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Abstract

We describe Java-MaC, a prototype implementation of the Monitoring and Check-
ing (MaC) architecture for Java programs. The MaC architecture provides assur-
ance about the correct execution of target programs at run-time. Monitoring and
checking is performed based on a formal speci�cation of system requirements. MaC
bridges the gap between formal veri�cation, which ensures the correctness of a design
rather than an implementation, and testing, which only partially validates an im-
plementation. Java-MaC provides a lightweight formal method solution as a viable
complement to the current heavyweight formal methods. An important aspect of the
architecture is the clear separation between monitoring implementation-dependent
low-level behaviors and checking high-level behaviors against a formal requirements
speci�cation. Another salient feature is automatic instrumentation of executable
codes. The paper presents an overview of the MaC architecture and a prototype
implementation Java-MaC.

1 Introduction

In the past two decades, much research has concentrated on the methods
for analysis and validation of software systems as such systems have been
deployed in safety critical areas including avionics and automobiles. Many
successful industrial case studies have been conducted in the area of formal
veri�cation [4]. Complete formal veri�cation, however, has not yet become
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a prevalent analysis method. Reasons for this are twofold. First, complete
veri�cation of real-life systems remains infeasible. The growth of software size
and complexity seems to exceed advances in veri�cation technology. Second,
veri�cation results apply not to system implementations, but to formal models
of these systems. That is, even if a design has been formally veri�ed, it still
does not ensure the correctness of a particular implementation of the design.
This is because an implementation often is much more detailed, and also may
not strictly follow the formal design. So, there are possibilities for introduction
of errors into an implementation of the design that has been veri�ed. One way
that people have traditionally tried to overcome this gap between design and
implementation has been to test an implementation on a pre-determined set
of input sequences. This approach, however, fails to provide guarantees about
the correctness of the implementation on all possible input sequences.

Consequently, when a system is running, it is hard to guarantee whether
or not the current execution of the system is correct using the two traditional
methods. Therefore, the approach of continuously monitoring a running sys-
tem with respect to a formal requirement speci�cation can be used to �ll the
gap between these two approaches. This approach might not seem very useful
at �rst glance because detecting errors does not seem interesting; just report-
ing a system crash is not helpful. However, run-time monitoring helps users
detect and correct errors. First, subtle errors are hard to detect without thor-
ough run-time monitoring and checking [16]. Second, errors may not cause
disastrous system failure immediately. Run-time monitoring and checking can
�nd such errors quickly and help users take a recovery action before critical
failure happens.

In this paper, we describe the Monitoring and Checking (MaC) architec-
ture whose aim is to provide assurance that the target program is running
correctly with respect to a formal requirement speci�cation. Use of formal
requirement speci�cations in run-time monitoring is the salient aspect of the
MaC architecture. The MaC architecture is a general architecture not lim-
ited to any speci�c programming language. To demonstrate the e�ectiveness
of the MaC architecture, however, we have implemented a MaC prototype
for Java programs called Java-MaC. Java-MaC instruments Java executable
codes (bytecodes) automatically. This automatic instrumentation, along with
automatic generation of the run-time components of Java-MaC, enables easy
deployment of Java-MaC.

The paper is organized as follows. Section 2 presents an overview of the
MaC architecture. Section 3 briey presents the languages for requirement
speci�cations. Section 4 discusses issues on how to extract information from
the execution of a Java program. Section 5 describes the Java-MaC imple-
mentation. Section 6 illustrates a stock client example. Section 7 presents
related work. Finally, section 8 summarizes and concludes the paper. More
complete treatment of Java-MaC is given in [10].
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2 Overview of the MaC Architecture

The overall structure of the architecture is shown in Fig 1. The architecture
includes two main phases: static phase and run-time phase. From a target
program and a formal requirement speci�cation, the static phase (before a
target program runs) automatically generates run-time components including
a �lter, an event recognizer, and a run-time checker. In the run-time phase
(during the execution of a target program), information of the target program
execution is collected and checked against given formal requirement speci�ca-
tion.

Fig. 1. Overview of the MaC architecture

2.1 Static phase

A major task during the static phase is to provide a mapping between high-
level events used in the high-level requirement speci�cation and low-level state
information extracted from the instrumented target program during execu-
tion. These are related explicitly by means of a low-level speci�cation. The
low-level speci�cation describes how events at the high-level requirement are
de�ned in terms of monitored states of a target program. For example, in
a gate controller of a railroad crossing system, the requirements may be ex-
pressed in terms of the event train in crossing. The target program, on the
other hand, stores train's position with respect to the crossing in a variable
train position. The low-level speci�cation in this case can de�ne the event
train in crossing as train position < 800.

Another major task during the static phase is to generate run-time compo-
nents. A �lter is generated from the low-level speci�cation and inserted into
the target program automatically. An event recognizer is generated from the
low-level speci�cation automatically. Similarly, a run-time checker is gener-
ated automatically from the high-level speci�cation.
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2.2 Run-time Phase

During the run-time phase, the instrumented target program is executed while
being monitored and checked with respect to the requirement speci�cation.

A �lter is a collection of probes inserted into the target program. The
essential functionality of a �lter is to keep track of changes of monitored ob-
jects and send pertinent state information to the event recognizer. An event
recognizer detects an event from the state information received from the �lter.
Events are recognized according to a low-level speci�cation. Recognized events
are sent to the run-time checker. Although it is conceivable to combine the
event recognizer with the �lter, we chose to separate them to provide exibil-
ity in an implementation of the architecture. A run-time checker determines
whether or not the current execution history satis�es a high-level requirement
speci�cation. The execution history is captured from a sequence of events sent
by the event recognizer.

3 The MaC Language

In this section, we give a brief overview of the languages used to describe
requirement speci�cations. The language for low-level requirement speci�-
cation is called Primitive Event De�nition Language (PEDL). PEDL spec-
i�cations are used to de�ne what information is sent from the �lter to the
event recognizer, and how it is transformed into events used in high-level
requirements speci�cation by the event recognizer. High-level requirement
speci�cations are written in Meta Event De�nition Language (MEDL). The
primary reason for having two separate languages in the MaC architecture is
to separate implementation-speci�c details of monitoring from high-level re-
quirements checking. This separation ensures that the architecture is portable
to di�erent implementation languages and speci�cation formalisms, while pro-
viding a clean interface to the designer of monitors.

Before presenting the two languages, PEDL and MEDL, we discuss some
key features of these languages. In Sec 3.1, we illustrate the distinction be-
tween events and conditions.

3.1 Events and Conditions

As described in Section 2.2, whenever an \interesting" state change occurs in
the target system, a �lter sends a noti�cation to an event recognizer. Based
on updates from the �lter, a monitor consisting of an event recognizer and
a run-time checker matches the trace of the current execution against the
requirements. In order to do this, we distinguish between two kinds of state
information underlying the noti�cations.

Events occur instantaneously during the system execution, whereas con-
ditions represent information that holds for a duration of time. For example,
an event denoting return from method RaiseGate occurs at the instant the
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control returns from the method, while a condition (position == 2) holds
as long as the variable position does not change its value from 2. The dis-
tinction between events and conditions is very important in terms of what
the monitor can infer about the execution based on the information it gets
from the �lter. The monitor can conclude that an event does not occur at
any moment except when it receives an update from the �lter. By contrast,
once the monitor receives a message from the �lter that variable position has
been assigned the value 2, we can conclude that position retains this value
until the next update.

We have two attributes time and value, de�ned for events. Since events
occur instantaneously, we can assign to each event the time of its occurrence.
Timestamps of events allow us to reason about timing properties of monitored
systems. time(e) gives the time of the last occurrence of event e. time(e)

refers to the time on the clock of the monitored system (which may be di�erent
from the clock of the monitor) when this event occurs. If the monitored system
has several clocks, we assume, for this paper, that the clocks are perfectly
synchronized to simplify the presentation of this paper. In addition, an event
can have an attribute value. value(e) gives the value associated with e,
provided e occurs.

We assume a countable set C = fc1; c2; : : :g of primitive conditions. For
example, in PEDL for Java (see Sec 4.2), these primitive conditions will be
Java boolean expressions built from the monitored variables. In MEDL (see
Sec 3.3), these will be conditions that were recognized by the event recog-
nizer and sent to the run-time checker. We also assume a countable set
E = fe1; e2; : : :g of primitive events. Primitive events in PEDL for Java (see
Sec 4.2) correspond to updates of monitored variables and calls/returns of
monitored methods. The primitive events in MEDL are those that are re-
ported by the event recognizer. Table 3.1 shows the syntax of conditions (C)
and events (E).

hCi ::= c j defined(hCi) j [hEi,hEi) j !hCi j hCi&&hCi j hCijjhCi j hCi)hCi

hEi ::= e j start(hCi) j end(hCi) j hEi&&hEi j hEijjhEi j hEi when hCi

Table 1
The syntax of conditions and events

During any execution, variables routinely become unde�ned when they are
out of scope. We choose to use a three-valued logic, where the third value is
taken to represent unde�ned (�). We interpret conditions over three values,
true, false, and �. The predicate defined(c) is true whenever the condition
c has a well-de�ned value, namely, true or false. Negation (!c), disjunction
(c1jjc2), and conjunction (c1&&c2) are interpreted classically whenever c, c1
and c2 take values true or false; the only non-standard cases are when these
take the value �. In these cases, we interpret them as follows. Negation of an
unde�ned condition is �. Conjunction of an unde�ned condition with false is
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false, and with true is �. Disjunction is de�ned dually; disjunction of unde-
�ned condition and true is true, while disjunction of unde�ned condition and
false is �. Implication (c1 ) c2) is taken to !c1jjc2. For events, conjunction
(e1&&e2) and disjunction (e1jje2) are de�ned classically; so e1&&e2 is present
only when both e1 and e2 are present, whereas e1jje2 is present when either e1
or e2 is present.

There are some natural events associated with conditions, namely, the
instant when the condition becomes true (start(c)), and the instant when the
condition becomes false (end(c)). Notice that the event corresponding to the
instant when the condition becomes � can be described as end(defined(c)).
Also, any pair of events de�ne an interval of time, so forms a condition [e1; e2)
that is true from event e1 until event e2. Finally, the event (e when c) is
present if e occurs at a time when condition c is true.

Notice that MaC reasons about temporal behavior and data behavior of
the target program execution using events and conditions; events are abstract
representation of time and conditions are abstract representation of data. For
semantics of events and conditions, see [9,11].

3.2 Primitive Event De�nition Language (PEDL)

PEDL is the language for writing low-level requirement speci�cations. PEDL
is based on events and conditions. The design of PEDL is based on the
following two principles. First, we encapsulate all implementation-speci�c
details of the monitoring process in PEDL speci�cations. Second, we want
the process of event recognition to be as simple as possible. Therefore, we
limit the constructs of PEDL to allow one to reason only about the current
state in the execution trace. The name, PEDL, reects the fact that the main
purpose of PEDL speci�cations is to de�ne primitive events of requirement
speci�cations. All the operations on events can be used to construct more
complex events from these primitive events. PEDL is dependent on its target
programming language. We will describe PEDL for Java in Sec 4.2.

3.3 Meta Event De�nition Language (MEDL)

The safety requirements (invariants) are written in MEDL. MEDL is based on
events and conditions as PEDL is. Primitive events and conditions in MEDL
speci�cations are imported from PEDL speci�cations; hence the language has
the adjective \meta". The overall structure of a MEDL speci�cation is given
in Fig 2.

First, a list of events and conditions to be imported from an event recog-
nizer is declared. Events and conditions are de�ned using imported events,
imported conditions, and auxiliary variables, whose role is explained later in
this section. These events and conditions are then used to de�ne safety prop-
erties and alarms. The correctness of the system is described in terms of safety
properties and alarms. Safety properties are conditions that must always be
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ReqSpec <spec_name>

/* Import section */

import event <e>;

import condition <c>;

/*Auxiliary variable declaration*/

var int <aux_v>;

/*Event and condition definition*/

event <e> = ...;

condition <c>= ...;

/*Property and violation definition*/

property <c> = ...;

alarm <e> = ...;

/*Auxiliary variable update section*/

<e> -> { <aux_v'> := ... ; }

End

Fig. 2. Structure of MEDL

true during the execution. Alarms, on the other hand, are events that must
never be raised. 3 Also observe that alarms and safety properties are comple-
mentary ways of expressing the same thing. The reason that we have both of
them is because some properties are easier to think of in terms of conditions,
while others are in terms of alarms.

The language described in Sec 3.1 has a limited expressive power. For
example, one cannot count the number of occurrences of an event, or talk
about the ith occurrence of an event. For this purpose, MEDL allows the user
to de�ne auxiliary variables, whose values may then be used to de�ne events
and conditions. 4 Updates of auxiliary variables are triggered by events.

4 Information Extraction from Java Programs

This section describes methodology of extracting information from the exe-
cution of a Java program. First, design issues of Java-MaC relevant to the
object orientation and the multi-thread of the Java programming language are
described. Then, we describe PEDL for Java, in which low-level speci�cations
containing Java speci�c descriptions are written. Then, we discuss how to
monitor objects and instrument Java programs according to PEDL for Java
speci�cations.

3 All safety properties [14] can be described in this way.
4 MEDL describes an automaton extended with auxiliary variables.
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4.1 Design Issues of Java-MaC

4.1.1 Object Aliasing

A Java program forms a complex object graph. Java handles an object via
a reference pointing to the object. An object contains variables of primitive
types and references to other objects. It is non-trivial to specify and monitor
a variable in a complex object graph.

Let us see how to specify and monitor the variable x pointed by an arrow
in Fig 3. First, we specify x's location (parent object) in the object graph
such as a.b2 to distinguish from x in another object such as a.b1. Second,
we need to monitor all references to the parent object of x such as a.b1.b'
and a.b2.

Primitive var

Reference var

Object

Legend

x x

b1 b2

b’ b’
a.b2

a.b1.b’
 a.b1

 a

Fig. 3. An object graph

A monitored variable can be updated through several di�erent references
pointing to the parent object of the variable. Thus, references which possibly
point to the parent object need to be tested at run-time to see whether they
are actually pointing to the parent object. This testing, however, may not
be feasible. A reference to the parent object may not be visible to locations
where other references of the same type are updated due to Java scoping rules.
Suppose that b2 is declared as private in the class A. Then, we cannot test
whether a.b1 is equal to a.b2 outside of the class A.

4.1.2 Preemptions in Multi-threaded Programs

The Java programming language is a multi-threaded programming language.
Due to preemptions in thread scheduling, a �lter may report variable updates
of concurrent threads di�erently from what really happens in the target pro-
gram. Fig 4 shows such an example. ldc 10 loads a constant 10 onto the
top of an operand stack. putfield x updates x with the top element in the
operand stack. send update() reports monitored variable update to an event
recognizer.

The update of x should be reported earlier than that of y. However, the
update of y is reported earlier than that of x because thread 1 is preempted
just before reporting the update of x. Furthermore, if thread 2 had a instruc-
tion putfield x instead of putfield y, thread 2 would overwrite x as 20; a
�lter would miss a snapshot of x as 10.
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preemption
by scheduler

preemption
by scheduler

Thread 2Thread 1

ldc 20

ldc 10

putfield y 

putfield x 

send_update("y",20(=getfield y))

send_update("x",10(=getfield x))

Fig. 4. Incorrect ordering of update reports

4.2 PEDL for Java

PEDL is closely related to the target programming language because events
are de�ned using programming entities such as variables and methods. In this
subsection, we will simply use PEDL as PEDL for Java. PEDL is designed
for automatic instrumentation, guarantee of no harmful side e�ects, 5 and
fast recognition of events. Thus, PEDL does not allow recursive expressions
and quanti�ers. We believe that this lack of expressive power is moderate so
that the user still can monitor and check interesting properties. The overall
structure of a PEDL speci�cation is shown in Fig 5.

MonScr <spec_name>

/* Export section */

export event <e>;

export condition <c>;

/* Overhead reduction section */

[timestamp;]

[valueabstract;]

[deltaabstract;]

[multithread;]

/* Monitored entity declaration section */

monobj <var>;

monmeth <meth>;

/* Event and cond definition */

event <e> = ...;

condition <c>= ...;

End

Fig. 5. Structure of PEDL

The export section declares a list of events and conditions to export to an
event recognizer. The overhead reduction section sets ags to reduce monitor-
ing overhead (see [10] for details).

5 Java-MaC has side e�ects on resource consumption such as memory and CPU time.
However, Java-MaC guarantees that program variables are not modi�ed by Java-MaC. In
addition, Java-MaC does not change the control ow of the program unless the program
has synchronization errors.
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4.2.1 Declared Monitored Variables and Methods

PEDL does not monitor objects directly but monitors primitive variables for
reducing monitoring overhead. Note that an object possibly contains refer-
ences to other objects and forms a graph. The �rst overhead of monitoring an
object is that we must keep watching whether any node in the object graph
is being changed. In addition, when we detect that the object has changed
(i.e., some node in the object graph has changed), the object graph should
be delivered to the event recognizer. This can result in too much overhead.
Henceforth, whenever we say monitoring an object, we mean monitoring prim-
itive variables of the object.

PEDL declares execution points to be monitored. PEDL uses beginnings/endings
of methods as monitored execution points rather than source code line number.
This is because source code is not usually available outside of the developer of
a target program. Furthermore, a line number does not have inherent meaning
in the target program (ex. insertion of a dummy line changes line numbers).

4.2.2 De�ning Events and Conditions

Basic building blocks of events and conditions in PEDL speci�cation are prim-
itive variables and methods declared as monitored entities.

De�ning Conditions

Primitive conditions in PEDL are constructed from boolean-valued ex-
pressions over the monitored variables. An example of such condition is
condition TooFast = Train.calculatePosition().trainSpeed>100. In
addition to these constructed boolean expressions, we have the primitive con-
dition InM(f). This condition is true as long as the execution is currently
within the method f. Complex conditions are built from primitive conditions
using boolean connectives.

De�ning Events

The primitive events in PEDL correspond to updates of monitored vari-
ables and calls/returns of monitored methods. The event update(x) is trig-
gered when variable x is assigned a value. Events startM(f) (endM(f)) are
triggered when control enters method f (respectively, returns from f). For ex-
ample, event OpenGate = startM(Control.open()) de�nes an event mean-
ing a controller starts opening a gate.

All operations on events in Table 3.1 can be used to construct more com-
plex events from these primitive events. PEDL has two attributes de�ned
for events, time and value. time(e) gives the time of the last occurrence
of event e. time(e) refers to the time on the clock of the monitored system
(which may be di�erent from the clock of the monitor) when this event oc-
cured. value(e,i) gives the ith value in the tuple of values associated with
e, provided e occurs.
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4.3 Monitoring Objects

Java-MaC creates a globally accessible table containing addresss of monitored
objects and monitored object names, called address table. The address table
should be updated at run-time following reference changes. The cost of updat-
ing the address table can be very expensive, because one reference change can
cause huge substitution of all descendent nodes already in the address table.
Suppose that an object a has two references b1 and b2 of the same type as
its member variables as in Fig 3. Java-MaC can distinguish an object referred
by a.b1 and another object referred by a.b2 by comparing the addresses at
run-time. Since an object is located at a unique address in the heap, compar-
ing two objects' addresses allows us to distinguish one object from another.
Suppose that we want to monitor a.b1 where a.b1 is located at heap address
8200 and a.b2 is located at heap address 8300. Let us suppose the address
table contains (8300, a.b2). 6 At run-time, we can check whether a reference
b has an address 8300 or not. If b's address is 8300, b points to the same
monitored object a.b2.

The address table should be updated whenever a monitored reference is
updated. However, as we have seen in Sec 4.1.1, this can cause daunting
overhead. Java-MaC puts restriction in order to avoid this overhead: a refer-
ence should not change. We believe that this restriction does not severely limit
Java-MaC. In fact, several case studies including validation of network routing
protocol [3] and mobile physical agents simulation [6] have been successfully
conducted with this limitation.

4.4 Instrumentation Process

Java-MaC monitors global primitive variables declared as members of a class,
local primitive variables declared inside methods, and beginnings/endings of
methods. The Java-MaC instrumentor detects instructions which update mon-
itored variables or instructions located at the beginnings/endings of methods.
Global primitive variables are updated by putstatic for a static variable or
putfield for a member variable. Local primitive variables are updated by
<T>store, <T>store <n> and iinc. The instrumentor inspects instruction
codes and parameters and �nd candidate update instructions for monitored
variables.

Once Java-MaC instrumentor recognizes a candidate update instruction for
a monitored variable, the instrumentor inserts monitorenter and monitorexit
for making update of a variable and report of update an atomic session (see
Sec 5.2.1). Also, the instrumentor inserts a probe invoking sendObjMethod(Object
parentAddress, <T> value, String varName). 7 For execution poionts,

6 In general, an address can match more than one monitored object's name due to aliasing.
We will assume, however, that an address can match only one monitored object's name. The
validity of this assumption follows from the fact that we do not allow reference assignment.
7 parentAddress is an address of an object whose member �eld varName is monitored.
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the instrumentor inserts probes at the starting point of a method (begin-
ning of a method de�nition) and at the ending points of a method (locations
where return instructions exist).

5 The MaC Prototype for Java

This section describes the MaC prototype for Java programs, called Java-
MaC. The overall structure is depicted in Fig 6. Sec 5.1 describes Java-MaC
components of static phase. Sec 5.2 describes run-time components of Java-
MaC.

(*.class)
target program
instrumented

PEDL compiler

compiled PEDL
(pedl.out)

Event Recognizer

(*.class)

information
instrumentation

(instrumentation.out)

target program

instrumentor

MEDL compiler

Run-time Checker

(medl.out)
compiled MEDL

filter

Static Phase

Run-time Phase

(interpreter of                     )pedl.out medl.out(interpreter of                    )

PEDL specification MEDL specification

Fig. 6. Java-MaC

5.1 Static Phase

Java-MaC has three static phase components: an instrumentor, a PEDL com-
piler, and aMEDL compiler. A Java-MaC instrumentor takes a Java bytecode
(*.class) and instrumentation information (instrumentation.out) contain-
ing a list of monitored variables/methods and monitoring ags generated from
a PEDL speci�cation. Based on these two inputs, the Java-MaC instrumentor
inserts a �lter into the target bytecode. A PEDL compiler compiles a PEDL
speci�cation into an abstract syntax tree (pedl.out) which is evaluated by an
event recognizer at run-time. At the same time, a PEDL compiler generates
instrumentation information (instrumentation.out) which is used by the in-
strumentor. Similarly, a MEDL compiler compiles a MEDL speci�cation into
an abstract syntax tree (medl.out) which is evaluated by a run-time checker
at run-time.

sendObjMethod() checks whether a variable this probe monitors is actually the monitored
variable (or beginning/ending of a method) by checking if parentAddress matches the
address of a monitored object in the address table (see Sec 4.3). If the variable is a monitored
variable, sendObjMethod() sends it to the event recognizer. Otherwise, not.
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5.2 Run-time Phase

5.2.1 Filter

A �lter extracts snapshots from the target program execution and sends these
snapshots to the event recognizer. A �lter consists of the following three parts:
a communicationo channel, probes, and a �lter thread. A target program is
not designed to communicate with an event recognizer originally. A commu-
nication channel from the target program to the event recognizer is created
by a �lter. Probes extract the new value of a monitored variable and sends
the value (or beginning/ending signal of a monitored method) to the event
recognizer through the communication channel. A �lter thread ushes the
content of the communication bu�er to the event recognizer.

A �lter makes update of variable and report as an atomic action to pre-
vent incorrect ordering of reports and overwriting (see Sec 4.1.2 for problem
description). An atomic session is implemented using a global lock. Thread t

acquires the lock right before executing an update instruction. After �nishing
the update and report, t releases the lock. When preemption happens while t

is reporting, no other thread t0 can make a report until t �nishes.

5.2.2 Event Recognizer

Whenever an event recognizer receives snapshots from a �lter, the event recog-
nizer evaluates events and conditions by traversing the abstract syntax tree in
pedl.out. PEDL expressions are evaluated in linear time in terms of the size
of expressions since PEDL does not allow recursion. If the event recognizer
detects events, the event recognizer sends the events to the run-time checker.
Similarly, the event recognizer sends conditions changed to true, false, or �.

5.2.3 Run-time Checker

A run-time checker evaluates event and condition de�nitions in the abstract
syntax tree in medl.out whenever the run-time checker receives events or
conditions from the event recognizer. MEDL expressions are evaluated in
time linear to the size of expression also, because, like PEDL, MEDL does not
allow recursive expressions. If the run-time checker detects a violation de�ned
by alarm or property, the run-time checker raises a signal.

5.2.4 Connection of Run-time Components

Connections among Java-MaC run-time components are established before a
target application executes. The choice of communication medium is impor-
tant because a communication medium a�ects the correctness of checking. If a
communication medium does not guarantee delivery of messages in order, the
correctness of checking may not be guaranteed either. In addition, a commu-
nication medium a�ects the performance of monitoring. If a communication
is established through TCP socket, it may pose relatively large overhead com-
pared to one using shared memory. Furthermore, the communication medium
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may have to satisfy certain constraints (ex. security).

Java-MaC provides three di�erent communication mechanisms among the
run-time components: TCP socket communication, communication through a
FIFO �le, and communication channel implemented by a user using InputStream
and OutputStream provided by Java-MaC API.

5.3 Monitoring Overhead

Monitoring activity causes unavoidable overhead to the target system execu-
tion unless specialized hardware is utilized. The overhead depends on sev-
eral factors including frequency of taking snapshots, nature of communication
medium, and evaluation speed of properties. The overhead of Java-MaC is
less than 10% when the frequency of taking snapshot is once per 105 bytecode
execution. 8

6 Example: Financial Client

We describe a small, but illustrative example for Java-MaC in this section. 9

Consider a web-site that periodically probes some remote servers for stock
quotes; the server is chosen from a list of possible servers that may provide this
information, based on the web tra�c at that time. On obtaining the quotes,
the web-site processes the new information to compute some statistics. If
the web-site fails to obtain the quotes (due to excessive internet tra�c or the
failure of the servers it accesses), it reuses old information in its processing.
For such a client program, one may be interested in checking the following
correctness properties:

Real-time requirement: The client is periodic; that is, every few (say
1000 ms) seconds it tries to query a new server.

Fault tolerance requirement: Old data is used only when either the
client fails to connect to some server after su�cient number (say 3) retries
or the client fails to get a response from the server (for the query asked)
after trying (say) 4 times.

A MEDL script describing these requirements is given in Fig 7. The require-
ments for the client can be de�ned provided the trace contains a signal for the
beginning of the computation (startPgm), an event for when a fresh period of
1000 ms has started (periodStart), a signal when the client fails to connect to
a server (conFail), a signal when the client resends the query (queryResend),
and an event denoting when the client uses old information (oldDataUSed).
Using these events, we can de�ne the real-time requirement (violatedPeriod)

8 Communication between the Java-MaC run-time components uses TCP socket in this
measurement. More details on overhead analysis and overhead reduction techniques, see
[10].
9 For Java-MaC case studies, see [6,10,3].
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ReqSpec StockClient

// Imported event declaration from the Stockclient

import event startPgm, periodStart, conFail, queryResend, oldDataUsed;

// Auxiliary variable declartion

var long periodTime;

var long lastPeriodStart;

var int numRetries;

var int numConFail;

// Requirement definition

alarm violatedPeriod = end((periodTime' >= 900) && (periodTime' <= 1100));

alarm wrongFT = oldDataUsed when ((numRetries' < 4) || (numConFail' < 3));

// Auxiliary variable update rules

startPgm -> { periodTime' = 1000;

lastPeriodStart'=time(startPgm)-1000;

numRetries' = 0;

numConFail' = 0;}

periodStart -> { periodTime' = time(periodStart) - lastPeriodStart;

lastPeriodStart'= time(periodStart);

numRetries' = 0;

numConFail' = 0;}

queryResend -> { numRetries' = numRetries + 1; }

conFail -> { numConFail' = numConFail + 1; }

End

Fig. 7. MEDL speci�cation for Financial Client example

and the fault tolerance requirement (wrongFT). The real-time requirement is
violated whenever the time between successive periodStart events in the
trace (stored in variable periodTime) is not between 900 and 1100 millisec-
onds. The fault tolerance requirement is de�ned in terms of the number of
times the client failed to connect to some server (variable numConFail) and
the number of times a query was resent (variable numRetries).

A run-time checker receives events startPgm, periodStart, conFail, queryResend,
and oldDataUsed from an event recognizer at run-time. These events are de-
�ned in the PEDL speci�cation of Fig 8 based on methods and variable de�ned
in Client class. A method main(String[]) is invoked when the client pro-
gram starts. run() is invoked when a new session begins. failConnection(ConnectTry)
is invoked when connection fails to be established. retryGetData(int) is in-
voked when the client retries to get response from the server. processOldData()
is invoked when the old data is used instead of new data.

7 Related Work

There are two research directions for the formal analysis of program imple-
mentations. The �rst one is to monitor and analyze the behavior of target
programs at run-time. This approach provides limited coverage because all
the execution paths are not covered. However, this approach scales up well
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MonScr StockClient

// Exported event declaration

export event startPgm, periodStart, conFail, queryResend, oldDataUsed;

// Monitored methods declaration

monmeth void Client.main(String[]);

monmeth void Client.run();

monmeth void Client.failConnection(ConnectTry);

monmeth Object Client.retryGetData(int);

monmeth Object Client.processOldData();

// Event definition

event startPgm = startM(Client.main(String[] ));

event periodStart = startM(Client.run());

event conFail = startM(Client.failConnection(ConnectTry));

event queryResend = startM(Client.retryGetData(int));

event oldDataUsed = startM(Client.processOldData());

end

Fig. 8. PEDL speci�cation for Financial Client example

and can be a practical solution. A Lightweight Architecture for MOnitoring
(ALAMO) [8] instruments C source code automatically according to the con-
�guration written by a user. The con�guration language (similar to PEDL)
declares what activities are to be recognized as events. ALAMO, however, does
not provide a high-level formal speci�cation language such as MEDL. JASS
(Java with ASSertion) [2] is a precompiler that supports boolean assertions for
Java. Jass takes Java source code and inserts pre/post conditions for methods
and invariants for classes in a special comments. The Java Run-time Timing
constraint Monitor (JRTM) [15] aims to detect violation of timing properties
in Java programs. JRTM uses Real-Time Logic (RTL) [7] as a requirement
speci�cation language. A Java program should be manually instrumented to
put a probe in the place where a primitive event happens. Java Event Monitor
(JEM) [13] is an event-mediator like the CORBA event channel. JEM receives
prede�ned primitive events from event suppliers and detects composite events
written in a Java Event Speci�cation Language [12] based on these primitive
events. Time Rover [1] monitors Java/C++ programs to check whether LTL
requirement speci�cation is violated or not. Probes are inserted into source
code manually.

The second approach is to extract models from programs written in con-
ventional programming language such as Java. Then, extracted models are
veri�ed using model checkers. A strong point of this approach is that all pos-
sible execution paths of the program can be covered. However, this approach
may not scale up well due to complexity of program abstraction and state
explosion problem. Bandera [5] generates �nite state models in the input lan-
guage of veri�cation tool such as Spin from Java programs. These models are
veri�ed using existing model checking tools. Java Path Finder [17] extracts
a �nite state model from Java bytecode and applies model checking to this
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model against properties written in Java statements.

8 Conclusion

This paper describes the Monitoring and Checking (MaC) architecture and its
prototype implementation Java-MaC. Monitoring and checking is performed
based on a formal speci�cation of system requirements. The MaC architec-
ture is a step towards bridging the gap between veri�cation of system design
speci�cations and validation of system implementations. The former is desir-
able but yet impractical for large systems, while the latter is necessary but
informal and error-prone.

The MaC architecture supports a light-weight formal methodology for as-
suring the correctness of the current execution of a target program based
on formal requirement speci�cations. The MaC architecture uses layerd ap-
proach. The architecture separates monitoring program-dependent low-level
behavior from checking high-level behavior. This separation makes the MaC
architecture an extendable open architecture applicable to broad range of tar-
get platforms. Finally, the automatic generation of the run-time components
in Java-MaC makes deployment of Java-MaC easy and practical. We have ap-
plied Java-MaC successfully to several examples including a network protocol
and a micro air vehicle simulator. We are investigating application domains
where we can fully exploit the features of Java-MaC e�ectively. At the same
time, we are investigating the methodology of applying the MaC architecture
to support various target platforms other than Java.
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