
Testing Concurrent Programs to Achieve
High Synchronization Coverage

Shin Hong†, Jaemin Ahn†, Sangmin Park∗, Moonzoo Kim†, and Mary Jean Harrold∗
†Computer Science Department

KAIST, South Korea
{hongshin|jaemin|moonzoo}@cs.kaist.ac.kr

∗College of Computing
Georgia Institute of Technology, Atlanta, GA

{sangminp|harrold}@cc.gatech.edu

ABSTRACT
The effectiveness of software testing is often assessed by mea-
suring coverage of some aspect of the software, such as its
code. There is much research aimed at increasing code cov-
erage of sequential software. However, there has been lit-
tle research on increasing coverage for concurrent software.
This paper presents a new technique that aims to achieve
high coverage of concurrent programs by generating thread
schedules to cover uncovered coverage requirements. Our
technique first estimates synchronization-pair coverage re-
quirements, and then generates thread schedules that are
likely to cover uncovered coverage requirements. This pa-
per also presents a description of a prototype tool that we
implemented in Java, and the results of a set of studies we
performed using the tool on a several open-source programs.
The results show that, for our subject programs, our tech-
nique achieves higher coverage faster than random testing
techniques; the estimation-based heuristic contributes sub-
stantially to the effectiveness of our technique.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, reliability

Keywords
Concurrency, thread interleaving, synchronization, coverage

1. INTRODUCTION
There has been much research that assesses the testing

quality of sequential software by measuring coverage of the
software based on structural coverage criteria, such as state-
ment, branch, or data flow. Empirical studies show that
there is a strong correlation between test suites with high
coverage and the defect-detection ability of those test suites [4,
13, 15]. Some of these coverage criteria have been success-
fully implemented in tools that are used in industry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15-20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$10.00.

Several coverage criteria have been presented for concur-
rent programs, such as synchronization-pair coverage and
statement-pair coverage criteria [3,19,22]. The coverage cri-
teria can be a metric for testing adequacy, but there has been
little research for concurrent programs that aims at achiev-
ing high coverage, and thus investigating more program be-
haviors. Instead of directing testing to achieve more cov-
erage, a common practice is stress testing—running a test
with the same input repeatedly with the hope of execut-
ing different interleavings and finding bugs. A recent study
shows that such stress testing can be unacceptably ineffec-
tive: such testing did not reveal a known concurrency bug
even when executing the software for one week [14].

To execute a more diverse set of interleavings than stress
testing for concurrent software, researchers have developed
a random-testing approach, which inserts random delays at
concurrent resource accesses [5, 18]. The underlying idea of
these techniques is that injecting random delays perturbs
the orderings of threads and results in diverse interleavings.
The techniques are simple and scale to large systems, and
thus, they have been used in production code, such as IBM
WebSphere [1]. However, because of their random nature,
the techniques may produce the same interleavings for many
executions, and may not reveal some concurrency bugs that
occur under specific interleaving [14].

To find concurrency bugs that occur under specific inter-
leavings, researchers have developed bug-directed random
testing techniques. The techniques target specific kinds of
concurrency bugs, such as data race [16], atomicity viola-
tion [14], and deadlock [7]. The techniques predict possible
concurrency bugs locations, and manipulate thread sched-
ulers to guide the interleavings toward executing the pre-
dicted buggy locations. The main limitation of the tech-
niques is that they are tailored to specific bug patterns,
and may not explore diverse interleavings to reveal other
kinds of faults. More systematic techniques have been pro-
posed to avoid investigating the same interleavings repeat-
edly [12,20]. Unlike random testing techniques, the system-
atic techniques are guaranteed to investigate different in-
terleavings, and may reveal any kinds of concurrency bugs.
However, the techniques are not scalable to large programs.

To address the limitations of existing techniques, we de-
veloped, and present in this paper, a novel thread-scheduling
technique for achieving high test coverage for concurrent
programs. Like traditional structural testing approaches for
sequential programs, the goal of our technique is to achieve
high coverage for concurrent program entities, such as state-
ment pairs and synchronization pairs [19]. Specifically, our

technique consists of an estimation phase and a testing phase.
In the estimation phase, the technique dynamically builds a
thread model of the target concurrent program, and, based
on the model, estimates the coverage requirements. In the
testing phase, the technique dynamically manipulates thread
schedules to cover previously uncovered coverage require-
ments (computed in the estimation phase), and thus, reveals
more diverse program behaviors.

Our technique has multiple benefits over existing tech-
niques. First, unlike random testing techniques, our tech-
nique is based on measuring coverage against coverage cri-
teria and covering more uncovered coverage requirements.
Thus, running a program with our technique provides some
statistics for determining the thoroughness of testing. Sec-
ond, unlike bug-directed random testing techniques, our tech-
nique is not tailored to specific bugs, but is general enough
to investigate diverse interleavings regardless of bug types.
Thus, our technique can reveal any type of concurrency bug
during testing. Third, unlike systematic techniques, our
technique can scale to large real-world programs. We ap-
plied our technique to 20KLOC Java programs for our study,
but we expect that we will be able to apply the technique
to larger programs because of its simplicity.

We also describe the prototype implementation of the
technique in Java, and present the results of several empir-
ical studies that we performed to evaluate the effectiveness
and efficiency of the technique over existing techniques. The
first study investigates whether the technique achieves more
coverage than other techniques. The results show that, for
our subject programs, most often, our technique achieves
higher coverage than random testing techniques given an
execution limit. The second study investigates whether our
technique achieves a given coverage limit faster than other
techniques. The results show that our technique reaches
higher coverage faster than other techniques. The third and
fourth studies demonstrate the improved performance due
to the estimation-based heuristic, which is a key asset of the
technique (see Rule 3 of Algorithm 1). The third study
shows that our technique estimates the coverage require-
ments almost precisely with respect to the actual execution
of the requirements. The fourth study, which compares our
technique with and without the estimation-based heuristic,
demonstrates that the heuristic actually improves the overall
performance of the technique.

The main contributions of the paper are

• The presentation of a new technique that aims at achiev-
ing high coverage faster for concurrent programs.

• A description of the implementation of the technique
in Java; we made both our implementation and subject
programs available for public use [2].

• A discussion of our empirical studies that show that,
for our subject programs, our technique, to which the
estimation-based heuristic contributes substantially, is
more effective and efficient than existing techniques.

2. THREAD SCHEDULING TECHNIQUE
This section presents our thread-scheduling technique that

manipulates thread schedules dynamically to increase test
coverage for concurrent programs. Section 2.1 provides an
overview of the technique, Section 2.2 presents definitions
for understanding the technique, and Sections 2.3 and 2.4
describe, in detail, the two phases of the technique.

2.1 Overview
Our thread-scheduling technique consists of the two phases:

1. Estimation phase that identifies coverage requirements
R

2. Testing phase that generates thread schedules to exe-
cute the coverage requirements in R

Figure 1 shows an overview of these two phases of the
technique. In the Estimation phase, the technique executes a
program P once with a test case to obtain a thread model M
that consists of a set of thread executions. Then, based on
the thread model, the technique estimates coverage require-
ments R that can be covered by possible thread-scheduling
scenarios, and outputs R.

In the Testing phase, the technique inputs R, computed
in the Estimation phase, and executes P with t using the
scheduling controller to attempt to execute more coverage
requirements in R. For each thread control point, the tech-
nique measures executed coverage requirements, marks the
executed coverage requirements from R as covered, and gen-
erates the next thread schedule to cover uncovered coverage
requirements in R.

2.2 Definitions
This section gives formal definitions that are used through-

out the paper. Section 2.2.1 defines a formal thread model
and its related functions, Section 2.2.2 defines an interleaved
execution model on top of the thread model, and Section 2.2.3
defines coverage requirements and their satisfaction criteria.

2.2.1 Thread Model
We define a thread model M of a concurrent program as

a finite set of threads, each of which consists of a finite se-
quence of atomic actions, where an action p has the following
attributes:
• thread(p) is a thread executing p.
• operator(p) ∈ Sync ∪ Thread ∪ Data indicates a type

of p.
– Sync = {lock, unlock}
– Thread = {thread-creation, thread-join}
– Data = {read, write}

• operand(p) indicates an operand of p.

– For operator(p) ∈ Sync, operand(p) is the cor-
responding lock.

– For operator(p) ∈ Thread, operand(p) is the
corresponding thread.

– For operator(p) ∈ Data, operand(p) is the vari-
able/memory location to read or write.

• loc(p) is the corresponding code location of p.
• lockset(p) is the set of locks held by thread(p) when
p begins to execute.

We define the functions that relate two lock actions p and
p′ of the same thread (i.e., operator(p)=operator(p′)=lock
and thread(p)=thread(p′)) as follows.
• lockset(p, p′) is a set of locks that continuously guards
p and p′.
• next(p) is the lock action of thread(p) that first ac-

cesses operand(p) after p.
• prev(p) is the lock action of thread(p) that most

recently accessed operand(p) before p.1

1next(p) and prev(p) might be undefined when p is the last/first
access of operand(p) by thread(p).

Program P

+

Test case

Threads

Coverage

requirements

REstimation phase

l1 l2
l1 l3
l2 l3

Thread modelM

analysis

l1 l2
l1 l3
l2 l3

Test run
Measure
coverage

Testing phase

Scheduling
controller

Figure 1: Overview of the thread-scheduling technique.

In addition, we define a precedence relation ≺ on the ac-
tions ofM that represents ordering constraints between ac-
tions of two different threads t and t′. The ordering con-
straints are imposed at the time of thread creations.

For any action p of thread t that occurs before t
creates a new thread t′ and for any action p′ of
t′, p ≺ p′.

2.2.2 Interleaved Execution Model
We define an interleaved execution σ of a concurrent target

program as a sequence of actions of all the threads. During
an interleaved execution σ, the program is at any program
point with a state s. We introduce the following functions
regarding σ and s:

• σ[i] indicates ith action of σ.

• enabled(s) is a set of executable actions at s, through
which s changes to another state s′.

For a given state s, each thread has at most one action
in enabled(s) because a thread is a sequence of actions. A
thread has no actions in enabled(s) if the thread is blocked
because of synchronization.

2.2.3 Synchronization Coverage
Based on the thread model and the interleaved execution

model, we define a coverage requirement for a synchroniza-
tion-pair (SP) coverage metric. The definition is as follows:

Definition 1. Synchronization-Pair (SP) Coverage
Requirement
A pair of code locations <l1, l2> is an SP requirement, if
the following conditions hold for σ:

1. l1 and l2 have lock statements that are executed on the
same lock m (i.e., there is σ such that loc(σ[i])=l1,
loc(σ[j])=l2, operator(σ[i])=operator(σ[j])=lock,
and operand(σ[i])=operand(σ[j])=m for some i < j).

2. There is no lock action on m between σ[i] and σ[j]
(i.e., there is no k such that i < k < j, operand(σ[k])=
lock, and operand(σ[k])=m).

Note that this definition generalizes the original definition
of Trainin et al. [19]. That definition does not consider a pair
of code locations that are executed by the same thread (i.e.,
thread(σ[i])=thread(σ[j])) as an SP requirement, whereas
our definition does. By doing this, we can express a larger
set of coverage requirements, and thus, capture a greater
number of interleaving executions.

Next, we discuss the conditions, under which SP require-
ments can be covered during execution. We formally define
the satisfaction criterion as follows:

Definition 2. SP Coverage Satisfaction Criteria
For an execution σ of a program P and an SP requirement
<l1, l2>, σ |=< l1, l2 > if there exist i and j (i < j) such
that

1. loc(σ[i]) = l1 and loc(σ[j]) = l2
2. operator(σ[i])=operator(σ[j])=lock

3. operand(σ[i])=operand(σ[j])

4. there is no k such that i < k < j, operator(σ[k])=lock,
and operand(σ[k])=operand(σ[i])=operand(σ[j])

2.3 Estimation Phase
The estimation phase computes and reports a set of SP

requirements that can be satisfied by possible thread inter-
leavings. To do this, the technique builds a thread model
M by executing a program once and collecting data such
as actions and threads. M has a set of executed threads,
where each thread has a sequence of actions, and lock ac-
tions have their dynamic lockset information. From M,
the technique attempts to create every possible pair of lock
statements. Then, the technique filters out some pairs that
are definitely infeasible by checking (1) dynamic lockset

relations (see AC2 and AC3 below), and (2) precedence re-
lations (see AC4 below). The pairs that are not filtered out
(i.e., accepted) are reported as the target SP requirements.

We formally define the acceptance conditions (AC) of the
SP requirements as follows. For SP requirement <loc(p),
loc(q)> of lock actions p and q on the same lock m, the
technique accepts the pair when the following conditions
hold:

• If thread(p)=thread(q),

(AC1) q=next(p)

• If thread(p)6=thread(q),

(AC2) lockset(p, next(p)) ∩ lockset(q) = ∅
(AC3) lockset(p) ∩ lockset(prev(q), q) = ∅
(AC4) q 6≺ p

AC1 accepts consecutive lock statements executed from
the same thread as a feasible pair. AC2, AC3, and AC4
define the conditions for the pairs from different threads.
AC2 implies that p, next(p), and q should not be pro-
tected by a common lock, so that q can execute consec-
utively after p (i.e., before next(p)). For example, sup-
pose there exists m such that m ∈ lockset(p, next(p))
∩ lockset(q). Then, p and next(p) are continuously pro-
tected by m, and thus, q cannot execute consecutively af-
ter p. Hence, <loc(p),loc(q)> is filtered out. AC3 filters
out infeasible conditions in a similar manner. AC4 filters
out pairs that violates the precedence relation. If q ≺ p,
p cannot execute before q so that the corresponding pair is
infeasible.

1a thread1() { 1b thread2() {
2a synchronized(m) { 2b synchronized(m) {
3a } 3b }
4a synchronized(m) { 4b synchronized(m) {
5a } 5b }
6a } 6b }

Figure 2: Example of a two threaded program.

Thread 1

2a lock(m)

3a unlock(m)

4a lock(m)

5a unlock(m)

2b lock(m)

3b unlock(m)

4b lock(m)

5b unlock(m)

Thread 2

Figure 3: Thread model M of the target program.

To illustrate our technique, consider the simple Java pro-
gram shown in Figure 2. The program has two threads,
where each thread has two synchronized blocks on the same
lock m. Synchronized blocks can be represented as lock

and unlock statements, so 2a, 4a, 2b, and 4b correspond
to lock statements, and 3a, 5a, 3b, and 5b correspond to
unlock statements.

In the Estimation phase, our technique executes the pro-
gram and obtains a corresponding thread modelM, as shown
in Figure 3. We use an action 2a to indicate an action that
executes a statement at 2a, use an action 3b for a statement
at 3b, and so on.

For this example, there can be 12 (= 4× 3) possible pairs
(i.e., SP coverage requirements) because there are four lock
statements in the program. After checking the feasibility of
these 12 requirements with M, however, two of them are
eliminated by AC1. For example, <4a,2a> is infeasible be-
cause 2a 6= next(4a) (i.e., <4a,2a> violates AC1). <4b,2b>
is infeasible for the same reason. Thus, there are 10 SP re-
quirements that the Testing phase will try to cover:

<2a,4a>, <2a,2b>, <2a,4b>, <4a,2b>, <4a,4b>,
<2b,4b>, <2b,2a>, <2b,4a>, <4b,2a>, <4b,4a>.

2.4 Testing Phase
The testing phase takes the SP requirements and exe-

cutes the target program P with the scheduling controller to
achieve more coverage during the executions of P . During
program executions, the technique invokes the scheduling
controller before each lock action. The controller pauses or
resumes threads to cover uncovered SP requirements. Note
that this approach does not change P ’s semantics because
the scheduling controller can only delay an execution of an
action.

The algorithm for the scheduling controller for one test
execution is shown in Algorithm 1. The algorithm receives
an initial state s0, a set of the SP requirements that have
been covered by previous test executions (covered), and a
set of uncovered target SP requirements (uncovered). For
the first execution, covered is ∅ and uncovered is the set
of SP requirements obtained in the estimation phase. At
the termination of the algorithm (i.e., one test execution),
the algorithm passes updated covered and uncovered to the
next run.

The algorithm repeats scheduling decisions to cover un-
covered SP requirements until all threads terminate (lines 3–
38). For that purpose, the algorithm pauses or resumes a

Input:
s0: an initial state
covered: a set of covered SP requirements
uncovered: a set of uncovered SP requirements
Output: Updated covered and uncovered

1 paused← ∅;
2 s← s0;
3 while enabled(s) 6= ∅ do
4 p← an action in enabled(s)\ paused;
5 if operator(p)=lock then
6 // Decides if p is added to paused
7 if ∃ <x,y> ∈ uncovered: loc(p)=x or y then
8 Adds p to paused ;
9 else

10 if ∃p′ ∈ paused: operand(p)=operand(p′)
then

11 Adds p to paused ;
12 end

13 end
14 end
15 if paused = enabled(s) then
16 // Selects an action in paused to execute later
17 // Rule 1
18 if ∃p′ ∈ paused: <loc_last(p′), loc(p′)>

∈ uncovered then
19 Removes p′ from paused;
20 else
21 // Rule 2
22 if ∃p′, p′′ ∈ paused: <loc(p′), loc(p′′)>

∈ uncovered and operand(p′)=operand(p′′)
then

23 Removes p′ from paused;
24 else
25 // Rule 3: the estimation based heuristic
26 p′ ← an action in {p′′ ∈ paused |

num_cov_req(p′′, uncovered) is minimal};
27 Removes p′ from paused;
28 end

29 end
30 end
31 if p 6∈ paused then
32 s←execute(s, p); // updates s by executing p;
33 if operator(p) = lock then
34 // Updates coverage
35 Moves <loc_last(p), loc(p)> from

uncovered to covered;
36 end

37 end

38 end

Algorithm 1: Scheduling Controller Algorithm

thread by manipulating paused, which is a set of lock ac-
tions that are paused by the scheduling controller. Note that
action p can be executed only if p 6∈ paused (lines 31–37).
Thus, the algorithm can pause a thread t by adding cur-
rently enabled lock action p of t to paused (see lines 5–14).
Also, the algorithm can resume t later by removing p from
paused (see lines 18–29).

Algorithm 1 controls lock actions to generate thread sched-
uling as follows. The algorithm adds an enabled lock ac-
tion p to paused if there is <l1, l2> which is uncovered and
loc(p)= l1 or l2 (lines 7–8), because controlling the execu-
tion of p may cover <l1, l2>. In addition, if p uses the same
lock that is used by another action p′ ∈ paused (lines 10–12),
the algorithm inserts p in paused to prevent p from blocking
p′ whose execution is controlled by the algorithm.

When no action can be executed because all enabled ac-
tions at a state s belong to paused (line 15), the algorithm
selects an action p′ in paused that seems best for covering
uncovered SP requirements (lines 18–29). The algorithm de-
termines p′ based on the following three rules in the order
given:

Rule 1: p′ whose execution can immediately satisfy un-
covered <loc_last(p′),loc(p′)> (lines 18–19)

Rule 2: p′ such that<loc(p′), loc(p′′)> is uncovered where
p′ and p′′ operate on the same lock (lines 22–23)

Rule 3: p′ such that p′ has the smallest number of relevant
coverage requirements that are uncovered (lines 26–
27).

For Rule 1, the algorithm searches for an action p′ in
paused such that (<loc_last(p′),loc(p′)>) is not covered
where loc_last(p′) indicates a code location correspond-
ing to the most recent lock action on the lock of p′. Note
that this pair can be satisfied immediately by executing p′,
because the lock statement at loc_last(p′) was already
executed before p′. If paused has no such action applicable
for Rule 1, for Rule 2, the algorithm searches for the two
actions p′ and p′′ in paused such that p′ and p′′ operate on
the same lock and executing p′ and then p′′ satisfies a un-
covered coverage requirement. If paused has such p′ and p′′,
the algorithm removes p′ from paused to execute.

If Rule 1 and Rule 2 cannot be applied, Rule 3 searches
for p′ that has the smallest number of relevant uncovered re-
quirements. A number of relevant coverage requirements in
uncovered to p′′ is defined as num_cov_req(p′′, uncovered)
that returns a number of coverage requirements < x, y >∈
uncovered such that loc(p′′)=x or y. A main idea of Rule
3 is that p′′ in paused has more chances to increase coverage
if uncovered has more relevant coverage requirements to p′′.
Thus, Rule 3 removes p′ from paused that has least poten-
tial benefit to hold. This heuristic is called the estimation
based heuristic, because it utilizes a set of estimated target
requirements uncovered to select p′. Note that this heuristic
improves the performance of the algorithm substantially as
demonstrated in Section 3.5.

Recall the example in Figures 2 and 3. For the first
test execution in the testing phase, Algorithm 1 starts with
covered = ∅ and uncovered as the 10 requirements in Sec-
tion 2.3. At the initial state s = s0, paused = ∅ and
enabled(s)={2a, 2b}. We explain the corresponding opera-
tions of the algorithm step by step as follows:

Loop iteration 1: [enabled(s)={2a, 2b}, paused=∅]
The algorithm selects 2a as p and inserts 2a into paused
because <2a,2b>∈ uncovered (lines 7–8). Consequently, as
2a ∈ paused (line 31), no action executes and a current state
does not change.

Loop iteration 2: [enabled(s)={2a, 2b}, paused={2a}]
The algorithm selects 2b as p and inserts 2b into paused
because <2a,2b>∈ uncovered. As paused = {2a, 2b} =
enabled(s) (line 15), the algorithm picks p′ in paused by
applying Rule 2, as Rule 1 cannot be applied because neither
loc_last(2a) nor loc_last(2b) is defined (line 18). Rule
2 selects p′ = 2a and p′′ = 2b and <loc(2a), loc(2b)>∈
uncovered (line 22). Thus, the algorithm removes 2a from
paused (line 23). However, because 2b ∈ paused, no action
executes and a current state does not change.

Loop iteration 3: [enabled(s)={2a, 2b}, paused={2b}]
The algorithm selects 2a as p and inserts 2a into paused
because <2a,2b>∈ uncovered. As paused = {2a, 2b} =
enabled(s) (line 15), the algorithm picks p′ in paused by
applying Rule 2, as Rule 1 cannot be applied because neither
loc_last(2a) nor loc_last(2b) is defined (line 18). Rule
2 selects p′ = 2a and p′′ = 2b and <loc(2a), loc(2b)>∈
uncovered (line 22). Thus, the algorithm removes 2a from
paused (line 23). Then, because 2a 6∈ paused (line 31), the
algorithm executes 2a and updates the current state (line
32).

Loop iteration 4: [enabled(s)={3a, 2b}, paused={2b}]
The algorithm selects 3a as p. Because 3a is not a lock

action, the algorithm does not execute lines 6–13. Then,
the algorithm does not execute lines 16–29, because paused
6=enabled(s)). Finally, it executes 3a and updates the cur-
rent state (line 32).

Loop iteration 5: [enabled(s)={4a, 2b}, paused={2b}]
4a is selected as p and added to paused (line 8), as <4a,
2b> ∈ uncovered (line 7). Then, as paused = enabled(s),
Rule 1 removes 2b from paused because <loc_last(2b),
loc(2b)>=<2a,2b> ∈ uncovered. Because 4a ∈ paused,
no action executes and a current state does not change.

Loop iteration 6: [enabled(s)={4a, 2b}, paused={4a}]
The algorithm selects 2b as p and inserts 2b in paused (line
8) because <4a, 2b> ∈ uncovered (line 7). Then, as paused
= enabled(s), Rule 1 removes 2b from paused because
<loc_last(2b),loc(2b)>=<2a, 2b> ∈ uncovered (line 32).
Since 2b 6∈ paused, 2b is executed and <2a,2b> is moved
from uncovered to covered (lines 35).

As another example to show how Rule 3 operates, sup-
pose that test executions continued and covered={<2a,2b>,
<2a,4a>,<4a,4b>, <2b,2a>,<2b,4a>, <2b,4b>,<4b,4a>}
and uncovered = {<2a,4b>,<4a,2b>,<4b,2a>}.

Loop iteration 1: [enabled(s)={2a, 2b}, paused=∅]
The algorithm selects 2a as p and inserts 2a into paused
(lines 7–8) because <2a,4b>∈ uncovered. Consequently, as
2a ∈ paused (line 31), no action executes and a current state
does not change.

Loop iteration 2: [enabled(s)={2a, 2b}, paused={2a}]
The algorithm selects 2b as p and inserts 2b into paused
because <4a, 2b>∈ uncovered (line 7–8). As paused =
{2a, 2b} = enabled(s) (line 15), the algorithm picks p′ in
paused by applying Rule 3. This is because Rule 1 cannot
be applied because neither loc_last(2a) nor loc_last(2b)
is defined (line 18). Rule 2 cannot be applied because <2a,
2b> 6∈ uncovered and also <2b, 2a> 6∈ uncovered (line 22).
Thus, Rule 3 selects 2b (line 26–27) because 2b has one rele-
vant coverage requirement in uncovered (<4a, 2b>) whereas
2a has two relevant coverage requirements in uncovered
(<2a, 4b> and <4b, 2a>). Then, as 2b 6∈ paused (line 31),
the algorithm executes 2b and updates the current state (line
32).

3. EMPIRICAL STUDIES
To evaluate our technique, we implemented it in a proto-

type tool in Java, and performed several empirical studies
with the tool on a number of Java subjects. Section 3.1 de-
scribes the experimental setup, Sections 3.2 to 3.5 present
the four studies we performed, and Section 3.6 discusses the
threats to validity of the studies.

3.1 Experimental Setup
This section discusses the setup for our studies: the im-

plementation of our technique, the subjects, and the inde-
pendent and dependent variables.

3.1.1 Implementation
We implemented our technique in Java on top of the Cal-

Fuzzer framework [6]. We modified both the instrumenta-
tion and the scheduling-controller modules of the framework,
and created new modules for the two phases of our technique
(described in Section 2). Our modifications to Calfuzzer and
the new modules consist of approximately 1910 lines of code.

The module for the estimation phase instruments concur-
rent Java programs to build a thread model. To do this, the
module inserts probes before every synchronization opera-
tion (e.g., synchronized statements), shared-data access,
and thread-related operation. Then, we run the instru-
mented program once to build a thread model. Based on
the model, the module generates a set of SP coverage re-
quirements and stores it in a text file.

The module for the testing phase takes the text file con-
taining the set of SP coverage requirements, and executes
the instrumented program multiple times to achieve high SP
coverage. The main part of the module is the modification of
the scheduling controller of the CalFuzzer framework. The
scheduling controller of the original framework attempts to
cover a likely-buggy interleaving at one program execution,
whereas our scheduling controller attempts to cover as many
coverage pairs as possible. Thus, our scheduling controller
must maintain more runtime information than the original
one. To reduce runtime overhead, we maintain the coverage
information in a separate thread, and control the scheduler
concurrently. In the module, we also built a timeout checker
that kills the execution of the program when the program
reaches a timeout limit.

3.1.2 Subjects
Table 1 shows the subject programs we used for our stud-

ies. The first column shows the type of the subject pro-
gram. Java Library is a set of classes extracted from the
java.util.Collection package. Java Server is a set of
open-source server programs. For each program, the sec-
ond column gives the name of the program, the third col-
umn shows the size of the program in lines of code, and the
fourth and fifth columns show the numbers of threads and
synchronization statements in the program, respectively.

We created test cases for each subject program. For the
Java Library programs, we created two test cases for each
class, where the program name with suffix 1 has a test case
that creates several threads, each of which calls only one
method,2 and the program name with a suffix 2 has a test
case that creates small number of threads, each of which calls
several methods. For example, the test case for ArrayList1
creates shared objects of the ArrayList class, which are
shared in 26 threads, whereas the test case for ArrayList2

creates shared objects and uses 4 threads. For the Java

Server programs, we analyzed the subjects and created test
cases manually. cache4j is a multi-threaded cache for Java
objects. We created a test case that concurrently adds and
removes Java objects to and from a cache server, respec-
tively. pool is an object-pooling API for Java programs. We

2The five test cases with suffix 1 are taken from the examples in the
CalFuzzer distribution.

Table 1: Subject programs used for the studies.
Lines of # of # of

Type Program Code Threads Sync. stmts.

Java
Library

ArrayList1 7712 26 69
ArrayList2 7712 4 67
HashSet1 9028 21 67
HashSet2 9028 3 66
HashTable1 11431 5 96
HashTable2 11431 5 116
LinkedList1 7375 26 67
LinkedList2 7375 15 66
TreeSet1 5669 21 69
TreeSet2 5669 3 67

Java
Server

cache4j 1922 10 128
pool 5536 10 280
VFS2 22981 6 116

created a test case that concurrently calls pooling functions.
VFS2 is a Java virtual filesystem framework. We created a
test case that concurrently calls file-system operations (e.g.,
open, read, and write) to a virtual filesystem object.

We ran our empirical studies on a Linux platform with
Intel Core2 Duo 3.0GHz CPU and 16GB of memory. We
used Sun Java SE 1.6.0 on top of Fedora Linux 9 (linux
kernel 2.6.27).

3.1.3 Variables
The main independent variable is the thread-schedule gen-

eration technique: (1) our thread-scheduling algorithm (TSA),
(2) TSA-h which is TSA without the estimation based heuris-
tic (Rule 3 of Algorithm 1), and (3) 15 varieties of the ran-
dom testing technique. The random testing techniques [5,18]
insert random delays at shared resource accesses and syn-
chronization operations in concurrent programs. Because a
previous study [9] shows that the random parameters sig-
nificantly influence the effectiveness of the random testing
techniques, we vary the parameters of the random testing.
Overall, we use three random testing techniques: (1) RND-

y, which inserts yield() synchronization keywords at the
shared resource accesses and synchronization operations, (2)
RND-s10, which inserts random delays up to 10 milliseconds
with the sleep() synchronization keyword, and (3) RND-

s100, which inserts random delays up to 100 milliseconds
with the sleep() synchronization keyword. For each ran-
dom testing techniques, we insert delays with random prob-
abilities: 0.1, 0.2, 0.3, 0.4, and 0.5. For example, RND-s10
with probability 0.1 inserts a random delay once in 10 times
at shared memory accesses, and when inserting a delay, it
calls the sleep() function with less than 10 milliseconds.
Thus, the total number of random testing techniques is 15
(= 3 techniques × 5 probability values). We did not include
the parameter of the sleep() function over 100 milliseconds
and random probability over 0.5, because our pilot studies
showed that the effectiveness of the random testing tech-
niques decrease when we increase the values above those
limits.

The main dependent variables include (1) the number of
covered SP coverage requirements and (2) the execution time
to attain a certain goal. Both measures imply different re-
sults. Achieving greater coverage of the SP coverage require-
ments implies that a given technique is more effective than
the techniques to which it is compared, whereas achieving
coverage faster implies that a given technique is more effi-
cient techniques to which it is compared. We measure cov-

erage of the SP coverage requirements in Study 1, and both
coverage and time in Studies 2 and 4.

Another dependent variable is the number of feasible SP
coverage requirements. Our technique estimates a set of
such requirements in the estimation phase, and uses these
requirements in the testing phase (see Section 2). We mea-
sure the number of the SP coverage requirements that are
actually covered during the testing phase. We measure this
dependent variable in Study 3.

3.2 Study 1: Effectiveness
The goal of the study is to investigate whether TSA achieves

higher coverage than random testing techniques. To do this,
using the implementation of our technique, we

• Ran the estimation phase on each subject and, for each
subject, created a set of SP coverage requirements

• Using the sets of SP coverage requirements, ran TSA and
each of the 15 random testing techniques 30 times

– For each of the 30 runs, executed the program 500
times and recorded the accumulated number of cov-
ered SP coverage requirements for each execution

– Computed the average for the accumulated covered
SP coverage requirements over the 30 runs

Table 2 shows the results of this study. The first column
shows the program name. The second to tenth columns
show the accumulated number of covered SP coverage re-
quirements for the random testing techniques. Within each
column for the random techniques, AVG gives the average
of all results, and MIN and MAX give the minimum and
maximum of the results, respectively. Finally, the 11th col-
umn shows the accumulated number of covered SP coverage
requirements for TSA. Note that, we did not perform the
study for RND-s10 on cache4j and RND-s100 on cache4j,
pool, and VFS because it took longer than the time limit
of 12 hours that we set for each experiment (i.e., 500 test-
ing executions). Thus, for these programs, the results are
shown as “-” in the table. For example, for ArrayList1 with
RND-y, we ran 30 experiments for each five different random
probability parameter, got averages for each parameter, and
thus got a total of five results. The average of the five values
is 138.6, the minimum is 137.5, and the maximum is 140.0.
For ArrayList1 with TSA, we ran 30 experiments, and got
an average of the 30 experiments as 181.6.

Figure 4 shows the results of this study in graphical form.
For each graph, the horizontal axis represents the 500 test-
ing executions performed in the study, and the vertical axis
represents the number of covered SP coverage requirements
from the testing executions. Each graph shows the results of
TSA and the averages of RND-y, RND-s10, and RND-s100. For
example, consider the graph of pool. There are only three
values because RND-s100 was not studied for this subject.
In the graph, TSA (solid line) achieves a greater coverage
than AVGs of RND-y and RND-s10, and the value at 500th
execution is 2959.0 as in Table 2. The values of AVGs of
RND-y and RND-s10 are 1569.2 and 1990.3, respectively, as
seen both in Table 2 and Figure 4.

We make three observations from the results of the study.
First, most of the time, TSA achieves SP requirements that
are greater than or equal to the maximum results of ran-
dom testing techniques as shown in Table 2. To deter-
mine whether the results are statistically significant, we ap-
plied the Wilcoxon test with α < 0.05 to compare TSA to

MAX of RND-s100, which performs best in random test-
ing techniques, for all subject programs. If the p-value
is less than 0.05, TSA is statistically more effective than
MAX of RND-s100. If the p-value is greater than or equal
to 0.05, there is no statistical difference between TSA and
RND-s100. The Wilcoxon test shows that for most of the
subjects (ArrayList1, HashSet2, HashTable1, HashTable2,
LinkedList1, and TreeSet2), the p-value is less than 0.05,
and TSA performs more effectively than random testing tech-
niques, including RND-s100.

Second, among the three random testing techniques, RND-
s100 performs slightly better than others. For RND-y and
RND-s10, RND-s10 always performs better. The AVG col-
umn of RND-s10 is on average 25.7% higher than that of
RND-y. For RND-s10 and RND-s100, RND-s100 performs bet-
ter than RND-s10 except for HashSet2 and TreeSet2. We
believe that longer random delays provide more chance of
different interleavings, and thus RND-s100 outperforms oth-
ers. However, RND-s100 is not always guaranteed to perform
better than others, and moreover, it is not scalable to large
programs, such as cache4j and VFS2. In contrast, TSA is
scalable to work on the large programs.

Third, the effectiveness in the same random testing tech-
nique changes depending on the parameters. For example,
for RND-s100, the results of the minimum and the maximum
columns vary from 0.4% to 38.8% depending on the subject
programs. This observation confirms the conclusion of the
previous study [9] that the random parameters significantly
influence the effectiveness of the random testing techniques.
In addition, because there is no guidance for choosing the
best parameter for random testing techniques, a developer
can use TSA in practice, instead of using random testing
techniques with different parameters.

3.3 Study 2: Efficiency
The goal of the study is to investigate the efficiency of

the technique compared to random testing techniques. To
do this, we compared the time for the techniques to reach
a saturation point as the limit for covering SP coverage re-
quirements. Saturation-based testing [17] stops testing when
the coverage increment rate is less than a set threshhold.
The original technique uses linear regression, with r2 coeffi-
cient. We use the coefficient value 0.1 with a window size of
120 seconds. To perform this study, we

• Ran the estimation phase on each subject and, for each
subject, created a set of SP coverage requirements

• Using the sets of SP coverage requirements, ran TSA and
each of the 15 random testing techniques 30 times

– For each of the 30 runs, executed the program for
30 minutes and recorded the accumulated number of
covered SP coverage requirements for each execution

– Computed the saturation point for each run
– Computed the average saturation point (i.e., a pair of

the average time and the average SP coverage require-
ments of the saturation points) over 30 runs

Table 3 shows the results of this study. The first column
shows the program name. The second to fourth columns
show the number of covered SP coverage requirements and
the time of RND-y, RND-s10, and RND-s100, when they reach
the saturation points. We recorded the best results for each
random technique regardless of parameters. The final col-
umn shows the number of covered SP coverage requirements
and the time for TSA. For example, for ArrayList1, RND-

y reaches saturation within 411.5 seconds and covers 129.5

Table 2: Results of Study 1 (Effectiveness).

Program
RND-y RND-s10 RND-s100

TSA
AVG MIN MAX AVG MIN MAX AVG MIN MAX

ArrayList1 138.6 137.5 140.0 150.9 125.8 175.5 156.2 130.8 181.2 181.6
ArrayList2 111.5 108.1 114.8 132.2 117.5 142.4 132.7 116.7 143.7 141.8
HashSet1 83.6 79.8 86.0 134.0 112.7 153.2 138.0 115.2 154.0 152.6
HashSet2 104.7 100.3 107.8 112.8 100.9 120.8 111.6 99.8 120.6 120.8
HashTable1 15.2 15.0 15.6 24.0 23.8 24.0 24.0 23.9 24.0 24.0
HashTable2 393.2 371.5 415.5 452.5 405.9 496.3 461.0 405.9 508.3 538.0
LinkedList1 126.5 124.7 130.4 150.0 126.1 174.8 156.3 130.7 181.4 181.5
LinkedList2 116.3 110.6 121.3 128.6 112.3 142.1 129.2 111.6 143.6 141.7
TreeSet1 85.4 83.5 88.5 133.6 111.0 153.1 137.7 115.5 154.0 152.4
TreeSet2 109.6 107.0 111.3 110.0 96.1 119.6 109.3 97.6 119.5 120.5

cache4j 198.2 197.8 199.0 - - - - - - 202.2
pool 1462.9 1359.6 1541.1 1990.5 1878.8 2102.9 - - - 2959.0
VFS2 239.1 237.2 241.1 234.3 216.7 250.8 - - - 262.0

100

150

200

100

150

200

10

15

20

25

30

o
v
e

ra
g

e

o
v
e

ra
g

e

o
v
e

ra
g

e

0

50

0 100 200 300 400 500

0

50

0 100 200 300 400 500

0

5

10

0 100 200 300 400 500

140

160

120

140 600

ArrayList1

test execution

c
o

HashSet1

test execution

c
o

HashTable1

test execution

c
o

40

60

80

100

120

140

40

60

80

100

120

100

200

300

400

500

c
o

v
e

ra
g

e

c
o

v
e

ra
g

e

c
o

v
e

ra
g

e

0

20

0 100 200 300 400 500

0

20

0 100 200 300 400 500

0

100

0 100 200 300 400 500

200

250

2500

3000

3500

250

300

ArrayList2

test execution

HashSet2

test execution

HashTable2

test execution

0

50

100

150

0

500

1000

1500

2000

2500

0

50

100

150

200

Cache4J

c
o

v
e

ra
g

e

Pool

c
o

v
e

ra
g

e

VFS2

c
o

v
e

ra
g

e

0

0 100 200 300 400 500

0

0 100 200 300 400 500

0

0 100 200 300 400 500

test execution test execution test execution

TSA RND-y AVG RND-s10 AVG RND-s100 AVG

Figure 4: Results of Study 1 (Effectiveness): The number of covered SP requirements for 500 testing execu-
tions

SP coverage requirements, whereas TSA reaches saturation
within 184.2 seconds and covers 181.2 SP coverage require-
ment. Note that some techniques do not reach a saturation
point for some subjects in 30 minutes, which is the time
limit we set for the experiment. In this case, we show the
results as “-” in the table.

Figure 5 shows the results of this study graphically. The
horizontal axis represents the execution time, and the verti-
cal axis represents the number of SP coverage requirements.
Each graph shows the results of TSA and the averages of
RND-y, RND-s10, and RND-s100. Consider the graph of pool
as an example. There are only two values because RND-

s10 and RND-s100 did not reach a saturation point. In the
graph, TSA (solid line) reaches a saturation point at about
431.4 second with 2950.5 coverage, whereas RND-y reaches a
saturation point at about 388.5 second with 888.0 coverage.

The most important observation of this study is that TSA

always reaches the saturation point faster and covers a greater
number of SP coverage requirements than all random testing
techniques. TSA reaches a saturation point in less than 200
seconds (except for pool and VFS2), whereas random test-

ing techniques reach a saturation point after 200 seconds in
most cases. In addition, when reaching a saturation point,
the number of SP coverage requirements covered for TSA is
always greater than that of the random testing techniques.
Moreover, TSA works for all our subjects, whereas some ran-
dom techniques, such as RND-s100, do not work for the Java
Server programs (i.e, cache4j,pool, and VFS2). This ob-
servation is one of the most important observations in the
paper because our testing technique can be used practically
instead of random testing techniques [5, 18], which are used
in industry [1].

3.4 Study 3: Precision of Estimation
The goal of the study is to investigate how precisely our

technique estimates a set of SP coverage requirements. To
do this, we

• Ran the estimation phase on each subject and, for each
subject, created a set of SP coverage requirements

• Using the sets of SP coverage requirements, ran TSA 30
times

100

150

200

60

80

100

120

140

160

10

15

20

25

30

o
v
e
ra
g
e

o
v
e
ra
g
e

o
v
e
ra
g
e

0

50

0 50 100 150

0

20

40

0 50 100 150

0

5

10

0 50 100

140

160 600

120

140

ArrayList1

time(sec)

c
o

HashSet1

time(sec)

c
o

HashTable1

time(sec)

c
o

40

60

80

100

120

140

100

200

300

400

500

40

60

80

100

120

c
o
v
e
ra
g
e

c
o
v
e
ra
g
e

c
o
v
e
ra
g
e

2500

3000

3500

0

20

0 50 100 150

200

250

250

300

0

100

0 50 100 150

0

20

0 50 100

ArrayList2

time(sec)

HashSet2

time(sec)

HashTable2

time(sec)

0

500

1000

1500

2000

2500

0

50

100

150

0

50

100

150

200

Cache4J

c
o
v
e
ra
g
e

Pool

c
o
v
e
ra
g
e

VFS2

c
o
v
e
ra
g
e

0

0 50 100 150 200 250 300 350 400

0

0 50 100 150

0

0 50 100 150 200 250 300 350 400 450

time(sec) time(sec) time(sec)

TSA RND-y AVG RND-s10 AVG RND-s100 AVG

Figure 5: Results of Study 2 (Efficiency): The number of covered SP requirements until the saturation point
of TSA

Table 3: Results of Study 2 (Efficiency).

Program
RND-y RND-s10 RND-100 TSA

Cvg. / Time Cvg. / Time Cvg. / Time Cvg. / Time

ArrayList1 129.5 / 411.5 173.0 / 457.7 177.9 / 666.1 181.2 / 184.2
ArrayList2 106.2 / 278.2 141.2 / 372.8 140.0 / 550.3 141.4 / 159.7
HashSet1 82.3 / 300.8 152.4 / 481.6 150.4 / 629.7 151.7 / 172.4
HashSet2 103.8 / 296.9 119.7 / 336.5 116.9 / 505.1 120.8 / 139.3
HashTable1 17.0 / 145.0 24.0 / 136.8 23.8 / 162.4 24.0 / 120.0
HashTable2 -/- 472.0 / 778.0 488.6 / 1536.6 538.0 / 165.4
LinkedList1 118.6 / 467.9 172.0 / 437.9 177.6 / 727.8 181.2 / 155.0
LinkedList2 108.8 / 289.6 141.1 / 457.7 138.9 / 644.5 141.2 / 161.2
TreeSet1 81.1 / 284.9 151.5 / 427.7 151.1 / 659.4 151.4 / 191.2
TreeSet2 109.6 / 316.7 117.4 / 356.9 113.0 / 545.8 120.5 / 139.8

cache4j 199.0 / 231.0 - - 202.2 / 146.1
pool 888.0 / 388.5 - - 2950.5 / 431.4
VFS2 235.3 / 499.2 199.1 / 599.1 - 260.1 / 493.9

– For each of the 30 runs, executed the program 500
times and recorded the accumulated covered SP cov-
erage requirements

– Took the union of the accumulated SP coverage re-
quirements over the 30 runs

– Compared the estimated SP requirements to the ac-
cumulated SP coverage requirements

Table 4 shows the results of this study. The first column
shows the program name. The second column shows the es-
timated number of SP coverage requirements, computed in
the estimation phase. The third column shows the number
of covered SP coverage requirements. The fourth and fifth
columns show the number of false positives (i.e., estimated
but not covered in testing executions) and false negatives
(i.e., not estimated but covered in testing executions), re-
spectively.

The result shows that the estimation is precise with less
than 2% difference for all subject except HashTable2, pool,
and VFS2. To find the cause of the imprecision, we manu-
ally inspected the code and the SP requirements to find the
causes of false positives and false negatives.

Table 4: Results of Study 3 (Precision of Estima-
tion).

Program
Estimated # of Requirements False False
requirements covered positives negatives

ArrayList1 181 182 0 1
ArrayList2 145 144 2 1
HashSet1 139 154 0 15
HashSet2 116 121 1 6
HashTable1 23 24 0 1
HashTable2 597 540 57 0
LinkedList1 181 182 0 1
LinkedList2 146 144 2 0
TreeSet1 152 154 0 2
TreeSet2 118 121 1 4

cache4j 213 204 9 0
pool 5292 3416 1886 10
VFS2 335 264 77 6

One possible reason for the false positives is that our es-
timation technique is not precise enough to filter our infea-
sible coverage requirements. We used the lockset method to
remove the likely-infeasible coverage requirements, but we
may leverage another method, such as the happens-before
relationship, to improve the precision.

There are several reasons for false negatives. Because the
estimation technique is a dynamic technique, it explores only
a limited space during runtime, and can miss some critical
observations that do not appear in the estimation phase.
One source of false negatives we found is that synchroniza-
tion operations, such as locks, inside a loop do not appear
in the estimation execution, but do appear in testing ex-
ecution. Another source of false negatives we found is an
aliasing problem. A lock statement appearing in a thread
can be paired with an access of the other thread and consti-
tute a coverage requirement, but in other executions, it can
constitute another coverage requirement by coupling with
another thread.

Table 5: Results of Study 4 (Impact of the Estima-
tion based Heuristic).

Program
TSA-h TSA % of Rule 3

Coverage / Time Coverage / Time executed

ArrayList1 177.6 / 274.4 181.2 / 184.2 81.9 %
ArrayList2 130.8 / 246.3 141.4 / 159.7 98.0 %
HashSet1 151.3 / 271.5 151.7 / 172.4 81.9 %
HashSet2 98.0 / 198.9 120.8 / 139.3 98.1 %
HashTable1 23.7 / 120.0 24.0 / 120.0 16.9 %
HashTable2 539.6 / 388.8 538.0 / 165.4 95.0 %
LinkedList1 179.9 / 278.2 181.2 / 155.0 86.1 %
LinkedList2 129.9 / 237.7 141.2 / 161.2 98.0 %
TreeSet1 151.6 / 258.4 151.4 / 191.2 82.4 %
TreeSet2 98.8 / 237.5 120.5 / 139.8 97.9 %

cache4j 201.9 / 205.8 202.2 / 146.1 99.9 %
pool - 2950.5 / 431.4 91.9 %
VFS2 246.7 / 478.2 260.1 / 493.9 83.9 %

3.5 Study 4: Impact of the Estimation Based
Heuristic

The goal of the study is to investigate the impact of the
estimation based heuristic on the efficiency of the testing
phase. To do that, we implemented a tool called TSA-h that
removes the Rule 3 part of Algorithm 1 in TSA. To do this
study, using the implementation of our technique, we

• Ran the estimation phase on each subject and, for each
subject, created a set of SP coverage requirements

• Using the sets of SP coverage requirements, ran TSA and
TSA-h 30 times

– For each of the 30 runs, executed the program for
30 minutes and recorded the accumulated number of
covered SP coverage requirements for each execution

– Computed the saturation point for each run

– Computed the average saturation point (i.e., a pair of
the average time and the average SP coverage require-
ments of the saturation points) over 30 runs

Table 5 shows the results of the study. The first column
shows the program name. The second and third columns
show the number of covered SP coverage requirements and
the time for TSA-h and TSA, respectively. The fourth col-
umn shows the ratio of the application of Rule 3 over Rule
1, Rule 2 and Rule 3 in Algorithm 1 (lines 15–30). For
example, for ArrayList1, TSA-h reaches saturation within
274.4 seconds and covers 177.6 SP coverage requirements,
whereas TSA reaches saturation within 184.2 seconds and
covers 181.2 SP coverage requirements using TSA. For TSA,
Rule 3 was applied 81.9% of time when to remove an action
p′ out of paused on average.

The results show that TSA covers a greater number of SP
coverage requirements than TSA-h at all times at the satu-
ration point. In addition, TSA reaches the saturation point
faster than TSA-h. These two observations imply that the
estimation based heuristic contributes to the efficiency of
TSA substantially for our subjects.

Another important observation is that as the ratio of ap-
plication of Rule 3 increases, TSA performs better than TSA-

h. For example, for HashTable1, the ratio of application of
Rule 3 is only 16.9%, and the differences of coverage and
time of the two techniques are minimal. In contrast, Rule 3
was applied 99.9% of time for cache4j, and there is a huge
gap of performance between TSA and TSA-h. This observa-
tion also supports that the estimation based heuristics is the
key asset of our technique.

3.6 Threats to Validity
Threats to external validity limit the extent to which our

results will generalize to other concurrent programs. The
main external threats include the subject programs we used.
The programs may not represent all types of concurrent pro-
grams. To mitigate the problem, we included several kinds
of programs, from library classes to server applications.

Threats to internal validity include the correctness of our
prototype implementation. Our prototype may contain un-
known bugs, which can change the results of the empirical
studies. To reduce the risk of the bugs, we minimized our
implementation by building our tool on top of the publicly
available CalFuzzer tool, which was used in many previous
studies [6, 7, 16]. Moreover, we iterated the development
with rigorous code reviews. Another threat to internal va-
lidity is that we used our implementation of random testing
techniques instead of existing tools.

4. RELATED WORK
There are two main areas of research related to ours: test-

ing for concurrent programs and coverage criteria for con-
current programs.

The simplest, but most practical, type of technique for
testing concurrent programs is random testing. Random
testing runs the program many times while injecting artifi-
cial delays into thread schedules to produce different inter-
leavings. The delay-injection technique increases the likeli-
hood of revealing concurrency bugs. ConTest [5] is based on
random-delay injection with a focus on injecting delays at
program points related to buggy code patterns. Rstest [18]
performs escape analysis to identify thread-escaping code
points, and to inject delays at those points at runtime. These
techniques produce independent random interleavings for
different runs. Thus, there may be many duplicate inter-
leavings, which may be inadequate for covering previously
uncovered interleavings. In contrast, our technique leads the
thread interleaving toward covering previously uncovered in-
terleavings as the number of runs increases.

Another type of testing for concurrent programs is based
on concurrency bug analysis. These techniques identify po-
tential concurrency bugs using static analysis [7] or using
dynamic analysis obtained from a program trace [14]. The
techniques then run the program while manipulating the
thread scheduler to trigger the possible bugs. CalFuzzer [6]
is a Java-based software framework that implements pro-
gram analysis and testing for concurrent programs. Race-
Fuzzer [16] and DeadlockFuzzer [7], which were built us-
ing CalFuzzer, target revealing data races and deadlocks,
respectively. Our technique also uses the CalFuzzer frame-
work. However, unlike these techniques, our technique is not
restricted to manipulating interleavings near possible buggy
code points, but explores interleavings of any program point.

A third type of testing is systematic testing, which ex-
plores distinct interleavings of the program in each differ-
ent run. The inherent problem of these techniques is that
the interleaving space to explore is exponentially large [12].
CHESS [12] uses preemption-bounded model checking, which
explores interleaving with few preemptions (e.g., preemp-
tions less than 2). Wang et al. [20] propose an interleav-
ing exploration method, which is likely to cover previously
uncovered statement-pair coverage. Techniques in this cate-
gory are guaranteed not to investigate the same interleaving
for different runs, but the techniques incurs significant over-

head. For example, the most recent technique [20] incurs
10× to 100× execution overhead. In contrast, our technique
incurs low overhead and is always faster than random testing
techniques [5, 18] (see Section 3.3).

Regarding coverage criteria, two essential questions are
(1) how to achieve higher coverage faster, and (2) how much
testing is enough to guarantee quality. For sequential pro-
grams, both questions are well researched. For example,
regarding Question 1, testing techniques using symbolic ex-
ecution [8,21] explore a program to increase coverage faster.
Regarding Question 2, there are some industrial standard
metrics to guarantee quality of the software. However, nei-
ther question is well-researched for concurrent programs.

For Question 1, there are some coverage criteria suggested
for concurrent programs [3, 11, 19, 22]. The coverage crite-
ria capture the behavior among threads. Examples of the
criteria include def-use pair coverage [22], synchronization-
pair coverage [19], and event-pair coverage criteria [3]. Lu
et al. [11] discuss several coverage criteria and determine a
subsumption hierarchy among them. Letko et al. [10] per-
formed empirical studies with the above criteria, and show
that some criteria are better for different testing techniques.
However, there is little research aimed at achieving higher
coverage faster based on those criteria to address Question
1 directly. ConTest [5, 19] utilizes the coverage feedback for
determining the amount of noise to inject for bug detec-
tion. In contrast, our technique is one of the first techniques
that directly control thread scheduling to increase coverage,
and specifically aims at high synchronization-pair coverage
faster. Although, we applied our technique for only one type
of coverage criteria, it can be easily extended to other crite-
ria, and we plan to do more studies on them in the future.

Regarding Question 2, there is little research to deter-
mine the thoroughness of testing for concurrent programs.
One representative technique is saturation-based testing [17]
that monitors the number of executed coverage requirements
until the rate of increase of covering new requirements is
less than a threshold (i.e., the coverage reaches a saturation
point). This testing adequacy criteria is often used in testing
for concurrent programs [10], and we use it as the stopping
criterion in our empirical studies in Section 3.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a new thread-schedule tech-

nique that aims at achieving high test coverage for concur-
rent programs. Our empirical studies show that our tech-
nique is more effective and efficient in achieving high syn-
chronization coverage than existing random testing tech-
niques for a suite of Java programs.

Although our initial studies are promising, there are sev-
eral areas of future work that we will pursue. First, although
there is a body of research on investigating the relationship
between coverage and fault-detection ability for sequential
programs [4, 13, 15], there is little work that evaluates this
issue for concurrent programs. Thus, we will perform addi-
tional empirical studies on this relationship. Second, we will
perform additional studies on more and varied programs to
determine whether our technique generalizes. Finally, our
studies used SP coverage as the criterion because it is one
of the basic coverage criteria for concurrent programs [11].
However, there are other criteria for which our technique
may perform well, and we plan to extend it to these other
criteria.

6. ACKNOWLEDGEMENTS
This work was supported by the ERC of MEST/NRF of

Korea (Grant 2012-0000473) and NSF CCF-1116210.

7. REFERENCES
[1] ConTest: A tool for testing multi-threaded java

applications. https://www.research.ibm.com/haifa/
projects/verification/contest/.

[2] Our tool, subjects, and the results of the studies.
http://pswlab.kaist.ac.kr/data/issta12.zip.

[3] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur.
Applications of synchronization coverage. In Symp. Princ.
Prac. of Paral. Prog. (PPoPP), 2005.

[4] X. Cai and M. R. Lyu. The effect of code coverage on fault
detection under different testing profiles. In Int’l Works.
Adv. Model-based Test. (A-MOST), pages 1–7, 2005.

[5] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. In Conf. Java
Grande, 2001.

[6] P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: an
extensible active testing framework for concurrent
programs. In Int’l Conf. Comp. Aid. Veri. (CAV), 2009.

[7] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized
dynamic program analysis technique for detecting real
deadlocks. SIGPLAN Not., (6), 2009.

[8] M. Kim, Y. Kim, and G. Rothermel. Scalable distributed
concolic testing approach: An empirical evaluation. In Int’l
Conf. Softw. Test. Verif. Valid. (ICST), 2012.

[9] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform for
Search-Based testing of concurrent software. In Works.
Paral. Dist. Sys. Test. Analy. Debug. (PADTAD), 2010.

[10] Z. Letko, T. Vojnar, and B. Křena. Coverage metrics for
saturation-based and search-based testing of concurrent
software. In Int’l Conf. Run. Veri. (RV), 2011.

[11] S. Lu, W. Jiang, and Y. Zhou. A study of interleaving
coverage criteria. In Euro. Softw. Eng. Conf. Symp. Found.
Softw. Eng. (ESEC/FSE), pages 533–536, 2007.

[12] M. Musuvathi and S. Qadeer. Iterative context bounding
for systematic testing of multithreaded programs.
SIGPLAN Not., (6), June 2007.

[13] A. S. Namin and J. H. Andrews. The influence of size and
coverage on test suite effectiveness. In Int’l Symp. Softw.
Test. Analy. (ISSTA), pages 57–68, 2009.

[14] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. In Int’l Conf. Arch.
Supp. Prog. Lang. Oper. Sys. (ASPLOS), 2009.

[15] P. Piwowarski, M. Ohba, and J. Caruso. Coverage
measurement experience during function test. In Int’l Conf.
Softw. Eng. (ICSE), pages 287–301, 1993.

[16] K. Sen. Race directed random testing of concurrent
programs. In Int’l Conf. Prog. Lang. Desig. Impl. (PLDI),
2008.

[17] E. Sherman, M. B. Dwyer, and S. Elbaum.
Saturation-based testing of concurrent programs. In Euro.
Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/FSE), 2009.

[18] S. D. Stoller. Testing concurrent java programs using
randomized scheduling. In Runt. Veri. Works. (RV), 2002.

[19] E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick,
S. Ur, and E. Farchi. Forcing small models of conditions on
program interleaving for detection of concurrent bugs. In
Par. Dist. Sys. Test. Analy. Debug. (PADTAD), 2009.

[20] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. In Int’l Conf. Softw. Eng.
(ICSE), 2011.

[21] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen.
Directed test suite augmentation: Techniques and tradeoffs.
In Symp. Found. of Softw. Eng (FSE), 2010.

[22] C. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path
coverage for parallel programs. In Int’l Symp. Softw. Test.
Analy. (ISSTA), pages 153–162, 1998.

https://www.research.ibm.com/haifa/projects/verification/contest/
https://www.research.ibm.com/haifa/projects/verification/contest/
http://pswlab.kaist.ac.kr/data/issta12.zip

	Introduction
	Thread Scheduling Technique
	Overview
	Definitions
	Thread Model
	Interleaved Execution Model
	Synchronization Coverage

	Estimation Phase
	Testing Phase

	Empirical Studies
	Experimental Setup
	Implementation
	Subjects
	Variables

	Study 1: Effectiveness
	Study 2: Efficiency
	Study 3: Precision of Estimation
	Study 4: Impact of the Estimation Based Heuristic
	Threats to Validity

	Related Work
	Conclusion and Future Work
	ACKNOWLEDGEMENTS
	References

