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Abstract

Context: The importance of automotive software has been rapidly increasing because software controls many com-
ponents of motor vehicles such as smart-key system, tire pressure monitoring system, and advanced driver assistance
system. Consequently, the automotive industry spends a large amount of human e�ort to test automotive software and
is interested in automated testing techniques to ensure high-quality automotive software with reduced human e�ort.
Objective: Applying automated test generation techniques to automotive software is technically challenging because
of false alarms caused by imprecise test drivers/stubs and lack of tool supports for symbolic analysis of bit-�elds and
function pointers in C. To address such challenges, we have developed an automated testing framework MAESTRO.
Method: MAESTRO automatically builds a test driver and stubs for a target task (i.e., a software unit consisting of
target functions). Then, it generates test inputs to a target task with the test driver and stubs by applying concolic
testing and fuzzing together in an adaptive way. In addition, MAESTRO transforms a target program that uses bit-�elds
into a semantically equivalent one that does not use bit-�elds. Also, MAESTRO supports symbolic function pointers by
identifying the candidate functions of a symbolic function pointer through static analysis.
Results: MAESTRO achieved 94.2% branch coverage and 82.3% MC/DC coverage on the four target modules (238
KLOC) developed by Hyundai Mobis. Furthermore, it signi�cantly reduced the cost of coverage testing by reducing the
manual e�ort for coverage testing by 58.8%.
Conclusion: By applying automated testing techniques, MAESTRO can achieve high test coverage for automotive
software with signi�cantly reduced manual testing e�ort.
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1. Introduction

The automotive industry has developed automotive soft-
ware to control various components in the motor vehi-
cle, such as the body control module (BCM), smart-
key system (SMK), and tire pressure monitoring sys-
tem (TPMS) [1, 2]. As automotive software becomes
larger and more complex with the addition of newly intro-
duced automated features (e.g., automatic parking system
(APRK) of advanced driver assistance system (ADAS))
and more sophisticated functionality (e.g., driving mode
systems) [3, 4], the cost of testing automotive software is
rapidly increasing. Also, it is di�cult for human engineers
to develop test inputs that can ensure high-quality auto-
motive software within tight software development sched-
ules and budgets. To resolve these problems, the automo-
tive industry is trying to apply automated software test-
ing/veri�cation techniques [5, 6, 7, 8] to achieve high code
quality with reduced human e�ort.
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Concolic testing [9] [10] has been applied to automat-
ically generate test inputs for software in various indus-
tries. Concolic testing combines dynamic concrete execu-
tion and static symbolic execution to explore all possible
execution paths of a target program, which can achieve
high code coverage. Concolic testing has been applied
to various industrial projects (e.g., �ash memory device
driver [11], mobile phone software [12, 13], and large-scale
embedded software [14]) and has e�ectively improved the
quality of industrial software by increasing test coverage
and detecting corner-case bugs with modest human e�ort.
Also, fuzzing is starting to show its potential as a general
automated test input generation technique, like concolic
testing, although it had been originally developed to re-
veal security vulnerabilities of target systems.

While we were working to apply automated test gen-
eration techniques to automotive software developed by
Mobis, we observed the following technical challenges that
need to be resolved to successfully apply automated test
generation techniques:

1. We need to generate test drivers and stubs carefully to
achieve high unit test coverage while avoiding gener-
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ating test cases corresponding to the executions that
are not feasible at the system-level. Otherwise (e.g.,
generating naive test drivers and stubs that provide
unconstrained symbolic inputs to every function in a
target program), we will waste human e�ort to man-
ually �lter out infeasible tests that lead to misleading
high coverage and false alarms.

2. Current concolic testing tools do not support symbolic
bit-�elds in C which are frequently used for automo-
tive software.1 For example, automotive software uses
bit-�elds in message packets in the controller area net-
work (CAN) bus to save memory and bus bandwidth.
However, most concolic testing tools do not support
symbolic bit-�elds since a bit-�eld does not have a
memory address (Section 3.4) and most programs run-
ning on PCs rarely use bit-�elds.

3. Although automotive software uses function pointers
to simplify code to dynamically select a function to
execute, current automatic test generation techniques
and tools do not support symbolic setting for function
pointers due to the limitation of SMT (Satis�ability
Modulo Theories) solvers of concolic testing and input
mutation technique of fuzzing.

To address the above challenges, we have developed an
automated testing framework MAESTRO (Mobis Auto-
mated tESTing fRamewOrk). MAESTRO automatically
generates the test driver, stubs, and test inputs for a tar-
get unit using concolic testing and fuzzing. MAESTRO
achieved 94.2% branch coverage and 82.3% MC/DC cov-
erage of the modules of the ADAS (advanced driver as-
sistance system) and IBU (integrated body unit) software
(Section 5.1). Also, MAESTRO reduced the manual test-
ing e�ort by 58.8% for coverage testing of the target mod-
ules of ADAS and IBU (Section 5.3). 2

The main contributions of this paper are as follows:

1. We have developed MAESTRO which automati-
cally generates the test driver, stubs, and test in-
puts achieving high coverage for automotive software.
MAESTRO applies concolic testing and fuzzing to-
gether in an adaptive way (Section 3.5.4) to achieve
high coverage.

2. We have identi�ed the technical challenges in appli-
cations of automated test input generation to au-
tomotive software and describe how MAESTRO re-
solves them (i.e., task-oriented driver/stub genera-
tion (Section 3.3.1), symbolic bit-�eld support (Sec-
tion 3.4), and symbolic setting for function pointers
(Section 3.3.4)). Thus, this paper can support �eld
engineers in the automotive industry to adopt auto-
mated test generation with less trial-and-error.

1A bit-�eld x:m is an integer in a struct variable which has only
m bits. For example, unsigned int x:3 can represent only 0 to 7.

2Several newspapers reported these successful results [15, 16, 17]
(MAIST is the predecessor of MAESTRO).

3. To the authors' best knowledge, this is the �rst in-
dustrial study that concretely demonstrates reduced
human e�ort (i.e., human e�ort reduced by 58.8%)
by applying concolic testing and fuzzing together in
the automotive industry (Section 5.3). Thus, this
study can promote the adoption of concolic testing
and fuzzing in the automotive industry.

4. This paper shares lessons learned and valuable infor-
mation for both �eld engineers in the automotive in-
dustry and researchers who develop automated testing
techniques (Section 6). For example, we have found
that the generation of precise test drivers and stubs is
important to increase test coverage (Section 6.3) and
concolic testing and fuzzing have di�erent character-
istics to achieve test coverage (Section 6.4).

This journal article is an extended version of our prior
automated testing framework MAIST [18] as follows:

1. We have extended MAIST [18] to MAESTRO to achieve
higher test coverage as follows:

(a) MAESTRO uses a hybrid technique of concolic testing
and fuzzing as test input generators (Section 3.5.3 and
Section 3.5.4). The experiment results show that the
hybrid approach achieved higher branch and MC/DC
coverage than concolic testing or fuzzing alone (Sec-
tion 5.7). Also, we have discussed the di�erent charac-
teristics of concolic testing and fuzzing (Section 6.4).

(b) MAESTRO extended MAIST by generating symbolic
stubs that provide more realistic contexts to a tar-
get code unit (Section 3.3.3). The experiment results
show that MAESTRO's new symbolic stub increases
branch and MC/DC coverage (Section 5.8).

2. We have targeted a new module (advanced driver assis-
tance system's automatic parking (APRK)) as well as
the ones in the prior work [18]. APRK is a crucial com-
ponent for safety and it is highly complex, handling mul-
tiple sensors and actuators (Section 2.1 and Section 2.2).

3. With the new adaptive hybrid test input generator
and the precise symbolic stub generation, MAESTRO
achieved 94.2% branch coverage and 82.3%MC/DC cov-
erage for the four target modules. Compared to MAIST,
MAESTRO improved 4.1% branch and 5.8% MC/DC
coverage.

4. We have added new sections, Section 3.4.1 to Sec-
tion 3.4.3, to describe MAESTRO's bit-�eld transfor-
mation algorithms and related examples.

The rest of the paper is organized as follows. Section 2
explains the target project. Section 3 describes the MAE-
STRO framework. Section 4 explains how we have applied
MAESTRO to the target modules. Section 5 describes the
experiment results. Section 6 presents lessons learned from
this industrial study. Section 7 discusses related work. Fi-
nally, Section 8 concludes this paper with future work.
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2. Target Project: Controller Software for Ad-

vanced Driver Assistance System and Inte-

grated Body Unit

2.1. Overview

Advanced Driver Assistance System (ADAS) is a vehicle
monitoring and control system that prevents or reduces
damage of car accidents. ADAS developed by Hyundai
Mobis consists of automatic parking system, driver moni-
toring system which warns a driver in drowsiness, and so
on. We target the automatic parking system (APRK) be-
cause APRK is one of the most complex features in ADAS
and, thus, needs intensive testing. APRK takes informa-
tion from 12 ultra sonic sensors and one camera, and con-
trols the electric stability control system and motor-driven
power steering system to safely park a car.
Integrated body unit (IBU) is the �rst AUTOSAR-

compliant electronic control unit (ECU) developed by Mo-
bis. IBU consists of body control module (BCM), smart
key system (SMK), and tire pressure monitoring system
(TPMS). Mobis has developed more than 10 di�erent ver-
sions of IBUs targeting various motor vehicle models. We
chose the IBU software as our target project because IBU
is essential in driving motor vehicles safely. For example,
the automotive safety integrity level (ASIL) of the han-
dle controller in SMK is D. Mobis spends a considerable
amount of test engineer resource to test the IBU software.

2.2. Target Project Statistics

Table 1 shows the code statistics of APRK, BCM, SMK,
and TPMS modules. 3 The target modules consist of
total 301 source �les and 4,072 functions having 22,513
branches. Maximum and average cyclomatic complexity
of the functions are 24 and 5.3, respectively. Each target
module consists of tasks which are mostly minimal inde-
pendent units. A task t consists of

1. an entry function te which is de�ned as a non-static
function in a target source �le s, and

2. the callee functions that are directly or transitively
invoked by the entry function te and de�ned in the
same source �le s.

The target modules have a total of 909 tasks each of which
has a non-static function as an entry function of a task.
Each source �le contains 3.0 tasks (=909/301) on average.
Each task consists of 5.8 functions on average.

2.3. Challenges for Manual Testing

Manual derivation of test inputs for the target projects
has the following obstacles:

3We have accessed the target modules in the Mobis development
server via approved VPN connection.

01:int rpm_FL,rpm_FR,rpm_RL,rpm_RR;

02:int angle_FL,angle_FR;

03:int press_FL,press_FR,press_RL,press_RR;

04:int mode,dir,speed;

05:void drive_mode_check(){

06: ...

07: if (mode==DRIVE && speed>0 &&

08: ((dir==LEFT && angle_FL<0 && angle_FR<0 &&

09: rpm_FL<=rpm_FR && rpm_RL<=rpm_RR) ||

10: (dir==RIGHT && angle_FL>0 && angle_FR>0 &&

11: rpm_FL>=rpm_FR && rpm_RL>=rpm_RR) ||

12: (dir==STRAIGHT && angle_FL==0 && angle_FR==0 &&

13: rpm_FL==rpm_FR && rpm_RL==rpm_RR)) &&

14: (L_PRESSURE<press_FL && press_FL<H_PRESSURE) &&

15: (L_PRESSURE<press_FR && press_FR<H_PRESSURE) &&

16: (L_PRESSURE<press_RL && press_RL<H_PRESSURE) &&

17: (L_PRESSURE<press_RR && press_RR<H_PRESSURE))

18: {...}}

Figure 1: A code example of BCM that reads a large number of input
variables and evaluates a complex branch condition

1. A large number of input variables: Most functions
of the target projects take a large number of inputs
through parameters and global variables because the
target projects check a various status of a motor ve-
hicle such as speed, wheel angles, tire pressure, etc.

2. Complex branch conditions: The branch conditions of
the target projects are complex in terms of the num-
ber of the logical operators (e.g., &&, ||) used in a
branch condition. This is because the target projects
check complex conditions on complicated status data
obtained from various components of a motor vehicle.

Figure 1 is a code example of BCM that reads a large
number of input variables and evaluates a complex branch
condition. The function drive_mode_check (Lines 5�18)
reads a total of 13 input variables (Lines 1�4) to evaluate
the branch condition which has 24 logical operators (Lines
7�17).
Also, we compare the number of the input variables

and the complexity of the branch conditions of the tar-
get projects with the �ve most popular open-source C
projects in OpenHub [19]: Apache, MySQL, Subversion,
PHP and Bash. 4 Each function of the target projects
has 44.1% larger number of input variables (i.e., 9.8) than
the �ve open-source programs (i.e., 6.8) on average. Simi-
larly, the target projects' branch conditions have 2.1 times
more number (i.e., 2.7) of && and || than the open-source
programs (i.e., 1.3).

2.4. Challenges for Concolic Testing and Fuzzing for the
Target Projects

Achieving high coverage of the target modules is still
challenging for concolic testing and fuzzing for the follow-
ing reasons:

4We exclude Linux Kernel because our Clang-based analysis tool
fails to analyze GCC-speci�c code of Linux Kernel.
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Table 1: The code statistics of the target modules

Module #�les #functions LoC #branches Cyclomatic comp.
non- static total min max avg
static

APRK 47 142 451 593 34292 4655 1 18 4.9
BCM 27 145 511 656 52690 2873 1 15 4.3
SMK 198 554 1967 2521 134877 13768 1 24 5.8
TPMS 29 68 234 302 15951 1217 1 12 4.1

Total 301 909 3163 4072 237810 22513 1 24 5.3

01:#define M_MAX 10

02:int model[M_MAX];

03:void f(int x){

04: ...

05: g(x%M_MAX);}

06:#define TM9 9

07:static void g(int idx){

08: ...

09: for (int i=0;i<idx;i++){

10: // FALSE ALARM

11: if (model[i]==TM9){ ... }

12: ...}}

13:void driver_g(){

14: int param1;

15: SYM_int(param1);

16: g(param1);}

Figure 2: An example of false alarms raised by a naive test driver

2.4.1. Infeasible Unit Test Executions Generated

Concolic testing and fuzzing may generate infeasible
unit test executions (i.e., tests that are not feasible at
system-level) which can report misleading coverage results
and waste human engineers' e�ort in �ltering out false
alarms (e.g., crashes caused by infeasible test executions).
This is because a test driver or stubs may violate the as-
sumptions/preconditions on the inputs of the target unit
which are always satis�ed in the entire system. This prob-
lem of infeasible unit test executions has been discussed in
several papers [20, 21, 22].

Figure 2 is a code example that shows that a naive
function-oriented test driver raises a false alarm. Suppose
that only f invokes g. f calls g with an argument (x %

M_MAX) which is always less than 10 (i.e., Line 11 is always
safe since model has 10 elements (Lines 1�2)). However,
a naive test driver driver_g (Lines 13�16) directly calls g
with a symbolic argument value and raises access out-of-
bound alarms (i.e., false alarms) at Line 11 because idx

can be larger than 10.

2.4.2. No Support for Symbolic Bit-�elds

The target modules use bit-�elds to save memory space
and the controller area network (CAN) bus bandwidth.
The existing concolic testing tools do not support symbolic

01: struct ST{

02: int b0:1;

03: ...

04: int b7:1;};

05: union U{

06: struct ST s;

07: char c;};

08: void f(char c){

09: union U u;

10: u.c=c;

11: if(u.s.b7==1){ // concretized

12: /* not covered */...}}

13: void driver_f(){

14: char param1;

15: SYM_char(param1);

16: f(param1);}

Figure 3: An example showing that the branch at Line 12 is not
covered due to the lack of symbolic bit-�eld support

bit-�eld 5 and may not achieve high coverage of the target
projects because they cannot guide symbolic executions to
cover branches whose conditions depend on bit-�elds.
Figure 3 shows a code example where concolic testing

may not cover the branch at Line 12. This is because
the branching condition depends on a bit-�eld u.s.b7

(Line 11) which cannot have a symbolic value due to the
lack of symbolic bit-�eld support.
One naive solution can be to transform all bit-�elds into

integer variables. However, this approach changes the se-
mantics of a target program when an integer over�ow oc-
curs to a bit-�eld or union is used with bit-�elds. In Fig-
ure 3, union U has two �elds, struct ST s and char c

which are located in the same memory space. Since u.s

and u.c share the same memory space, the assignment of
a value to u.c (Line 10) also updates all bit-�elds b0, ...,
b7 in u.s at the same time. 6 Suppose that we transform
the bit-�elds in struct ST into integer variables. Then,
the assignment of a (symbolic) value to u.c (Line 10) does
not update u.s.b7 because u.s.b7 is not located in the
same memory space of u.c anymore. Consequently, con-

5A concolic testing tool maintains a symbolic memory which maps
a memory address to a corresponding symbolic variable. A concolic
testing tool cannot get a memory address of a bit-�eld because C
does not support to get the address of a bit-�eld.

6The target projects often use this code pattern to update multi-
ple bit-�elds at once.
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colic testing may fail to reach Line 12 because u.s.b7 is
not symbolic.

2.4.3. No support for symbolic function pointers

The target projects use function pointers to make com-
pact code. Current concolic testing and fuzzing tools, how-
ever, do not support symbolic function pointers due to the
limitation of SMT solvers of concolic testing and input
mutation technique of fuzzing. Thus, they fail to cover
branches whose conditions depend on a function pointed
by a function pointer pf (i.e., concolic testing and fuzzing
fail to generate various execution scenarios enforced by as-
signing di�erent functions to pf ).

3. MAESTRO: Mobis Automated Testing Frame-

work

3.1. Overview

Figure 4(a) overviews MAESTRO (Mobis Automated
tESTing fRamewOrk), which takes C source code �les
as inputs. MAESTRO consists of the three components:
test harness generator, converter, and test input generator.
First MAESTRO harness generator analyzes the input C
source �les and generates test driver and stub functions
for every task in the source �les (Section 3.3). MAESTRO
converter transforms the C code that uses bit-�elds into se-
mantically equivalent one that does not use bit-�elds (Sec-
tion 3.4). Finally, MAESTRO test input generator applies
both concolic testing and fuzzing together in an adaptive
way (Section 3.5). MAESTRO uses CROWN (Concolic
testing for Real-wOrld softWare aNalysis) [23] and AFL
(American Fuzzy Lop) [24] as concolic testing and fuzzing
engines to generate test inputs, respectively.

3.2. MAESTRO Implementation

The development team of MAESTRO consists of two
Mobis engineers (one senior and one junior engineer) and
three researchers of KAIST. The team spent �ve months
to implement MAESTRO. MAESTRO test harness gener-
ator is implemented in 4,100 lines of code (LoC) in C++
using Clang/LLVM 4.0 [25]. MAESTRO converter is im-
plemented in 1,100 LoC in OCaml using CIL 1.7.3 [26].
We chose CIL for MAESTRO bit-�eld transformer be-
cause the canonical C code generated by CIL makes the
algorithm and implementation of the bit-�eld transformer
easy. MAESTRO test input generator is implemented in
350 LoC in Bash shell script. MAESTRO test input gener-
ator uses CROWN [23] and AFL [24] as concolic input gen-
erator and fuzzing input generator, respectively. We use
CROWN as the concolic input generator because CROWN
(and its predecessor CREST) has been successfully ap-
plied to various industrial projects (Section 7.3) and two
of the authors are involved in developing CROWN. We use
AFL as the fuzzing input generator because AFL is widely
known to be e�ective for detecting crash bugs.

3.3. MAESTRO Test Harness Generator

3.3.1. Task-Oriented Driver and Stub

Figure 4(b) shows an example of generating test drivers
and stubs for two tasks t1 and t2. Suppose that a tar-
get program p consists of file1.c and file2.c. file1.c
has two non-static functions f and g and four static func-
tions s1 to s4. t1 consists of the entry function f and
its callee functions s1, s2 and s3 de�ned in the same �le
(i.e., file1.c). The function h invoked by s3 is not in-
cluded in t1 because h is de�ned in another source �le
(i.e., file2.c). Similarly, t2 consists of the entry function
g and its callee function s4. MAESTRO targets a task t
as a testing target unit and generates a test driver (Sec-
tion 3.3.2) to invoke a task entry function te and symbolic
stubs (Section 3.3.3) to replace the callee functions of the
task t located in other source �les.

3.3.2. Automated Generation of Test Drivers

MAESTRO automatically generates a test driver that
invokes the entry function te of each task. The test driver
assigns symbolic values to the arguments of te and to the
global variables used in the task t for concolic testing and
fuzzing, and invokes te.
In Figure 4(b), MAESTRO generates harness_file1.c

that contains test drivers and a stub function for t1 and
t2 in file1.c. driver_f and driver_g are test driver
functions that call the entry functions f and g of t1 and
t2, respectively. s3 in t1 invokes h which is not de�ned
in file1.c. Thus, MAESTRO generates a stub func-
tion stub_h in harness_file1.c and modi�es s3 to call
stub_h instead of h.
MAESTRO speci�es a variable as a symbolic input ac-

cording to its type as follows:

� Primitive types: MAESTRO speci�es a primitive
variable x as a symbolic input by using SYM_<T>(x)

where <T> is a type of x.

� Array types: MAESTRO speci�es each array element
as a symbolic input according to the type of the ele-
ment.

� Pointer types: For a pointer p pointing to a mem-
ory of a type T, MAESTRO allocates memory in
sizeof(T)*n bytes where n is a user-given bound (i.e.,
MAESTRO considers p to point to an array which has
n elements and whose element type is T).

� Structure types: For a struct variable s, MAESTRO
speci�es each �eld of s as a symbolic input according
to the �eld type recursively. To prevent in�nite recur-
sive dereferences (e.g., a linked list forming a cycle),
MAESTRO follows a pointer to s within a user-given
bound k and assigns NULL to a pointer that is not
reachable within the bound.

� Bit-�eld types: MAESTRO speci�es a bit-�eld b as a
symbolic input by using SYM_bitfield(b).
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Figure 4: MAESTRO framework

Figure 5 shows an example of unit test driver code gen-
erated. 7 Node (lines 1-4) represents a node of a linked list
which contains a character value and a pointer to its adja-
cent node. The target unit function is add_last(v)(lines
7-10) which takes a character v as an input param-
eter and adds a new node containing v to the end
of the global linked list whose head is head (line 5).
test_add_last()(lines 12-20) is the test driver code gen-
erated for add_last().

The generated driver sets all global variables used by
the target unit as symbolic inputs. Since the target unit
add_last() uses head, the driver allocates appropriate
memory space to head (line 14). Next, the driver declares
all �elds of the structure pointed by head as symbolic vari-
ables. Suppose that a user-given bound k for a pointer to a
structure variable is 1. The driver sets head->c as a sym-
bolic character variable (line 15) and head->next as an
address of memory obtained by malloc(_Node) (Line 16).
Then, it sets head->next->c as symbolic (Line 17) and
head->next->next as Null (since k = 1) (Line 18).

After the driver �nishes setting symbolic global vari-
ables, the driver declares function parameters symbolically
(line 19). After the driver �nishes symbolic input setting,
it invokes the target unit function with the symbolic pa-
rameters (line 20).

3.3.3. Symbolic Stub Generation

A baseline symbolic stub simply returns a symbolic
value according to the return type of the symbolic stub.
Thus, baseline symbolic stubs do not represent a target
task's context accurately because the stub functions do
not set global variables nor output parameter variables as
symbolic inputs. Thus, such imprecise stubs may prohibit
concolic testing from achieving high test coverage 8

7The most part of the example is excerpted from Kim et al. [14].
8These baseline symbolic stubs were used by MAIST [18] (the

predecessor of MAESTRO).

01:typedef struct _Node {

02: char c;

03: struct _Node *next;

04:} Node;

05:Node *head;

06:// Target unit-under-test

07:void add_last(char v){

08: // add a new node containing v

09: // to the end of the linked list

10: ...}

11:// Test driver for the target unit

12:void test_add_last(){

13: char v1;

14: head = malloc(sizeof(Node));

15: SYM_char(head->c);

16: head->next = malloc(sizeof(_Node));

17: SYM_char(head->next->c);

18: head->next->next=NULL;

19: SYM_char(v1);

20: add_last(v1); }

Figure 5: An example of an automatically generated unit test driver

To increase test coverage, we have developed a new sym-
bolic stub generation strategy for MAESTRO. The sym-
bolic stubs generated by MAESTRO set not only the re-
turn value of the stub, but also the global variables and
output parameters (e.g., pointer parameters that point to
the memory locations modi�ed/updated by the function)
that can be updated by the function replaced by the sym-
bolic stub as symbolic inputs. Suppose that the function
g invoked by the function f in a target task is replaced by
a symbolic stub. MAESTRO identi�es all global variables
and output parameters of g which are modi�ed/updated
by g and its callee functions 9. Then, the symbolic stub

9MAESTRO ignores the variable updates through pointers due
to the low precision of the static pointer analysis.
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Figure 6: Example of symbolic setting for function pointer pChk

of g sets the return value, the output parameters, and the
global variables updated by g and its callee functions as
symbolic variables. Thus, the symbolic stubs generated by
MAESTRO represents a target task's context more accu-
rately than the baseline symbolic stubs.

3.3.4. Symbolic Setting for Function Pointers

MAESTRO generates a test driver which assigns various
functions to a function pointer pf used in a target task.
First, MAESTRO statically examines all target source �les
and identi�es functions f1, ...fn that are assigned to pf .
Then, it adds code cpf

to a test driver such that cpf
assigns

each of f1, ..., fn to pf using a symbolic variable choice
which selects each of f1, ..., fn to assign to pf .
For example, Figure 6 has do_chk (Lines 8�13) which

has branches whose conditions depend on ret (Lines 11�
13). ret value is determined by the return value of the
function pointed to by pChk (Line 10). After MAESTRO
identi�es that pChk may point to chk_A or chk_B at Line
5 or Line 7 respectively, it adds code cpf

to a test driver
drv_do_chk which assigns chk_A and chk_B to pChk de-
pending on a symbolic variable choice (Lines 25�31), as
shown in the right part of Figure 6.

3.3.5. Test Driver Generation for a Task with Internal
States

Several functions in the target modules use static lo-
cal variables to keep the execution results of the previous
invocation as its internal state. For a task containing such
a function, MAESTRO generates a test driver to call a
target task multiple times with fresh symbolic inputs.

3.4. MAESTRO Converter

Automotive software uses bit-�elds to minimize the data
size. Unlike other primitive types in C which occupy mul-
tiples of 8 bits, the size of a bit-�eld does not have to be in
multiples of 8 bits and can be smaller than 8. Currently,
concolic testing tools for C programs such as CREST [27],
CUTE [9], KLEE [28], and PathCrawler [29] do not sup-
port symbolic declaration of bit-�elds and fail to achieve
high coverage of automotive software that uses bit-�elds
(Section 2.4.2).

To solve this problem, MAESTRO transforms a target
program p into p′ that is semantically equivalent to p but
does not use bit-�elds. In other words, MAESTRO re-
places bit-�elds with a data array of a byte type and also
replaces all arithmetic expressions on the bit-�elds with
semantically equivalent ones without the bit-�elds using
the data array with bit-wise operators.
Bit-�eld conversion algorithm consists of the three sub-

algorithms: struct transformation (Algorithm 1), bit-
�eld read expression transformation (Algorithm 2), and
bit-�eld write statement transformation (Algorithm 3).
For example, the bit-�eld conversion algorithm trans-

forms the following original program P with struct S (in
Figure 7) into P ′ as shown in Figure 8:

� struct S (Lines 1�4) in P is converted to struct

S_nb (Lines 21�24) in P ′ that is equivalent to struct

S but does not have a bit-�eld (see Section 3.4.1).

� A statement reading a bit-�eld s.z (Lines 11) in P is
converted to Lines 31�33 in P ′ (see Section 3.4.2).

� A statement writing a bit-�eld s.z (Lines 13) in P is
converted to Lines 35�42 iin P ′ (see Section 3.4.3).

3.4.1. struct Transformation

Algorithm 1 takes a struct de�nition Sb that contains
bit-�elds and generates

� a transformed struct de�nition Snb that does not
contain bit-�elds, and

� mapBFtoBA which maps a bit-�eld of Sb to its bit
location in the corresponding bit-array in Snb which
contains transformed bit-�eld data

Snb may have multiple bit-arrays (e.g., ba0, ba1, ...). Note
that each bit-array in Snb has bit-wisely identical contents
to the bit-�elds in Sb. This bit-wisely identical transfor-
mation is important since, without the bit-wisely identical
transformation, the transformed program P ′ may behave
di�erently from the original program P (due to the com-
plex low-level padding and align rules of C, P ′ can behave
di�erently from P that uses union and/or sizeof).
We explain Algorithm 1 with an example of struct

S in Figure 7 as follows. struct S has one char �eld
(char x), and two bit-�elds (int y:5 and int z:18).
transformStruct(Sb) in Algorithm 1 takes struct S as
an input and returns the transformed struct S_nb and
a map from a bit-�eld (i.e., int y:5 and int z:18) in
struct S to its bit location in the bit-array ba0 in struct

S_nb.

1. The algorithm �rst initializes the following variables as
zero and empty set at Lines 2�5:.

� curByteSize:a current size of Snb in byte.

� curBitSizeba:a current bit-size of a bit array ba<iba>
�eld in Snb.

7



Figure 7: An example struct for the bit-�eld transformation algorithm

// Original program P // Tranformed program P'

01:struct S{ 21:struct S_nb{

02: char x; 22: char x;

03: int y:5; 23: unsinged char ba0[3];

04: int z:18;}; 24:};

05: 25:

06:S s; 26:S_sb s;

07: 27:

08:int main() { 28:int main() {

09: int n, e=10; 29: int n, e=10;

10: 30:

11: n = s.z + 1; 31: n=((((s.ba0[2]&127)<<16)

12: 32: |(s.ba0[1]<<8)

13: s.z = e; 33: |s.ba0[0]) >> 5) + 1;

14:} 34:

35: s.ba0[2]=

36: ((((e)<<5)>>(2*8))&127)

37: |(s.ba0[2]&128);

38: s.ba0[1]=

39: (((e)<<5)>>(1*8))&255;

40: s.ba0[0]=

41: (((e)<<5)&224)

42: |(s.ba0[0]&31); }

Figure 8: An example to show bit-�eld transformation

� mapBFtoBA:a map from a bit-�eld to the bit-
location in the corresponding bit-array ba<iba>.

� iba:a number of the generated bit-arrays so far.

2. The loop at Lines 6�20 transforms �eld de�nitions in Sb

into those in Snb one by one.

(a) The �rst iteration:field0 (i.e., the �rst �eld of Sb) is
x which is not a bit-�eld. If the �eld is not a bit-�eld,
the algorithm simply appends the �eld to Snb at Line

17 and increases the current byte size of Snb by the
added �eld's byte size (and padding size if necessary)
at Line 18. In this example, curByteSize is increased
by one (=the size of x).

(b) The second iteration:field1 (i.e., the second �eld of
Sb) is y:5 and the algorithm takes then branch at
Lines 8�15.

i. The algorithm computes paddingBitSize to align
a bit-�eld in a bit-array (i.e., ba0) that will contain
the bit-�eld (i.e., y:5) at Line 8. paddingBitSize is
zero because y does not break the align of its type
(i.e., int).

ii. Then, the mapping information from field1 to its
corresponding bit location in ba<iba> is added
to mapBFtoBA at Line 9. field1 (i.e., y:5) is
mapped to a tuple <iba = 0, posl = 0, bitSize = 5>
(i.e., y:5 ranges from the �rst (i.e., posl) bit to the
�fth bit (i.e., posl + bitSize) of ba0).

iii. bitSizeba is increased by the �eld's bit size (and
the bit size of the padding if necessary) at Line 10.
bitSizeba is increased by �ve because field1 is 5-
bit-long and the padding size is zero.

iv. If the current �eld fieldi is the last �eld of Sb or
fieldi+1 is not a bit-�eld, the algorithm completes
generating a corresponding bit-array and adds it
to Snb (the then branch at Lines 12�15). In this
example, since field1 is not the last �eld and field2
is also a bit-�eld, the algorithm does not take the
then branch.

(c) The third iteration:field3 is z:18 and the algorithm
takes then branch at Lines 8�15.

i. The algorithm computes paddingBitSize to com-
pute how many bits are necessary to add as padding

8



Algorithm 1: struct transformation algorithm

Input: Sb:A struct that contains bit-�elds.
Output: Snb:A transformed struct de�nition that does not contain bit-�elds. mapBFtoBA:A map from a

bit-�eld of Sb to its bit location in the corresponding `bit-array'.

1 transformStruct(Sb) {
2 curByteSize=0;//a current size of Snb in byte
3 curBitSizeba=0;//a current bit-size of a bit array ba<iba> �eld in Snb.
4 mapBFtoBA = ∅;//a map from a bit-�eld to the bit-location in the corresponding bit-array
5 iba = 0;//the number of generated `bit-array' so far.
6 for i = 0; i < the number of �elds in Sb; i++ do

7 if fieldi is a bit-�eld then

8 paddingBitSize=getPaddingBitSize(fieldi, curBitSizeba, curByteSize);
9 mapBFtoBA.add(fieldi, <iba, curBitSizeba+paddingBitSize, fieldi.bitSize>);

10 bitSizeba += fieldi.bitSize + paddingBitSize;
11 if fieldi is the last �eld of Sb or fieldi+1 is not a bit-�eld then

12 appendBitArray(Snb, iba, bitSizeba);//Add ba<iba> �eld (e.g., ba0, ba1, ... ) to Snb

13 curBitSizeba = 0;
14 iba ++;

15 end

16 else

17 appendField(Snb, fieldi.name , fieldi.type);
18 curByteSize+=fieldi.byteSize+getPaddingByteSize(fieldi, Snb.byteSize);

19 end

20 end

21 if curByteSize < byteSize(Sb) then
22 // Add a new padding variable
23 appendPaddingVar(Snb, byteSize(Sb) - curByteSize);

24 end

25 return Snb and mapBFtoBA;
26 }
27 getPaddingBitSize(bitF ield, curBitSizeba, curByteSize) {
28 //Compute the padding size to align bitF ield variable according to its type
29 paddingBitSize = bitF ield.typeSize ∗ 8− ((curBitSizeba + curByteSize ∗ 8) % (bitF ield.typeSize ∗ 8));
30 if bitF ield.bitSize > paddingBitSize then
31 return paddingBitSize;
32 else

33 return 0;
34 end

35 }
36 getPaddingByteSize(field, curByteSize) {
37 paddingByteSize = field.typeSize - (curByteSize % field.typeSize);
38 if field.typeSize > paddingByteSize then
39 return paddingByteSize;
40 else

41 return 0;
42 end

43 }

in bit-array at Line 8. paddingBitSize is zero be-
cause z does not break the align of its type (int)
(i.e., the three �elds x, y , and z can be stored
within the four bytes (i.e., the size of int type)).

ii. Then, the mapping information from field2 to its
corresponding bit location in ba<iba> is added to

mapBFtoBA at Line 9. field2 is mapped to a tuple
<0,5,18>. This means that field2 is located in a
bit-array ba0, the starting bit location of field1 in
ba0 is 5, and the size of field2 is 18 bits.

iii. bitSizeba is increased by the sum of �eld's bit size
and padding's bit size at Line 10. bitSizeba is in-
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creased by 18 because field2 (z) is 18-bit-long and
padding size is zero.

iv. Since field2 is the last �eld in Sb, the algorithm
takes then branch at Lines 12�15.

A. The algorithm appends the bit-array ba0 that
contains bit-�elds y:5 and z:18 into Snb at Line
12.

B. It initializes curBitSizeba to zero to prepare for
the next bit-array at Line 13.

C. It increases iba (i.e., the number of generated bit-
array so far) by one.

(d) The loop terminates because all three �elds in Sb are
transformed.

3. After the loop at Lines 6�20 terminates, if the current
size of Snb (i.e., curByteSize) is less than the size of
Sb (i.e., byteSize(Sb)) (Line 21), the algorithm adds
padding to Snb (taking the then branch at Lines 22�
24). Since the size of struct S_nb is equal to that of
struct S, the algorithm does not take the then branch
at Lines 22-24.

4. Finally, the algorithm returns the transformed struct

Snb and mapBFtoBA ({y→<0,0,5>,z→<0,5,18>}) at
Line 25.

3.4.2. Bit-�eld Read Expression Transformation

Algorithm 2 takes the bit-�eld vbf (e.g., S.z) to read and
a map mapBFtoBA (e.g., {y→<0,0,5>,z→<0,5,18>})
as inputs and returns the transformed expression on vbf
whose value is the same as vbf . Suppose that a tar-
get program has n = S.z + 1 (where S.z is 18 bits
long bit-�eld in Figure 7). The algorithm transforms
S.z of n = S.z + 1 into (((S_nb.ba0[2]&127)<<16)|
(S_nb.ba0[1]<<8)|S_nb.ba0[0])>>5 as follows.

1. The algorithm initializes the variables at Lines 3�10.

� iba, posl and bitSize are set using the input
mapBFtoBA.

� iba:an index variable to the bit-array in which vbf
is included (i.e., ba<iba>). iba is obtained from
mapBFtoBA.get(vbf ). For vbf=S.z, iba is 0.

� posl:the starting bit position of vbf in ba<iba>.
posl is obtained from mapBFtoBA.get(vbf ). For
vbf=S.z, posl is 5.

� bitSize:the size of vbf in bit. bitSize is obtained
from mapBFtoBA.get(vbf ). For vbf=S.z, bitSize
is 18.

� posh:the ending bit position of vbf in ba<iba>. posh
is set as posl + bitSize - 1. For vbf=S.z, posh is 22
(5+18-1).

� ba:the variable name (i.e., string) of ibath bit ar-
ray ba<iba> �eld in a string type (i.e., S_nb.ba0,
S_nb.ba1, ...). For vbf=S.z, ba is S_nb.ba0.

� locBytel:the lowest byte address of vbf in ba<iba>.
locBytel is set as bposl/8c. For vbf=S.z, locBytel is
0.

� locByteh:the highest byte address of vbf in ba<iba>.
locByteh is set as bposh/8c. For vbf=S.z, locByteh
is 2.

� locBitl:the beginning bit o�set of vbf in
ba<iba>[locBytel]. locBitl is set as posl % 8.
For vbf=S.z, locBitl is 5.

� locBith:the ending bit o�set of vbf in
ba<iba>[locByteh]. locBith is set as posh %
8. For vbf=S.z, locBith is 6.

� bitMask:a bit mask used to extract speci�c bits from
data. bitMask is initialized as zero.

2. If locBytel is the same as locByteh, the algorithm takes
the then branch at Lines 12�14. Otherwise, it takes
the else branch at Lines 15�21. For S.z, it takes the
else branch because locBytel and locByteh are 0 and
2, respectively.

(a) The algorithm sets exp to represent data in the lowest
byte of vbf at Line 15. For vbf=S.z, exp becomes
S_nb.ba0[0]

(b) The loop at Lines 16�18 generates the C expression
that represents data between the lowest byte and the
highest byte of vbf in ba<iba>.

i. At the �rst iteration of the loop (i.e., i is 1),
the algorithm adds the C expressions to exp
to represent the data of ith byte of vbf in
ba<iba> at Line 17. For vbf=S.z, exp becomes
(S_nb.ba0[1]<<8)|S_nb.ba0[0].

ii. After the �rst iteration, the loop terminates.

(c) The algorithm sets bitMask at Line 19 to extract
0th to locBith bits of the highest byte of vbf . For
vbf=S.z, bitMask is set as 127 (0b01111111 in a bi-
nary representation) to extract the lower seven bits of
the highest byte (i.e., S_nb.ba0[2]).

(d) It adds the C expression that represents data in
the highest byte of vbf at Line 20. After Line
20, exp becomes ((S_nb.ba0[2] & 127)<<16) |

(S_nb.ba0[1]<<8)|S_nb.ba0[0]

3. It adds the C expression that performs right-shift
locBitl times to exp at Line 22. For vbf=S.z,
exp becomes (((S_nb.ba0[2] & 127)<<16)|
(S_nb.ba0[1]<<8)|S_nb.ba0[0])>>5.

4. It returns exp, which is the transformed expression
whose value is equal to vbf (i.e., S.z) at Line 22.

3.4.3. Bit-�eld Write Statement Transformation

Algorithm 3 takes the assignment statement stmtassign
(e.g., S.z=e) in which a bit-�eld is on the left-hand side
(LHS) and a map mapBFtoBA (e.g., {y → <0,0,5>,z
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Algorithm 2: Bit-�eld read expression transformation algorithm

Input: vbf : a bit-�eld to read (e.g., S.f1), mapBFtoBA: a map from a bit-�eld to its bit location in the
corresponding bit-array.

Output: exp: a transformed expression of the bit-�eld which is evaluated to the same value of vbf .

1 transformReadExp(vbf ,mapBFtoBA) {
2 // iba:vbf is included in ba<iba>, posl:the starting bit position of vbf in ba<iba>, bitSize:the size of vbf in bit
3 <iba, posl, bitSize> = mapBFtoBA.get(vbf );
4 posh = posl + bitSize - 1;//the ending bit position of vbf in ba<iba>
5 ba = the variable name (i.e., string) of ibath bit array ba<iba> �eld in a string type; // e.g., �ba0�, �ba1�, ...
6 locBytel = bposl/8c;//the lowest byte address of vbf in ba<iba>
7 locByteh = bposh/8c;//the highest byte address of vbf in ba<iba>
8 locBitl = posl % 8;//the beginning bit o�set of vbf in the lowest byte of ba<iba>
9 locBith = posh % 8;//the ending bit o�set of vbf in the highest byte of ba<iba>
10 bitMask = 0 ;
11 if locBytel == locByteh then
12 setBits(bitMask, locBitl, locBith, 1);
13 exp = ba[locBytel] & bitMask;

14 else

15 exp = ba[locBytel] ;
16 for i = 1; i < locByteh − locBytel; i++ do

17 exp = (ba[i+ locBytel] << 8 ∗ i)|exp ;
18 end

19 setBits(bitMask, 0, locBith, 1);
20 exp = ((ba[locByteh] & bitMask) << 8 ∗ (locByteh − locBytel))|exp ;

21 end

22 exp = (exp) >>locBitl;
23 return exp;
24 }
25 //Set var's fromth to toth bits to bitV al. The bit index starts from 0.
26 setBits(var, from, to, bitV al) {...}

→ <0,5,18>}) as inputs. Then, it returns the compound
statement consisting of the transformed assignment state-
ments that do not use a bit-�eld, which is equivalent to
stmtassign.

We assume that all bit-�eld writes are canonicalized to
the assignment statements that do not have a side-e�ect.
MAESTRO uses CIL [26] to obtain the canonicalized C
code without side-e�ect. Suppose that a target program
has S.z=e (where S.z is 18 bits long bit-�eld in Figure 7
and e is a C expression (e.g., S.x+3)). The algorithm
transforms S.z=e into the below code as follows:

S_nb.ba0 [2]=((((e) <<5) >>(2*8))&127)
|(S_nb.ba0 [2]&128);

S_nb.ba0 [1]=(((e) <<5) >>(1*8))&255;
S_nb.ba0 [0]=(((e) <<5)&224) |(S_nb.ba0

[0]&31);

1. The algorithm �rst sets the following variables at Lines
2�12.

� vbf :the bit-�eld in LHS of stmtassign. For stmtassign
(i.e., S.z=e;), vbf is S.z.

� expRHS is RHS of stmtassign with parentheses. For
stmtassign (i.e., S.z=e;), expRHS is (e).

� The algorithm sets the variables from iba at Line 5 to
bitMask at Line 12 in the same way as Algorithm 2
does.

2. If locBytel is equal to locByteh, the algorithm takes the
then branch at Lines 14-18. Otherwise, the algorithm
takes the else branch at Lines 19-32. For stmtassign
(i.e., S.z=e;), the algorithm takes the else branch be-
cause locBytel and locByteh are 0 and 2, respectively.

(a) The algorithm sets bitMask at Line 19 to extract
locBitlth to the seventh bits of expRHS << locBitl.
For stmtassign (i.e., S.z=e;), bitMask is set as
224 (0b11100000 in a binary representation) because
locBitl is 5.

(b) It sets expchangedBits that represents the updated bits
of the lowest byte of ba<iba> that corresponds to vbf .
After Line 20, expchangedBits becomes ((e)<<5) &

224.

(c) It sets expunchangedBitgs that represents the remaining
unchanged bits of the lowest byte of ba<iba> that
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Algorithm 3: Bit-�eld write statement transformation algorithm

Input: stmtassign: A bit-�eld assignment statement (a bit-�eld on the left-hand side (LHS) and an expression on
the right-hand side (RHS) (e.g., S.z=e;). mapBFtoBA: a map from a bit-�eld to its bit location in the
corresponding bit-array.

Output:

stmttrans: A compound statement consisting of the transformed assignment statements that do not use a
bit-�eld, which is equivalent to stmtassign.

1 transformWriteStmt(stmtassign,mapBFtoBA) {
2 vbf = the bit-�eld in LHS of stmtassign; // e.g., S.z in S.z=e;
3 expRHS = RHS of stmtassign with parentheses; // e.g., (e) in S.z=e;
4 // iba: vbf is included in ba<iba>, posl: the starting bit position of vbf in ba<iba>, bitSize: the size of vbf in bit
5 <iba, posl, bitSize> = mapBFtoBA.get(vbf );
6 posh = posl + bitSize - 1; // the ending bit position of vbf in ba<iba>
7 ba = the variable name (i.e., string) of ibath bit array ba<iba> �eld in a string type; // e.g., �ba0�, �ba1�, ...
8 locBytel = bposl/8c; // the lowest byte address of vbf in ba<iba>
9 locByteh = bposh/8c; // the highest byte address of vbf in ba<iba>
10 locBitl = posl % 8; // the beginning bit o�set of vbf in the lowest byte of ba<iba>
11 locBith = posh % 8; // the ending bit o�set of vbf in the highest byte of ba<iba>
12 bitMask = 0 ;
13 if locBytel == locByteh then
14 setBits(bitMask, locBitl, locBith, 1);
15 expchangedBits = (expRHS << locBitl) & bitMask ;
16 expunchangedBits = ba[locBytel] & ˜bitMask;
17 stmttrans = ba[locBytel] = (expchangedBits)|(expunchangedBits) ;

18 else

19 setBits(bitMask, locBitl, 7, 1);
20 expchangedBits = (expRHS << locBitl) & bitMask;
21 expunchangedBits = ba[locBytel] & ˜bitMask);
22 stmttrans = ba[locBytel] = (expchangedBits)|(expunchangedBits);
23 for i = 1; i < locByteh − locBytel; i++ do

24 expdataByte = extractBits(expRHS << locBitl, i ∗ 8, i ∗ 8 + 7);
25 stmttrans = ba[i+ locBytel] = (expdataByte);stmttrans;

26 end

27 bitMask = 0 ;
28 setBits(bitMask, 0, locBith, 1);
29 expchangedBits = extractBits(expRHS << locBitl, (locByteh−locBytel)∗8, (locByteh−locBytel)∗8+locBith)

& bitMask;
30 expunchangedBits = ba[locByteh & ˜bitMask;
31 stmttrans = ba[locByteh] = (expchangedBits)|(expunchangedBits);stmttrans;

32 end

33 return stmttrans;
34 }
35 // Return a string converted from an integer value num
36 str(num) {...}
37 //Set var's fromth to toth bits to bitV al. The bit index starts from 0.
38 setBits(var, from, to, bitV al) {...}
39 // Return var's fromth to toth bits. The bit index starts from 0.
40 extractBits(num, from, to) {...}

corresponds to vbf . After Line 21, expunchangedBits

becomes S_nb.ba0[0] & 31 (31 is 0b00011111).

(d) It sets stmtresults to assigns the RHS to the low-
est byte of ba<iba> that corresponds to vbf us-
ing expchangedBits and expunchangedBits. After

Line 22, stmttrans becomes a string S_nb.ba0[0] =

(((e)<<5)&224)|(S_nb.ba0[0]&31);

(e) The loop at Lines 23�26 generates the C state-
ment that assigns the RHS to the byte loca-
tions between the lowest byte and the highest byte
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of ba<iba> that corresponds to vbf . For i =
1, ..., locByteh − locBytel − 1 which is an index to
the byte of ba<iba> to update , the algorithm gen-
erates the C statement that assigns ith byte data
of expRHS << locBitl (i.e., (((e)<<5)>>(i*8))
& 255 for stmtassign (i.e., S.z=e;)) to ba<iba>
[i + locBytel] (i.e., S_nb.ba0[i] for stmtassign (i.e.,
S.z=e;) ) at Line 24.

i. At the �rst iteration of the loop (i.e., i is 1), the
algorithm adds the new transformed C statement
to stmttrans where the new C statement assigns the
�rst byte data of expRHS << locBitl to ba<iba>
[1 + locBytel] .

A. The algorithm extracts the �rst byte data of
expRHS << locBitl (i.e., (((e)<<5)>>(1*8))
& 255 for stmtassign (i.e., S.z=e;)) at Line
24. After line 24, expdataByte becomes
(((e)<<5)>>(1*8)) & 255.

B. The algorithm adds the new transformed
C statement to stmttrans where the new
C statement assigns expdataByte (i.e.,
(((e)<<5)>>(1*8))&255 for stmtassign
(i.e., S.z=e;)) to ba<iba>[1 + locBytel] (i.e.,
S_nb.ba0[1] for stmtassign (i.e., S.z=e;)) at
Line 25. After Line 25, stmttrans becomes the
below code.

S_nb.ba0 [1]=(((e) <<5)>>(1*8)) &

255;

S_nb.ba0 [0]=(((e) <<5) & 224)|

(S_nb.ba0[0] & 31);

ii. After the �rst iteration, the loop terminates.

(f) The algorithm sets bitMask to extract 0th to
locBithth bits of the highest byte of expRHS <<
locBitl at Lines 27�28. For stmtassign (i.e., S.z=e;),
bitMask is set as 127 (0b01111111) because locBith
is 6.

(g) It sets expchangedBits that represents the updated bits
of the highest byte of ba<iba> that corresponds to vbf
at Line 29. After Line 29 is executed, expchangedBits

becomes (((e)<<5)>>(2*8)) & 127.

(h) It sets expunchangedBitgs that represents the remaining
unchanged bits of the highest byte of ba<iba> that
corresponds to vbf at Line 30. After Line 30 is exe-
cuted, expunchangedBits becomes S_nb.ba0[2] & 128

(128 is 0b10000000).

(i) It sets stmttrans that assigns the RHS to the high-
est byte of ba<iba> that corresponds to vbf using
expchangedBits and expunchangedBits at Line 31. Af-
ter Line 31 is executed, stmttrans becomes the below
code

S_nb.ba0 [2]=((((e) <<5) >>(2*8))&127)
|(S_nb.ba0 [2]&128);

S_nb.ba0 [1]=(((e) <<5) >>(1*8))&255;

S_nb.ba0 [0]=(((e) <<5)&224)
|(S_nb.ba0 [0]&31);

3. The algorithm returns stmtresults, which is equivalent
to stmtassign (i.e., S.z=e;) at Line 33.

3.5. MAESTRO Input Generator

MAESTRO input generator utilizes concolic testing
(Section 3.5.2) and fuzzing (Section 3.5.3) together in an
adaptive way (Section 3.5.4) to achieve high test coverage.

3.5.1. Input File Format of MAESTRO

The test input �le of MAESTRO consists of the type and
value of input variables in a text format. The odd lines
and even lines of the test input �le represent the type and
the value of the input variables, respectively.

3.5.2. Concolic Input Generator

MAESTRO's concolic input generator utilizes various
symbolic search strategies to increase test coverage. Al-
though there are dozens of symbolic search strategies [30]
to increase coverage within a given time budget, no single
strategy outperforms all others because they are heuristics
by their nature. MAESTRO's concolic input generator
utilizes the four search strategies (i.e., depth-�rst-search
(DFS), reverse-DFS, random negation, and control-�ow-
graph based search (CFG)) to increase test coverage and
reduce execution time. MAESTRO's concolic input gener-
ator applies DFS as the �rst search strategy to explore all
possible paths. This is because DFS stops concolic test-
ing when it has explored all possible execution paths. If
DFS has explored all possible execution paths, MAESTRO
stops concolic testing for the target task. Otherwise, the
concolic input generator applies reverse-DFS and random
negation. Lastly, MAESTRO's concolic input generator
applies CFG to the remaining uncovered branches where
CFG tries to guide concolic testing to reach the uncovered
branches [27].

3.5.3. Fuzzing Input Generator

MAESTRO has two fuzzing input generators - baseline
fuzzing and type-information preserving fuzzing. The base-
line fuzzing takes the input �le (Section 3.5.1) as a seed
input and mutates the input �le without considering the
input �le format of MAESTRO. Thus, the baseline fuzzing
not only mutates the value of the input variables, but also
changes the type of input variables. Also, the baseline
fuzzing can change the number of input variables by mu-
tating the newline (\n) character. As a result, the baseline
fuzzing can generate a large number of invalid test inputs
each of which has a di�erent number of input values from
the ones accepted by the target program.
To reduce the invalid input generation, we have devel-

oped the type-information preserving fuzzing. The type-
information preserving fuzzing does not change the type-
information of the input variables nor the number of the
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input variables. To do so, type-information preserving
fuzzing �rst separates the type-information from the values
of the input variables in the input �le. Then, it mutates
only the values of the input variables.

3.5.4. Hybrid Input Generator

Simple Hybrid Input Generator. The simple hybrid input
generator runs concolic testing for the �rst half of the exe-
cution time (i.e., for 50% of the timeout (Section 4.4)) and
then runs the type-information preserving fuzzing (we sim-
ply call it `fuzzing' in this sub-section) for the remaining
half of the execution time. For concolic testing, MAE-
STRO applies the four search strategies (Section 3.5.2)
each of which runs one fourth of a given time to concolic
testing. After concolic testing phase �nishes, MAESTRO
runs fuzzing with the test inputs generated by the concolic
input generator as seed tests for fuzzing. MAESTRO's
simple hybrid input generator runs concolic testing �rst
and then fuzzing because it is di�cult for concolic testing
to use the large number of test inputs generated by fuzzing
as seed inputs within a short time (e.g., 2.5 (=10/4) min-
utes for each concolic testing strategy in our empirical eval-
uation setup (Section 4.4)). The limitation of the simple
hybrid input generator is that it keeps running concolic
testing (or fuzzing) even after branch coverage is saturated
and, thus, fails to utilize chance to improve test coverage.

Adaptive Hybrid Input Generator. To overcome the limi-
tation of the simple hybrid input generator, we have devel-
oped the adaptive hybrid input generator. It monitors the
achieved test coverage of the current running test genera-
tion technique for every time slot and changes the test gen-
eration technique to run when the achieved test coverage
does not satisfy the criterion. The hybrid input generator
works as follows:

1. For the �rst time slot t1, it runs concolic testing. The
duration of each time slot is 1/10 of the timeout for
testing a given task.

2. When the ith time slot ti (1 ≤ i) �nishes, it com-
pares the increased branch coverage (i.e., the num-
ber of newly covered branches over the total number
of branches) of ti and that of ti−1. If the increased
branch coverage of ti is no more than 80% of that of
ti−1 (i.e., current testing technique reaches a coverage
saturation point), it changes an input generation tech-
nique for ti+1 with the generated test inputs as seed
inputs. When fuzzing passes multiple seed inputs to
concolic testing, concolic testing runs a search strat-
egy with each seed input for the duration of time slot ti+1

the number of seed inputs
.

Otherwise, it runs the same input generation tech-
nique for ti+1. We consider the increased branch cov-
erage of t0 as 0.

3. If the adaptive hybrid input generator reaches the
timeout (i.e., 10 time slots), test generation �nishes.

The adaptive hybrid input generator uses only CFG
strategy for concolic testing. This is because using multi-
ple search strategies with seed inputs within a short time
is not e�ective in increasing test coverage. Suppose that
the time slot for concolic testing is two minutes and three
seed inputs are passed. If concolic testing runs each of
the four strategies, each strategy runs for only 30 seconds
(two minutes/4 strategies). Also, concolic testing runs
each strategy with one seed input for only 10 seconds (30
seconds/3 seed inputs) which is too short to e�ectively in-
crease test coverage. We choose CFG strategy because our
exploratory study shows that using CFG with seed inputs
achieves higher branch coverage than DFS, reverse-DFS,
and random negation strategy.

4. Industrial Case Study: Applying MAESTRO to

APRK, BCM, SMK, and TPMS

We have developed and applied MAESTRO to APRK
(automatic parking system), BCM (body control module),
SMK (smart-key system), and TPMS (tire pressure mon-
itoring system) from October 2017 to March 2019 as ex-
plained in the following subsections.

4.1. Research Questions

RQ1 to RQ3 evaluate the testing e�ectiveness of MAE-
STRO in terms of test coverage and how much manual
testing cost MAESTRO reduced.

RQ1. E�ectiveness of the automated test genera-

tion: How much test coverage does MAESTRO achieve
for the target modules in terms of branch and MC/DC
coverage?

RQ2. Analysis of the uncovered branches: What are
the major reasons why MAESTRO fails to reach uncovered
branches?

RQ3. Bene�t of MAESTRO over the manual test-

ing: How much human e�ort does MAESTRO reduce in
terms of the test engineer man-month spent for the target
modules?
RQ4 to RQ8 evaluate how e�ectively MAESTRO ad-

dresses the technical challenges described in Section 2.4.

RQ4. E�ect of the task-oriented automated test

generation: Compared to a function-oriented technique,
how much test coverage does MAESTRO achieve for the
target modules in terms of branch and MC/DC coverage
and how many false crash alarms does MAESTRO raise?

RQ5. E�ect of the symbolic bit-�eld support: How
much does the symbolic bit-�eld support of MAESTRO
increase the branch and MC/DC coverage?

RQ6. E�ect of the symbolic setting for function

pointers: How much does the symbolic setting for func-
tion pointers provided by MAESTRO increase the branch
and MC/DC coverage?

RQ7. E�ect of the input generation techniques:
Compared to concolic testing and fuzzing, how much does
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the adaptive hybrid input generation technique of MAE-
STRO increase the branch and MC/DC coverage?

RQ8. E�ect of the symbolic stub generation strate-

gies: Compared to the baseline symbolic stubs, how much
does the symbolic stub generation strategy of MAESTRO
increase the branch and MC/DC coverage?

4.2. Test Generation Techniques Used
To evaluate the strengths and weaknesses of the test

generation ability of MAESTRO that applies the adaptive
hybrid input generation (Section 3.5.4), we have compared
MAESTRO with the following test generation techniques:

� MAESTRO using function-oriented concolic unit testing
(MFO) for RQ4: This variant of MAESTRO is the same
as MAESTRO but generates test drivers and stubs in a
function-oriented manner. MFO generates a test driver
for each target function and replaces all the functions
invoked by the target function with the stub functions.

� MAESTRO without symbolic bit-�eld support (M−SBF )
for RQ5: It is the same as MAESTRO but does not
support symbolic bit-�elds (Section 3.4).

� MAESTRO without symbolic setting for function point-
ers (M−SFP ) for RQ6: It is the same as MAESTRO but
the generated test driver by M−SFP does not provide
symbolic setting for a function pointer (Section 3.3.4).

� MAESTRO using the concolic testing technique (MCT )
for RQ7: It is the same as MAESTRO but the test
generation technique is the concolic testing technique
that uses the four search strategies (Section 3.5.2).

� MAESTRO using the baseline fuzzing technique (MBF )
for RQ7: It is the same as MAESTRO but the test gen-
eration technique is the baseline fuzzing technique which
mutates both of the the type-information and values of
the input variables (Section 3.5.3).

� MAESTRO using the type-information preserving
fuzzing technique (MTPF ) for RQ7: It is the same
as MAESTRO but the test generation technique is
the type-information preserving fuzzing technique which
preserves type-information and mutates only the values
of the input variables (Section 3.5.3).

� MAESTRO using the simple hybrid of concolic testing
and fuzzing technique (MSH) for RQ7: It is the same
as MAESTRO but the test generation technique is the
simple hybrid of MCT and MTPF , which runs MCT for
the �rst half of the execution time and then run MTPF

using the test cases generated by MCT as seed test cases
until it reaches timeout (Section 3.5.4).

� MAESTRO without symbolic setting for output param-
eters and global variables updated by symbolic stubs
(MBS) for RQ8: It is the same as MAESTRO but the
generated symbolic stub by MBS does not update pa-
rameters and global variables, but provides symbolic set-
ting for only return value.

4.3. Measurement

To show the test e�ectiveness of MAESTRO, we mea-
sure branch coverage and MC/DC coverage by using
CTC++ [31]. We measure branch coverage because the
manual test generation of the target modules targets 100%
of branch coverage in Mobis and we need to compare the
manual test generation and MAESTRO for RQ3. Also, we
measure MC/DC coverage because MC/DC coverage is re-
quired for safety critical components by ISO 26262 safety
requirement for automotive systems. Also, to compare the
number of false crash alarms generated by MAESTRO and
MFO, we measure the number of crash alarms and crash
locations by counting the number of test executions that
cause a crash (e.g., segmentation fault) and the code lines
where the crash occurs, respectively.

4.4. Test Con�guration

� Timeout: For each target task, we set the timeout
as 20 minutes for MAESTRO and its variants except
MFO. For MFO, to make the total amounts of the
testing time of MFO and MAESTRO same, we set
the timeout as 4.8 minutes for each target function
(=(27.2 hours (total wall-clock testing time for all tar-
get tasks by MAESTRO)×3 machines×4 cores/ma-
chine)/4072 functions). Since MCT applies the four
search strategies (Section 3.5.2), each search strategy
has �ve minutes as the timeout.

� The number of repeated execution of a target task: For
the tasks that have a function with static local vari-
ables, MAESTRO generates a test driver that invokes
the target task twice with fresh symbolic inputs. We
chose the number of the repeated invocations as two
because most tasks use static local variables to keep
the immediately previous execution results.

� Size and dereference bounds of a pointer: We set the
user-given size bound n for pointers as 10 and k for
struct variables as 4 (Section 3.3.2).

� Seeds for fuzzing: For MBF and MTPF , we provide
10 randomly generated tests as seed inputs for each
tasks.

� Testbed: The experiments were performed on three
machines, each of which is equipped with Intel Xeon
X5670 (6-cores 2.93 GHz) and 8GB RAM, running
64 bit Ubuntu 16.04. We run four test generation
instances on each machine (i.e., applying MAESTRO
to 12 tasks (=4 instances×3 machines) in parallel).

5. Experiment Results

5.1. RQ1. E�ectiveness of the Automated Test Generation

Table 2 shows the number of the generated test in-
puts, execution time, and branch and MC/DC coverage of
APRK, BCM, SMK, and TPMS achieved by MAESTRO.
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Table 2: The number of generated tests, execution time, and branch and MC/DC coverage of the target modules achieved by MAESTRO

Targets #tests Time Branch #funcs achieving given branch cov. range MC/DC #funcs achieving given MC/DC cov. range
(hour) cov. (%) [0%, [20%, [40%, [60%, [80%, 100% cov. (%) [0%, [20%, [40%, [60%, [80%, 100%

20%) 40%) 60%) 80%) 100%) 20%) 40%) 60%) 80%) 100%)

APRK 119347 3.8 91.2 0 13 24 41 109 406 77.9 0 14 26 123 136 294
BCM 155962 4.5 95.1 0 12 48 60 80 456 81.2 0 35 47 115 122 337
SMK 1515869 16.6 94.5 0 66 94 172 151 2038 83.5 0 74 209 246 291 1701
TPMS 154542 2.3 95.3 0 10 13 13 50 216 82.8 0 13 16 54 77 142

Total 1945720 27.2 94.2 0 101 179 286 390 3116 82.3 0 136 298 538 626 2474

MAESTRO generated 1,945,720 test inputs in 27.2 hours
on three machines (i.e., on 12 cores), which achieved 94.2%
branch coverage and 82.3% MC/DC coverage on the target
modules.

MAESTRO achieved 100% branch and 100% MC/DC
coverage of 76.5% (=3116/4072) and 60.8% (=2474/4072)
of all functions in the target modules, respectively. Also,
MAESTRO achieved more than 80% branch and 80%
MC/DC coverage for 86.1% (=(390+3116)/4072) and
76.1% (=(626+2474)/4072) of all functions in the target
modules, respectively.

5.2. RQ2. Analysis of the Uncovered Branches

We manually analyzed the uncovered branches of APRK
as an example. We analyzed 37 (=0+13+24) functions in
APRK whose branch coverage is less than 60%. MAE-
STRO did not cover the 218 uncovered branches of these
37 functions due to the following �ve reasons:

1. Imprecise driver: 68 branches (=31.2%) are uncovered
because test drivers provide only limited symbolic inputs
for complex data structure (i.e., a test driver provides
symbolic inputs for only variables reachable from a tar-
get task within a given pointer link bound (i.e., k = 4)
(Section 3.3.2)). To cover these branches, MAESTRO
has to increase the pointer link bound (e.g., k > 4).
But, an increased pointer link bound may not increase
the coverage in given testing time due to enlarged sym-
bolic space.

2. static local variable: 66 branches (=30.3%) are uncov-
ered because MAESTRO fails to assign diverse values to
static local variables through symbolic input variables
of a target task (Sect. 3.3.5).

3. Path explosion: 36 branches (=16.5%) are uncovered
due to the path explosion problem of concolic testing
and fuzzing. These branches can be covered if we in-
crease the time limit for test generation per task (i.e.,
larger than 20 minutes).

4. Imprecise stub: 24 branches (=11.0%) are uncovered
because the symbolic stubs generated by MAESTRO
provide only limited symbolic inputs for complex data
structure for return values, global variables, and param-
eters similarly to the imprecise driver case.

5. Unreachable branches: 24 branches (=11.0%) are un-
reachable because APRK used in this experiment tar-
gets a speci�c motor vehicle model and these uncovered
branches are designed to execute only for another motor
vehicle model.

5.3. RQ3. Bene�t of MAESTRO over the Manual Testing

5.3.1. Cost of the Manual Testing

Previously, 30 test engineers at Mobis had written test
inputs for coverage testing of the target modules, respec-
tively. The test engineers have three years of experience in
testing and QA on average. A test engineer writes function
test inputs targeting 100% branch coverage for 350 LoCs
in one business day, on average (i.e., for one month, a test
engineer writes unit test inputs for 7 KLoC (=350 LoC×
20 business days) on average). Thus, writing manual test
inputs for coverage testing of the target modules (238K
LoC) requires 34 man-months (MM) (= 238KLoC

7KLoC per month ).

5.3.2. Bene�t of MAESTRO

MAESTRO reduced 58.8% of the manual testing e�ort
as follows. After applying MAESTRO, the test engineers
still have to generate test inputs to cover 5.8% (= 100-
94.2) of the the target modules branches that were not
covered by MAESTRO. The test engineers spent four MM
to cover those branches. Also, 10 MM were spent devel-
oping MAESTRO and training the test engineers to use
MAESTRO. Thus, 34 MM of the manual testing e�ort for
coverage testing of the target modules is reduced to 14
MM, which is equivalent to reducing 58.8% of the previ-
ous manual coverage testing cost of the target modules.
Note that MAESTRO will reduce the manual testing ef-
fort much further for future application since the cost of
10 MM for the development and training of MAESTRO is
one time cost.

5.4. RQ4. E�ect of the Task-oriented Automated Test
Generation

We compare the branch and MC/DC coverage and
the number of the crashes reported by MFO and MAE-
STRO. Table 3 shows that MFO achieves 3.2% (= (97.2−
94.2)/94.2) and 8.4% higher branch and MC/DC cover-
age than MAESTRO, respectively. This is because MFO

directly controls the executions of each function f by gen-
erating test inputs to f while MAESTRO controls f indi-
rectly through the entry function of the task that contains
f .
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Table 3: Branch and MC/DC coverage achieved and crash locations
reported by MFO and MAESTRO

Module Branch coverage MC/DC coverage #crash alarms
(%) (%) (and # crash lines)

MFO MAESTRO MFO MAESTRO MFO MAESTRO

APRK 94.6 91.2 88.6 77.9 9177 (15) 0 (0)
BCM 97.1 95.1 89.1 81.2 16579 (32) 0 (0)
SMK 97.8 94.5 89.3 83.5 22353 (62) 0 (0)
TPMS 97.2 95.3 90.1 82.8 13892 (21) 0 (0)

Total 97.2 94.2 89.2 82.3 62001 (130) 0 (0)

However, MFO generated many infeasible test inputs
and raised 62,001 false crash alarms. This is because MFO

directly generates inputs for every function f that vio-
late the context of f provided by the caller and callee
functions of f . We semi-automatically analyzed all 62,001
crash alarms at 130 lines in the target modules reported
by MFO and found that all reported crash alarms were
false. 10 In contrast, MAESTRO did not raise any crash
alarm because it provides valid test inputs to f indirectly
through the entry function of the task of f . Thus, we can
conclude that MAESTRO reports more reliable coverage
information than MFO.

5.5. RQ5. E�ect of the Symbolic Bit-�eld Support

The experiment results show that MAESTRO's support
of symbolic bit-�elds is e�ective in increasing branch and
MC/DC coverage. Since M−SBF does not generate test
inputs for bit-�elds at all, it may not cover the branches
whose conditions depend on bit-�elds (Sect. 2.4.2). For
the 143 tasks that use bit-�elds, we compare the branch
and MC/DC coverage achieved by M−SBF and MAE-
STRO. M−SBF achieved 51.7% branch and 41.6% MC/DC
coverage while MAESTRO achieved 86.3% branch and
79.2% MC/DC coverage for the 143 tasks (i.e., MAESTRO
achieved 1.7 times higher branch coverage and 1.9 times
higher MC/DC coverage than M−SBF ). Thus, we can con-
clude that this support of symbolic bit-�elds increases test
coverage for automotive software such as the target mod-
ules.

5.6. RQ6. E�ect of the Symbolic Setting for Function
Pointers

The experiment results show that MAESTRO's sym-
bolic setting for function pointers is e�ective in increas-
ing branch and MC/DC coverage. Since M−SFP does
not set function pointers, the branches that have control-
dependency on the function invoked through a function
pointer may not be covered by M−SFP . For the 111
tasks that use function pointers, we compare the branch
and MC/DC coverage achieved by M−SFP and MAE-
STRO. M−SFP achieved 64.1% branch and 49.8% MC/DC
coverage while MAESTRO achieved 90.2% branch and

10First, we classi�ed the 62,001 crashing test inputs in 253 groups
by �ltering out the input values irrelevant to the crashes at the 130
crash lines. Then, we manually analyzed 253 test inputs, each of
which represents a group of the crashing test inputs.

Table 4: Branch and MC/DC coverage achieved by MCT , MBF ,
MTPF , MSH , and MAESTRO (M represents MAESTRO)

Module Branch coverage (%) MC/DC coverage (%)
MCT MBF MTPF MSH M MCT MBF MTPF MSH M

APRK 89.6 54.9 78.5 88.3 91.2 78.1 51.6 73.7 73.2 77.9
BCM 94.2 63.1 88.7 92.3 95.1 80.7 53.3 76.2 78.5 81.2
SMK 93.6 61.3 90.6 91.3 94.5 81.9 59.0 76.5 81.1 83.5
TPMS 94.7 63.2 90.8 93.5 95.3 80.9 59.3 78.9 80.5 82.8

Total 93.2 60.8 88.6 91.2 94.2 81.1 57.0 76.2 79.5 82.3

79.6% MC/DC coverage for the 111 tasks (i.e., MAESTRO
achieved 40.7% and 59.8% relatively higher branch and
MC/DC coverage than M−SFP , respectively). Thus, we
can conclude that symbolic setting for function pointers
increases test coverage for automotive software.

5.7. RQ7. E�ect of the Input Generation Techniques

The experiment results show that the adaptive hybrid
approach of concolic testing and fuzzing input generation
technique achieves higher branch and MC/DC coverage
than the other compared techniques, respectively. Ta-
ble 4 shows the branch and MC/DC coverage achieved
by MCT , MBF , MTPF , MSH , and MAESTRO. MAE-
STRO achieved the highest branch coverage (94.2%). Sim-
ilarly, MAESTRO achieved the highest MC/DC coverage
(82.3%) which is followed by MCT , MSH , MTPF , and
MBF . For example of APRK (see the second row of
Table 4), MAESTRO achieved 91.2% of branch coverage
which is relatively 66.1% and 16.2% higher than MBF and
MTPF , respectively. Compared to MSH and MCT , MAE-
STRO achieved relatively 3.3% and 1.8% higher branch
coverage for APRK, respectively.
MBF achieved the lowest coverage because MBF mu-

tates the type information of the input �le without con-
sidering the input �le format, which generates many in-
valid inputs that do not increase test coverage. MTPF , on
the other hand, preserves the type information of the in-
put �le to prevent fuzzing from generating invalid inputs.
Thus, MTPF achieved 45.7% and 33.7% higher branch and
MC/DC coverage than MBF . MCT achieved higher branch
coverage than MTPF because fuzzing is not e�ective in in-
creasing branch coverage beyond 90% level. Fuzzing tech-
nique generates inputs using random mutation so that it
can generate many duplicate inputs as time goes on.

5.8. RQ8. E�ect of the Symbolic Stub Generation Strate-
gies

The experiment results show that the symbolic stubs
generation strategy (Section 3.3.3) of MAESTRO increase
branch and MC/DC coverage compared to the base-
line symbolic stubs. MBS achieved 87.8% branch and
74.8% MC/DC coverage while MAESTRO achieved 92.8%
branch and 80.2% MC/DC coverage for the 768 tasks
(i.e., MAESTRO achieved 5.7% and 7.2% relatively higher
branch and MC/DC coverage than MBS , respectively).
Because the symbolic stubs generated by MBS do not
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update the global variables and output parameters modi-
�ed by the functions (and their callee functions) replaced
by the symbolic stubs, the branches that have control-
dependency on the global variables and local variables that
are passed to the symbolic stubs as parameters may not
be covered by MBS . Thus, we can conclude that MAE-
STRO's symbolic stub generation strategy increases test
coverage for automotive software.

5.9. Threats to Validity

The primary threat to external validity for our study
involves the representativeness of our subject programs,
since we have examined only the industrial modules de-
veloped by Mobis (i.e., APRK, BCM, SMK, and TPMS).
Since those target modules are real-world automotive pro-
grams and MAESTRO is not highly dependent on the
characteristics of target modules, we believe that this
threat to external validity is limited. A primary threat
to internal validity is the existence of possible faults in
the tools that implement MAESTRO. We controlled this
threat through extensive testing of our tool.

6. Lessons Learned

6.1. Practical Bene�t of Automated Test Generation in
the Automotive Industry

As Sect. 5.1 and 5.3 show, an automated test genera-
tion technique like MAESTRO can improve the quality of
automotive software by achieving high test coverage (i.e.,
94.2% branch coverage) with reduced testing cost (i.e.,
58.8% man-month per year on coverage testing) in prac-
tice. Although it is not trivial to develop an automated
test generation framework that resolves various technical
challenges in industrial projects, we believe that the au-
tomotive industry can signi�cantly bene�t from an auto-
mated test generation framework like MAESTRO.

6.2. Necessity of Customization of Automated Test Gen-
eration Tools for Target Projects

We have found that it is essential to identify techni-
cal challenges and customize an automated test generation
tool to address those challenges in a target project. For ex-
ample, if MAESTRO targeted an individual function as a
target unit (not a task), it would generate misleading cov-
erage information and waste human e�ort to �lter out false
alarms due to infeasible test inputs generated (Sect. 5.4),
which would reduce the bene�ts of MAESTRO. Addition-
ally, the proposed task-oriented approach might not be
highly e�ective for other projects. Also, if MAESTRO
did not support bit-�elds nor symbolic setting for func-
tion pointers, MAESTRO would not have achieved 94.2%
branch coverage, but much less coverage.

Table 5: Branch coverage achieved by MCT and MTPF with 5, 10,
15 and 20 minutes timeout
Module MCT MTPF

5 mins 10 mins 15 mins 20 mins 5 mins 10 mins 15 mins 20 mins

APRK 53.7 62.9 78.6 89.6 58.1 64.8 71.5 78.5
BCM 61.1 76.4 78.4 94.2 68.1 75.6 78.4 88.7
SMK 61.6 77.0 88.5 93.6 67.6 76.8 84.0 90.6
TPMS 64.0 84.2 88.6 94.7 73.2 80.6 83.0 90.8

Total 60.6 75.4 85.4 93.2 66.7 75.2 81.2 88.6

6.3. Precise Driver/Stub Generation for Automated Test
Generation

As shown in Section 5.2 (i.e., 42.2% of the uncovered
branches were due to the imprecise drivers and stubs), we
need to generate precise drivers/stubs that provide input
environments close to the real ones of a target unit. A
test driver/stub generated by MAESTRO sometimes does
not accurately represent a real environment because the
test driver/stub provides symbolic inputs only for variables
reachable within a given pointer reference bound (i.e., k=4
in Section 3.3.2).
This issue is di�cult to address. Simply increasing the

bound value to a larger number (i.e., k > 4) may not in-
crease the coverage because increasing the bound value en-
larges symbolic execution space and exploring the enlarged
symbolic execution space within a �xed amount of testing
time may decrease the coverage. To make MAESTRO
more practical for automotive SW, we need to generate
more precise drivers/stubs that provide realistic input en-
vironments for a target task.

6.4. Comparison between Concolic Testing and Fuzzing for
Automated Test Generation

Concolic testing and fuzzing have di�erent characteris-
tics for coverage testing. Table 5 shows the branch cover-
age and MC/DC coverage of MCT and MTPF for di�erent
amount of execution time. MTPF achieved more branches
than MCT in shorter time (i.e., 5 minutes timeout for each
task), because fuzzing can generate many test inputs by
mutating the seed inputs and run the generated test in-
puts quickly. With 10 minutes timeout, concolic testing
and fuzzing covers almost the same amount of branches.
With 15 and 20 minutes timeout, concolic testing achieves
more branches than fuzzing. This is because fuzzing may
generate test inputs that follow already explored execu-
tion paths due to random mutation of the previous inputs
while concolic testing tries to avoid generating test inputs
that follow already explored paths.
To improve test coverage, MAESTRO hybridizes con-

colic testing and fuzzing in an adaptive way. The key of
the adaptive hybrid input generator is that it checks the
saturation of the test coverage frequently (e.g., every 2
minutes in our experiments) and changes to another input
generation technique if a current one reaches the cover-
age saturation point. As a result, the adaptive hybrid in-
put generator of MAESTRO achieved higher test coverage
than any single compared input generation technique.
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Table 6: Comparison between MAESTRO and Angora on an orig-
inal target program P and a converted one P ′ (to which bit-�eld
transformation and function pointer support are applied)

Targets MAESTRO Angora on P Angora on P'
Branch MC/DC Branch MC/DC Branch MC/DC

APRK 91.2 77.9 78.0 67.0 84.2 71.0
BCM 95.1 81.2 82.4 68.8 84.3 75.1
SMK 94.5 83.5 81.9 72.5 84.9 76.2
TPMS 95.3 82.8 80.2 70.7 85.7 73.3

Total 94.2 82.3 81.1 70.8 84.7 74.8

For further comparison, we have compared MAESTRO
with another cutting-edge fuzzer Angora [32] (with default
setting) using the type information-preserving fuzzing. We
ran Angora for the same amount of time spent for the
MAESTRO experiment. Still, Table 6 shows that MAE-
STRO achieves higher branch and MC/DC coverage than
Angora even on a program P ′ convereted by MAESTRO
for high test coveraege (i.e., 94.2% vs 84.7% for branch
coverage and 82.3% vs. 74.8% for MC/DC coverage).

7. Related Work

7.1. Automated Test Input Generation Techniques

7.1.1. Concolic Testing

Concolic techniques can be grouped into
instrumentation-based one and Virtual machine (VM)-
based one.
Instrumentation-based concolic testing techniques insert

probes in target source code to obtain dynamic execution
information to build symbolic path formulas. This ap-
proach is lighter and easier-to-customize than the VM-
based one. However, it requires complex source code
parsing and instrumentation. CUTE [9], DART [10],
CREST [27] (and its distributed version SCORE [33]),
CROWN [23] target C programs and jCUTE [34] and
CATG [35] target Java programs. MAESTRO uses
CROWN as its concolic testing engine because CROWN
(and its predecessor CREST) has been successfully applied
to various industrial projects (Sect. 7.3).
VM-based concolic testing techniques run as a layer on

top of a VM to interpret compiled IR code of a target
program p and obtain symbolic path formulas from p's
executions. This approach can conveniently obtain all de-
tailed run-time execution information of p available to a
VM. However, test generation speed is slow due to slow IR
interpretation and customizing the tools is non-trivial due
to complex VM infrastructure. PEX [36] targets C# pro-
grams that are compiled to Microsoft .Net binaries (now
available as IntelliTest [36] in Visual Studio). KLEE [28]
(and its distributed version Cloud9 [37]) targets LLVM [25]
binaries. jFuzz [38] and Symbolic PathFinder [39] target
Java bytecode programs on top of Java PathFinder [40].

7.1.2. Fuzzing

Fuzzing [41, 42] was developed to detect crash bugs and
security vulnerability of target programs. These days,

fuzzing is also used for detecting bugs in programs such as
compilers [43, 44], web browsers [45], OS kernels [46], and
network protocol implementations [47]. Fuzzing is used
in not only academics, but also industries. Microsoft pro-
vides a commercial fuzzing service [48] whose engine has
been used to detect bugs in Windows OS and O�ce, and
Google has developed ClusterFuzz [49] to detect bugs in
Google Chrome and open-source software.
Fuzzers �rst generate a large number of test inputs for

a target program. Then, fuzzers run the target program
with the test inputs and report bugs if crashes or assert vi-
olations are detected. Mutation-based fuzzers generate the
test inputs by mutating seed test inputs [24, 50, 51]. To
achieve high test coverage and high bug detection ability,
mutation-based fuzzers employ coverage-guided fuzzing
techniques. Coverage-guided fuzzing evolves the generated
test inputs towards high code coverage. In a fuzzing loop,
coverage-guided fuzzing measures test coverage for each
test execution. Then, it chooses test inputs that increase
coverage and insert the chosen test inputs into a pool of
seed inputs for high test coverage.

7.2. Automated Test Driver/Stub Generation

DART [10] generates symbolic unit test drivers, but not
symbolic stubs for concolic testing. To avoid the infeasible
test generation issue, DART targets public API functions
in libraries because such functions should accept all pos-
sible inputs. UC-KLEE [52] directly starts symbolic exe-
cution from a target function using lazy initialization [53]
and calls all the functions directly or transitively invoked
by the target function. Thus, DART and UC-KLEE tar-
get code of a function and its all callee functions, which
can make concolic testing achieve low coverage within a
�xed amount of testing time because the symbolic execu-
tion space can become very large. Chakrabarti and Gode-
froid [54] statically divide a static call graph into partitions
using topological information and consider the partitions
as testing targets for concolic testing. However, the pro-
posed partitioning method does not consider semantic in-
formation on the relation between functions.
CONBOL [14] generates symbolic unit test driver and

stubs for C functions in large-scale embedded software.
It replaces all functions invoked by a target function by
symbolic stubs. CONBOL uses target project speci�c
false alarm reduction heuristics, which may not be e�ec-
tive for other projects. SmartUnit [55] generates symbolic
test drivers and stubs for C functions (the authors do
not clearly describe how SmartUnit generates driver and
stubs). The paper reports that SmartUnit achieved high
coverage, but it does not report how many false alarms
were raised. We could not directly compare the perfor-
mance of MAESTRO with CONBOL and SmartUnit since
they are not publicly available.
CONBRIO [23] constructs extended units as testing tar-

get units by using highly-relevant callee of a target func-
tion. The relevance between functions is computed based
on system-level execution pro�les. Targeting the extended
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units, CONBRIO achieves high bug detection power with
low false alarm ratio. However, CONBRIO was not ap-
plicable to ADAS and IBU in this testing project because
we could not obtain ADAS and IBU execution pro�les by
driving physical motor vehicles.

7.3. Industrial Application of Concolic Testing

Microsoft developed SAGE [56, 57] for x86/64 binaries
to detect security vulnerabilities of Windows and O�ce
products. Bardin and Herrmann [58, 59] developed and
applied OSMOSE to embedded software. They translated
machine code into an intermediate representation to ap-
ply concolic testing. Intel developed and applied Micro-
Formal [60] for Intel CPU's microcode. Fujitsu developed
KLOVER [61] by extending KLEE targeting C++ pro-
grams. Zhang et al. developed and applied SmartUnit [55]
to embedded software to achieve high branch and MC/DC
coverage. Kim et al. applied CREST to the Samsung �ash
memory device driver code [62, 11]. They also compared
CREST and KLEE for industrial use of concolic testing
for the Samsung mobile phone software [13] and devel-
oped a systematic event-sequence generation framework
using CREST for LG electric oven [63].
These industrial case studies focused on increasing the

test e�ectiveness but did not report how much manual test-
ing e�ort was saved. In contrast, this paper reports how
much manual testing e�ort (in man-months) MAESTRO
saved in the automotive company (Section 5.2). Also, we
have shared the technical challenges and the solutions for
the application of concolic testing to automotive software,
which can promote �eld engineers to adopt concolic testing
in their projects.

8. Conclusion and Future Work

We have presented the industrial study of applying
MAESTRO to the automotive software developed by Mo-
bis. After we identi�ed and addressed the technical chal-
lenges of applying automated test generation to automo-
tive software, we have developed an automated test gener-
ation framework MAESTRO. It generates a task-oriented
test driver and stubs to reduce infeasible test executions
and supports bit-�elds input generation, input setting for
function pointers that automotive software uses, and im-
proved symbolic stub generation to increase test coverage.
Also, MAESTRO applies the hybrid input generation tech-
nique that utilizes both concolic testing and fuzzing in an
adaptive way. MAESTRO has achieved 94.2% branch and
82.3% MC/DC coverage on the four target modules, and
reduced the manual testing e�ort by 58.8%.
As future work, we plan to generate more precise

test driver/stubs by adopting advanced techniques (e.g.,
MCDC coverage improvement [64, 65, 66] and/or dis-
tributed concolic testing [33, 67, 68]). Also, we will ex-
tend MAESTRO by applying compositional concolic test-
ing [69] and apply it to other automotive software mod-
ules.
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