the three systems included in the Matlab R2010a
example directory.

A. Experiment Setup

1) Environment Setup: We used the input value generation
modules provided in the Simulink/stateflow models of FFCS,
ATCS, and ABS without modification. In addition, we built
the stochastic environments for the three automobile systems
as follows:
• ATCS: we built a stochastic environment to ATCS by

modeling a random delay to transfer the engine RPM
value from the engine to the torque converter. 4 This
random delay is modeled by exponential distribution [10].
We selected a ‘passing maneuver’ scenario from the op-
tions of the ATCS model, which simulates a situation that
a driver opens the throttle 100% after 15 seconds. We uti-
lize the following four delay rates (i.e., mean delay times
of transmission in seconds) λ ∈ {0.01, 0.02, 0.03, 0.04}.

• ABS: we built a stochastic environment of ABS that
generates random delay to the command from the bang-
bang controller to the hydraulic control unit. 5 The
random delay of the command is modeled by exponential
distribution [10]. We use a model of ABS represent-
ing a single wheel, which can be duplicated multiple
times to create a model for a multi-wheel vehicle. We
utilize the following four delay rates (in seconds) λ ∈
{0.001, 0.003, 0.005, 0.007}.

• FFCS: we built a stochastic environment model for FFCS
that generates random faults at the EGO, MAP, and speed
sensors as Zuliani et al. [23] did. The random faults are
modeled by three independent Poisson processes with
different arrival rates [17]. We assume one fault event
remains for one second. When a fault event occurs in a
sensor, FFCS remains in a failure mode in one second
and returns to a normal mode. We utilize the following
four inter-arrival fault rates (i.e., mean inter-arrival times

4This random delay is a real factor, not an artificial one. ATCS has an
electronic circuit to deliver data from one sub-component to another and the
data transfer can be delayed non-deterministically due to non-deterministic
scheduling and bus contention among multiple sub-component.

5This random delay is a real factor for the similar reason of the one in
ATCS.
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TABLE I
SIZE AND COMPLEXITY OF THE SIMULINK MODELS OF ATCS, ABS, AND FFCS IN HALSTEAD METRICS

Target N1: # of N2:# of n1:# of n2:# of N :program n: program V : program D: program E: program
system operators operands distinct distinct length vocabulary volume difficulty effort

operators operands (= N1 +N2) (=n1 + n2) (N × logn) (=n1/2×N2/n2) (= D × V)

ATCS 31 46 27 39 77 66 465.4 15.9 7410.9

ABS 27 36 19 36 63 55 364.2 9.5 3460.1

FFCS 65 111 35 94 176 129 1234.0 20.7 25500.0

of sensor fault) to the three sensors: (3,7,8), (10,8,9),
(20,10,20) and (30,30,30).

2) Precision Parameter Setup: We use the following pre-
cision parameters for SPRT and BIET:
• SPRT:

– a half-size of indifference region δ ∈
{0.01, 0.03, 0.05}

– error bounds α, β ∈ {0.1, 0.01, 0.001}
• BIET 6:

– interval coverage c ∈ {0.9, 0.99, 0.999}
– a half-size of estimation interval δ′ ∈
{0.01, 0.03, 0.05}

– parameters of Beta prior α′ = β′ = 1 (since we
assume the prior density to be a uniform density over
(0, 1))

We performed each experiment five times to obtain average
verification result over [0, 1] regarding if the hypothesis H0

is accepted where H0: a probability for M to satisfy φ is
greater than or equal to θ + δ. For the experiments, we
used θ ∈ {0.5, 0.7, 0.9, 0.99}. In addition, we measured the
total verification time and total number of samples for each
experiment.

For the hybrid SMC technique, we set θ=0.99. This is be-
cause the hybrid SMC technique targets safety critical systems
which require high reliability, which can be specified with
PBLTL with high θ values. We use the following precision
parameters which are similar to those of the SPRT and BIET
experiments:
• precision parameters for SPRT parS : δ ∈
{0.01, 0.03, 0.05}, α, β ∈ {0.1, 0.01, 0.001}.

• precision parameters for BIET parB : c ∈
{0.9, 0.99, 0.999}, δ′ ∈ {0.01, 0.03, 0.05}, α′ = β′ = 1.

• threshold for accept decision over [0, 1] thacc=0.5
• the probability threshold to apply BIET instead of SPRT
thS2B=0.95

• the number of trials for SPRT mS = 5
• the number of trials for BIET mB = 5

3) Experiment Platform: We built a statistical model
checker as a Matlab module, which executes the
Simulink/stateflow models for FFCS, ATCS, and ABS
and monitors inputs and outputs of the models to check if φ
is satisfied on a current sample path. After each execution of

6Our parameters are similar to those of Zuliani et al. [23], where they use
interval coverage c as 0.99 and 0.999 and half-size of estimation interval δ
as 0.01 and 0.05. To identify tendency of the experimental results more, we
used more parameters.

the models, the SMC module calculates a required number
of samples dynamically based on the precision parameters
and the number of success/fail samples generated so far.
If a number of the generated samples reaches the required
number, the SMC module generates a verification result. The
SMC module for SPRT is around 80 lines long. The SMC
module for BIET is around 70 lines long. The hybrid SMC
module is around 200 lines long. We used Matlab R2010a
for the experiments. All experiments were performed on 64
bit Windows 7 Professional equipped with a 3 GHz Intel
processor and 16 gigabytes of memory.

B. Results of SPRT and BIET

Tables II and III describe the experiment results of applying
SPRT with δ = 0.03 and BIET to ATCS respectively when the
delay rate λ=0.03. 7 In Tables II and III, n is a total number
of required sample execution paths for the five trials and time
is total verification time taken for the five trials in seconds.
acpt in Table II is an average result over [0, 1] regarding
the hypothesis H0 where 0 is ‘reject’ and 1 is ‘accept’. p̂
in Table III is an estimated probability for M |= φ.

Table II shows that the probability for ATCS with λ=0.03
and δ = 0.03 to satisfy the requirement property φ
(=G30(engineRPM < 6000)) is between 0.7 and 0.9. This
is because acpts are 1.0 when θ ≤ 0.7 while acpts are 0.0
when θ = 0.9 in Table II (the verification result of SPRT
with a high θ value like 0.99 should not be trusted due to the
characteristics of SPRT [21]).

In addition, we can conclude that the probability is close to
0.9, since n of SPRT increases as θ increases from 0.5 to 0.9
and decreases sharply from 0.9 to 0.99. For example, Table II
shows that n becomes 110, 215, 343, and 18 as θ becomes 0.5,
0.7, 0.9, and 0.99 with α=β=0.1. This tendency of n indicates
that the true probability for ATCS with λ=0.03 to satisfy φ is
close to 0.9, since SPRT requires a large number of sample
paths to check a given hypothesis H0 if a true probability is
close to θ [21]. Furthermore, the verification result of BIET
coincides with that of SPRT, since Table III shows that the
estimated probability p̂ is between 0.8544 (with c = 0.9 and
δ′ = 0.03) and 0.9000 (with c = 0.99 and δ′ = 0.03).

For the verification speed, Tables II and III show that SPRT
is much faster than BIET. For example, the maximum time
spent by SPRT in Table II is 636.7 seconds with θ = 0.9 and

7Due to page limit, we cannot describe full experiment data in the paper.
Full experiment data of applying SPRT and BIET to ATCS, ABS, and FFCS
is available at http://pswlab.kaist.ac.kr/data/issre2012-expr-results.zip
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TABLE II
EXPERIMENT RESULT OF SPRT FOR ATCS WITH λ = 0.03 AND δ = 0.03 FOR THE FIVE TRIALS

α, β

threshold θ
0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

0.1 110 1.0 69.9 215 1.0 143.9 343 0.0 221.8 18 1.0 12.6

0.01 270 1.0 171.0 375 1.0 301.1 410 0.0 347.1 41 1.0 27.1

0.001 395 1.0 249.0 563 1.0 361.1 985 0.0 636.7 45 1.0 30.2

TABLE III
EXPERIMENT RESULT OF BIET FOR ATCS WITH λ = 0.03 FOR THE FIVE TRIALS

δ′
interval coverage c

0.9 0.99 0.999

n p̂ time n p̂ time n p̂ time

0.05 630 0.8594 416.6 1550 0.8654 1011.9 2665 0.8636 1753.2

0.03 1845 0.8544 1208.6 3340 0.9000 2181.1 6475 0.8805 4356.5

0.01 14150 0.8810 9551.8 36540 0.8740 26281.2 58870 0.8762 42945.1

α=β=0.001, which is less than time costs of BIET in Table III
except when BIET is applied with low precision parameters
δ′ = 0.05 and c = 0.9 (416.6 seconds).

Thus, if a given PBLTL formula has a high θ value like
0.99, it is a good idea to apply SPRT first with low θ values
(SPRT result with high θ value should not be trusted) in hope
of eliminating the need to apply BIET. For example, suppose
that we should check P≥θ[G

30(engineRPM < 6000)] for
ATCS with λ=0.03 and θ = 0.99. With α=β=0.1, SPRT
takes 435.6 seconds in total (=69.9+143.9+221.8) to conclude
that ATCS does not satisfy the given PBLTL formula with
θ = 0.99 by checking cases with θ as 0.5, 0.7, and 0.9
in order (Table II); the verification result with θ = 0.9 is
‘reject’, which consequently makes the result with θ = 0.99
as ‘reject’. However, if we apply BIET, we will obtain the
same verification result with higher time cost except a case
with δ′ = 0.05 and c = 0.9 (416.6 seconds (Table III)). The
hybrid SMC technique (Algorithm 1) is developed to utilize
this observation for precise and fast verification.

C. Results of the Hybrid SMC Technique
Tables IV-VI present the experiment results of the hybrid

SMC technique on ATCS, ABS, and FFCS for θ = 0.99
with δ = 0.03, δ′ = 0.01, and c = 0.99, respectively. n
is a total number of sample paths required by SPRT and
BIET in the hybrid algorithm for each experiment. p̂ is an
estimated probability obtained by BIET for each experiment.
If BIET is not applied because SPRT rejects a hypothesis
H0 before reaching thS2B , then p̂ is N/A. acpt is a result
over [0,1] regarding the hypothesis H0 where 0 is ‘reject’ and
1 is ‘accept’. time is total verification time taken for each
experiment in seconds.1) Verification Results: For ATCS, Table IV shows that
the corresponding hypothesis H0 with θ = 0.99 is ac-
cepted for two delay rates λ ∈ {0.01, 0.02} (i.e., M |=
P≥θ[G

30(engineRPM < 6000)] and rejected for delay rates
λ ∈ {0.03, 0.04}. For the experiments with λ ∈ {0.03, 0.04},
SPRT rejected H0 and BIET was not applied; thus, cor-
responding p̂s are marked as ‘N/A’. This result coincides

with the results of SPRT and BIET, since SPRT concludes
that ATCS with λ=0.03 does not satisfy the PBLTL formula
with θ = 0.9 (i.e., acpts are all 0.0 in Table II) and BIET
concludes that the probability for ATCS with λ=0.03 to satisfy
G30(engineRPM < 6000) is between 0.8544 and 0.9000
(Section V-B).

An interpretation of this result is that ATCS may not operate
correctly if an engine RPM value is transferred from the
engine to the torque converter with long delay (i.e., delay rate
λ in exponential distribution is larger than or equal to 0.03
seconds), since long delay of the data transfer can prevent
ATCS from operating promptly. In addition, we can obtain a
practical implication that, to achieve required high reliability
specified by the PBLTL formula with θ = 0.99, ATCS should
use a data-transfer component that transfers data from the
engine to the torque converter with delay rate λ ≤ 0.02 or
revise the ATCS design to satisfy the PBLTL formula with
θ = 0.99 even with long delay of the data transfer.

Similarly, for ABS, Table V shows that the corresponding
hypothesis H0 with θ = 0.99 is accepted for delay rate
λ=0.001 (i.e., M |= P≥θ[G

17((brakepressed ∧ carspeed >
5) → slip ≤ 0.9)]), and is rejected for larger delay
rates. For FFCS, Table VI shows that the corresponding
hypothesis H0 with θ = 0.99 is accepted for fault ratios
(20,10,20) (except α=β=0.001) and (30,30,30) (i.e., M |=
P≥θ[¬(F 100G1(fuelrate = 0))]), and is rejected for more
frequent fault ratios (3,7,8) and (10,8,9).2) Verification Speeds: The hybrid SMC technique shows
an order of magnitude faster verification speed compared to
BIET for the experiments where the probability for M |= φ
is less than thS2B . 8 For example, for ATCS with λ=0.03, the
hybrid technique spent 698.9 seconds (with α=β=0.1, δ=0.03,
δ′ = 0.01, and c=0.99) to 6020.4 seconds (with α=β=0.001,
δ = 0.03, δ′ = 0.01, and c=0.99) (Table IV), while BIET spent
26281.2 seconds for the same precision parameters (i.e., δ′ =

8Comparison between the verification speed of the hybrid technique and
that of SPRT is not meaningful, since SPRT result is imprecise for a large θ
value like 0.99.
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TABLE IV
EXPERIMENT RESULT OF THE HYBRID SMC FOR ATCS WITH θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99

α, β

delay rate λ from engine to torque convertor
0.01 0.02 0.03 0.04

n p̂ acpt time n p̂ acpt time n p̂ acpt time n p̂ acpt time

0.1 1710 0.9956 1 1256.1 1710 0.9956 1 1173.7 1066 N/A 0 698.9 1334 N/A 0 858.9

0.01 2315 0.9956 1 1740.8 2315 0.9956 1 1642.6 4795 N/A 0 3081.9 2946 N/A 0 1884.6

0.001 2905 0.9956 1 2320.2 2905 0.9956 1 2102.7 7804 N/A 0 6020.4 3833 N/A 0 2952.4

TABLE V
EXPERIMENT RESULT OF HYBRID SMC FOR ABS WITH θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99

α, β

delay rate λ from bang-bang controller to hydraulic control unit
0.001 0.003 0.005 0.07

n p̂ acpt time n p̂ acpt time n p̂ acpt time n p̂ acpt time

0.1 1814 0.9953 1 986.5 6511 0.9826 0 2905.9 8247 0.9773 0 3854.4 952 N/A 0 382.4

0.01 2417 0.9953 1 1344.8 8006 0.9806 0 3619.4 9151 0.9770 0 4290.1 2238 N/A 0 890.2

0.001 3179 0.9950 1 1815.3 8541 0.9810 0 3906.1 9326 0.9791 0 4334.0 3684 N/A 0 1465.5

TABLE VI
EXPERIMENT RESULT OF HYBRID SMC FOR FFCS WITH θ = 0.99, δ = 0.03, δ′ = 0.01, c = 0.99

α, β

sensor fault rates
(3, 7, 8) (10, 8, 9) (20, 10, 20) (30, 30, 30)

n p̂ acpt time n p̂ acpt time n p̂ acpt time n p̂ acpt time

0.1 1299 N/A 0 3359.6 14442 0.9575 0 36399.3 3180 0.9920 1 7990.0 2121 0.9944 1 5362.0

0.01 5369 N/A 0 13893.4 14130 0.9620 0 35894.1 4651 0.9906 1 11786.0 3747 0.9926 1 9556.4

0.001 7320 N/A 0 19059.9 16010 0.9592 0 41014.6 5809 0.9895 0 14792.1 3512 0.9939 1 9017.2

0.01, c = 0.99) (Table III). The hybrid technique is much faster
than BIET for ATCS with λ=0.03, since SPRT of the hybrid
technique concludes that ATCS with λ=0.03 does not satisfy
the PBLTL formula with θSPRT = 0.9375. Since θSPRT =
0.9375 < thS2B = 0.95, the hybrid technique does not apply
BIET and conclude that ATCS with λ = 0.03 does not satisfy
the given PBLTL formula with θ = 0.99. As BIET takes an
order of magnitude larger time cost than SPRT (Tables II–III),
the hybrid technique can reduce a large amount of time cost
by removing the time cost of BIET.

However, for the experiments where the probability for
M |= φ is larger than thS2B , the hybrid technique shows
slower verification speed compared to BIET. For example, for
ATCS with λ=0.02, the hybrid technique spent 1173.7 sec-
onds (with α=β=0.1, δ=0.03, δ′=0.01, and c=0.99) to 2102.7
seconds (with α=β=0.001, δ=0.03, δ′=0.01, and c=0.99) (Ta-
ble IV), while BIET spent 820.1 seconds for the same
precision parameters (i.e., δ′=0.01 and c=0.99) (see http://
pswlab.kaist.ac.kr/data/issre2012-expr-results.zip). This larger
time cost of the hybrid technique is due to the additional
applications of SPRT for θSPRT ∈ {0.5, 0.75, 0.875, 0.9375}.

For ABS and FFCS, we make similar observations to the
experiments for ATCS. For the cases where the probability
for M |= φ is less than thS2B , the hybrid technique is much
faster than BIET. For the other cases, the hybrid technique is
slower than BIET.

VI. DISCUSSION

A. Effective and Efficient Hybrid SMC Technique

Through the empirical evaluation of the hybrid statistical
model checking technique on ATCS, ABS, and FFCS, we
found that the hybrid technique is faster and more accurate
than a single SMC technique (Section V-C). This improvement
is achieved by utilizing the different advantages of SPRT and
BIET selectively, namely fast verification speed of SPRT and
precise verification result of BIET (Section V-B).

The hybrid SMC technique applies SPRT and BIET selec-
tively, because significance of verification speed and that of
verification precision vary depending on a probability p for
M to satisfy a requirement property φ. Suppose that if p is
distant from θ (e.g., |θ − p| ≥ 0.1), precision may not be
very important, because small error (e.g. +0.01 or -0.01) in an
estimated probability does not affect an accept/reject decision
on H0. In this case, the hybrid technique applies SPRT for fast
verification without much concern for precision. If p is close
to θ, however, precision becomes important, because a small
error (e.g. +0.01 or -0.01) may affect an accept/reject decision
on H0 easily. In this case, the hybrid technique applies BIET
for precise verification result.

Since we are targeting safety critical systems where PBLTL
requirements often have θ values close to 1 (e.g., 0.99 or
0.999) for high reliability, the hybrid SMC technique can
apply SPRT for relatively low θSPRT values first (e.g., 0.5,
0.75, etc.) in hope to conclude a ‘reject’ decision fast with
little concern for precision (a case where p is distant from
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θ). If SPRT concludes ‘accept’ decisions for the relatively
low θSPRT s (i.e., a case where p is close to θ), the hybrid
SMC algorithm applies BIET for precise verification result.
Therefore, the hybrid SMC technique can produce a final
verification result (i.e., accept/reject of H0) fast and precisely.

Although precise verification result is of the highest priority
for SMC, we cannot ignore the time cost. Since the available
project time in industry is always limited, the efficiency of ver-
ification techniques is of important concern, too. For example,
ISO-26262 [7] requires that the reliability of the safety critical
system components should be higher than 99.999% level. To
obtain such high reliability through SMC, the time cost of
SMC will be significantly large (it can take several days to
several weeks). Therefore, verification speed is also a critical
issue as well as precision and our hybrid SMC technique
can be useful for practical application of SMC techniques to
improve the reliability of safety critical systems.

B. Independence between Complexity of Target System and
SMC Cost

We found that the complexity of a target system does not
affect the cost of the hybrid SMC technique. For example,
although FFCS is more complex than the other systems
(e.g., program effort E of FFCS is 25500.0, while those of
ATCS and ABS are 7410.9 and 3460.1 respectively (Table I)),
for similar estimated probability p̂ with the same precision
parameters, a number of sample execution paths n for FFCS is
similar to those for ATCS and ABS. 9 For the five experiments
with α=β=0.1 in Tables IV-VI whose p̂ > 0.99, the numbers
of execution paths ns for these experiments are similar.
• ATCS with λ=0.01 or 0.02: p̂ = 0.9956 and n = 1710
• ABS with λ=0.001: p̂ = 0.9953 and n = 1814
• FFCS with the sensor fault rates (30,30,30): p̂ = 0.9944

and n = 2121
• FFCS with the sensor fault rates (20,10,20): p̂ = 0.9920

and n = 3180

As shown above, although the complexities of ATCS, ABS,
and FFCS are different, the cost of the hybrid SMC technique
for these target systems does not change much for similar p̂
(i.e., 0.9920–0.9956). A slightly increasing number of n from
1710 to 3180 for decreasing p̂ from 0.9956 to 0.9920 is due to
the characteristics of BIET; BIET requires more sample paths
as p̂ decreases from 1 (Section II-D). Therefore, we can expect
that SMC techniques can be applied to large complex safety
critical systems to assure their reliability.

VII. CONCLUSION AND FUTURE WORK

We have developed a new hybrid SMC technique which
integrates SPRT and BIET. By applying this new hybrid
technique to three safety critical systems in the automobile
domain (i.e., ATCS, ABS, and FFCS), we have demonstrated
that the hybrid SMC technique achieves precise verification
results fast compared to a single SMC technique - SPRT or
BIET. In our experiment, our hybrid SMC technique was up
to 20% faster than BIET.

9For different target systems, we should use n as a measure of the SMC
cost, not time, since time varies depending on the execution time of a target
system.

As future work, we will collaborate with Hyundai motor
company to apply the hybrid SMC technique to real con-
trol components of automobiles. We believe that the hybrid
technique can provide more scientific assurance about the
reliability of components than conventional testing techniques.
In addition, we plan to use this hybrid technique in a process
to obtain an ISO-26262 certificate.
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