
Electronic Notes in Theoretical Computer Science 70 No. 4 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 15 pages

Computational Analysis of Run-time
Monitoring

- Fundamentals of Java-MaC ∗

Moonjoo Kim 1

SECUi.COM R&D Center, Seoul Korea

Sampath Kannan, Insup Lee, Oleg Sokolsky 2

University of Pennsylvania, Philadelphia US

Mahesh Viswanathan 3

University of Illinois at Urbana-Champaign, Urbana US

Abstract

A run-time monitor shares computational resources, such as memory and CPU time,
with the target program. Furthermore, heavy computation performed by a monitor
for checking target program’s execution with respect to requirement properties can
be a bottleneck to the target program’s execution. Therefore, computational char-
acteristics of run-time monitoring cause a significant impact on the target program’s
execution.

We investigate computational issues on run-time monitoring. The first issue is
the power of run-time monitoring. In other words, we study the class of properties
run-time monitoring can evaluate. The second issue is computational complexity
of evaluating properties written in process algebraic language. Third, we discuss
sound abstraction of the target program’s execution, which does not change the
result of property evaluation. This abstraction can be used as a technique to reduce
monitoring overhead. Theoretical understanding obtained from these issues affects
the implementation of Java-MaC, a toolset for the run-time monitoring and checking
of Java programs. Finally, we demonstrate the abstraction-based overhead reduction
technique implemented in Java-MaC through a case study.

� This research was supported in part by ONR N00014-97-1-0505, NSF CCR-9988409, NSF
CCR-0086147, NSF CISE-9703220, and ARO DAAD19-01-1-0473.
1 Email: moonjoo@secui.com
2 Email: {kannan,lee,sokolsky}@saul.cis.upenn.edu
3 Email: vmahesh@cs.uiuc.edu

c©2002 Published by Elsevier Science B. V.

80

Kim et al

1 Introduction

The purpose of run-time analysis based on formal requirements is to bridge the
gap left by the two traditional analysis techniques: verification and testing.
On the one hand, formal verification analyzes all possible executions of the
system, but the analysis is performed on the specification of the system, not
its implementation. In addition, state-of-the-art verification techniques still
do not scale up well to handle large systems. On the other hand, testing is
applied to a system implementation, but does not guarantee that all behaviors
of the implementation are explored and analyzed. In either case, run-time
analysis can provide additional assurance that the current execution is correct
with respect to its requirements. Run-time analysis can find violations to the
requirements in time and help users to take recovery actions before critical
failure happens.

While this additional assurance is an invaluable help to detect and recover
errors, this benefit comes at the cost of slowed target program’s execution
due to monitoring overhead. Monitoring overhead consists of two factors: in-
formation extraction overhead and evaluation overhead. Information extrac-
tion overhead occurs due to the execution of probes inserted into the target
system. Evaluation overhead occurs when a monitor evaluates requirement
properties. Unless special hardware is attached to the target system for inter-
cepting execution information, probes inserted into the target system share
computational resources, such as memory and CPU time, of the target sys-
tem to extract execution information. Evaluation overhead, however, occurs
even when special hardware is utilized. Suppose that the requirement prop-
erties are large and complex. Then, the speed of evaluating the properties
is slower than the execution speed of the target program, which makes the
target program wait until the evaluation finishes. Probes send snapshots of
the target program’s execution to the (finite) snapshot buffer based on which
a monitor evaluates the properties. When the snapshot buffer becomes full,
probe should stop the target program’s execution until the buffer has room.
Some monitoring system [2] prevents the target system from waiting for the
monitor by overwriting snapshots while a monitor is busy to evaluate prop-
erties. This approach, however, cannot guarantee correct evaluation and is
not adequate for run-time verification. As described above, computational
characteristics of run-time monitoring, especially property evaluation, cause a
significant impact on target program execution.

We investigate computational issues on run-time monitoring which are not
limited to specific monitoring architecture, but universal. The first issue is
on the computational power of run-time monitoring. In other words, we in-
vestigate the class of properties which run-time monitoring can evaluate at
run-time, i.e, in finite time. We show that this class of properties does not
coincide with safety properties, but a strict subset of safety properties. The
second issue we study is computational complexity of evaluating properties

81

Kim et al

written in process algebraic language. We formulated this problem as a trace
validity problem and proved that the evaluating properties written in CCS is
a NP-complete problem using 3SAT problem. As far as we know, these results
are new contributions to the run-time monitoring field. Finally, we develop a
sound abstraction technique on target program execution so that a monitor
evaluates properties less frequently but does not miss violation to the proper-
ties. This technique, called value abstraction, can be used to reduce monitoring
overhead. We demonstrate this overhead reduction technique implemented in
Java-MaC in the case study of monitoring the Sieve of Eratosthenes program.

Section 2 shows that the class of properties run-time monitoring can evalu-
ate is a strict subset of safety properties. Section 3 proves that the problem of
evaluating properties written in process algebra is NP-complete. Section 4 ex-
plains value abstraction. Section 5 briefly describes Java-MaC and the impact
of previously mentioned issues on Java-MaC. Section 6 shows the experimen-
tal result of applying value abstraction to monitor the Sieve of Eratosthenes.
Finally, Section 7 concludes this paper.

2 A Class of Monitorable Properties

Run-time monitoring has weaker power of evaluating requirement properties
than verification has. It is because run-time monitoring observes target pro-
gram execution of finite length while verification searches whole (possibly
infinite) execution. Thus, it is obvious that run-time monitoring cannot eval-
uate liveness properties. We generally presume that the class of properties
run-time monitoring can evaluate is safety properties. In this section, how-
ever, we study the class of properties run-time monitoring can evaluate more
precisely. We call a property run-time monitoring can evaluate as “a moni-
torable property”. We start discussion on monitorable properties by defining
“execution” and “property” formally.

Definition 1 (Execution) An execution of a program is an infinite sequence
of program states σ = s0s1... where si ∈ S (a set of program states), s0 ∈ Sinit

(a set of initial states), and σ[i..j] is the subsequence of σ from a state si to a
state sj.

The definition of an execution can apply to finite sequences by obtaining an
infinite sequence from a finite one by repeating the final state of the finite
sequence. This corresponds to the view that a terminating execution is the
same as non-terminating execution in which after some finite time (once the
program has terminated) the state remains fixed.

Definition 2 (Property) A property is a set of executions. We write σ |= P
to denote that σ is in property P .

Let us define safety property formally. Informally speaking, safety prop-
erty means that bad things do not happen during the execution of a program.
Consider a safety property Psafe that means some bad thing x does not hap-

82

Kim et al

pen. If σ �|= Psafe, σ includes some bad thing which cannot be remedied. In
other words, there is some prefix of σ which includes some bad thing for which
no extension will satisfy Psafe. We use Sω as the set of infinite sequences of
states.

Definition 3 (Safety Property) A property P ⊆ Sω is a safety property if
for every σ ∈ Sω, σ ∈ P if and only if ∀i∃β ∈ Sω(σ[0..i]β ∈ P) where S is
the set of program states.

It is clear from Definition 3 that a monitorable property is a safety property.
A monitor can evaluate a property based on only a finite number of execution
states. A safety property, however, is not necessarily a monitorable property.
The definition of safety property makes no computational assumptions ; it is
possible to define a property that is a safety property, but which is unlikely
to be monitorable. Safety closure of the halting problem is a safety property
but not a monitorable property.

Example 1 Let Σ = {0, 1, a, b}. Consider a finite property H∗ = {x · a ·
y | x, y ∈ {0, 1}∗, the Turing Machine encoded by x halts on input y}. We
define a property Hω = H∗ · bω ∪ {0, 1}∗ · a · {0, 1}ω ∪ {0, 1}ω.

The property Hω, defined above is a safety property. In order to see this,
we only need to observe that for any execution not in Hω, there is finite prefix
when this violation can be detected. Executions not in Hω are those that are
not in the “right format”, or where the finite prefix before the sequence of b’s
is not in H∗; in both cases there is a finite prefix that provides evidence of the
execution not being in the property.

However, in order to detect that an execution σ is not in Hω, we have to
check for membership inH∗. Since membership inH∗ (or the Halting problem)
is not decidable, it is impossible for us to design monitors that would be able to
detect a violation of this property. This suggests that the class of monitorable
properties is a strict subset of a class of safety properties (see Figure 1); they
should be such that sequences not in the properties should be recognizable by
a Turing Machine, after examining a finite prefix. Therefore, we can define a
monitorable property as follows. 4 We use pref(σ) for σ ∈ Sω as the set of all
finite prefixes of σ.

Definition 4 (Monitorable Property) A property P ⊆ Sω is said to be
monitorable if and only if P is a safety property and S∗\pref(P) is recursively
enumerable, where pref(P) = ∪σ∈Ppref(σ)

3 Evaluation of Properties in Process Algebra

Requirement properties need to be described in a property specification lan-
guage. The characteristics of the property specification language can affect the

4 For more detailed discussion on monitorable language, see [8].

83

Kim et al

Monitorable
Properties

Liveness
Properties

Properties
Safety

 Properties

Fig. 1. Monitorable properties

computational complexity of evaluating properties. [7] shows the monitoring
overhead due to non-determisim in requirement properties in their monitoring
system, called Supervisor, and provides heuristics to decrease the overhead.
[3] develops a linear time monitoring algorithm for safety formulae written in
past time LTL. In this section, we will discuss the computational complexity
of monitoring algorithm for property written in process algebra.

Run-time monitoring can be thought of as a trace validity problem where
a trace is generated from the execution of the program. The trace validity
problem is a membership checking problem of deciding whether a given trace is
in the set of valid traces. For sufficiently expressive requirement specification
languages such as CCS [6] or ACSR [1], this problem turns out to be NP-
complete. We formulate the trace validity problem using the notation of [6].

3.1 Notations

We will denote the ith character in a string x by x(i). A is an set of names
a, b, c, Then, A is the set of co-names a, b, c, ...; A and A are disjoint and
are in bijection via (−); we declare a = a. L = A∪A denotes the set of labels.
We also introduce a distinguished silent action τ �∈ L. We set Act = L ∪ {τ}.
Definition 5 The set of processes is defined by

P ::= Nil | α.P | P + Q | P ||Q | P\L
where L ⊆ L and α ∈ Act.
Definition 6 The labeled transition relation

α→ between two processes is de-
fined by the following rules. In the following rules, α ∈ Act, l ∈ L, and L ⊆ L.

[Prefix]
α.P

α→ P

[Choice]
P

α→ P ′

P +Q
α→ P ′

Q
α→ Q′

P +Q
α→ Q′

[Parallel]
P

α→ P ′

P ||Q α→ P ′||Q
Q

α→ Q′

P ||Q α→ P ||Q′
P

l→ P ′, Q l→ Q′

P ||Q τ→ P ′||Q′

84

Kim et al

[Restriction]
P

α→ P ′

P\L α→ P ′ where α �∈ L ∪ L

Definition 7 Given processes P and P ′, and α ∈ L, we say that P
α⇒ P ′ if

P (
τ→)∗ α→ (

τ→)∗P ′, where (
τ→)∗ is the transitive reflexive closure of

τ→.

3.2 Trace Validity Problem

In this section, we formulate the trace validity problem using the notations in
Section 3.1.

Definition 8 (Valid Trace) A string s ∈ L∗, of length n, is said to be a
valid trace of a process P , if there exist processes P0, P1, . . . , Pn, such that

P ≡ P0, and P(i−1)
s(i)⇒ Pi, for all i ∈ {1, . . . , n}

Then, the Trace Validity Problem is formally defined as follows:

Input A process P and a string s ∈ L∗.

Output Is s a valid trace of P?

Theorem 3.1 The trace validity problem is NP-complete.

Proof.

To prove hardness, we reduce 3SAT to the trace validity problem. We
are given a formula ϕ in conjunctive normal form with variables x1, . . . , xn

and clauses C1, . . . , Cm, each with three literals. We construct a process P (ϕ)
and a string s(ϕ) such that s(ϕ) is a valid trace of P (ϕ) iff the formula ϕ is
satisfiable.

For each i, define processes, Xi, as follows,

Xi
def
= τ.Fi + τ.Ti

Fi
def
= fi.Fi

Ti
def
= ti.Ti

In our reduction, these processes express a truth value assignment to the
variables. If the Xi

τ→ Fi then it expresses the fact that under this assignment
the variable xi gets the value false, and if Xi

τ→ Ti then it means that the
variable xi gets the value true.

In addition to these processes, we define another process, P . The idea is
that P will deadlock, when run concurrently with the processes Xi, iff the
truth assignment defined (as above) by the processes Xi is not a satisfying
truth assignment for the formula ϕ.

In order to define the process P , we assume that Ci ≡ li,1 ∨ li,2 ∨ li,3 for
i ∈ {1, . . .m} and j ∈ {1, 2, 3} in following formulas.

85

Kim et al

P
def
= Q1

Q1
def
= a.L1,1 + a.L1,2 + a.L1,3

...

Qi
def
= a.Li,1 + a.Li,2 + a.Li,3

Li,j
def
=

fk.L

′
i,j if li,j ≡ ¬xk

tk.L
′
i,j if li,j ≡ xk

L′
i,j

def
= b.Qi+1

...

L′
m,j

def
= b.Q1

The process P (ϕ) is thus (P ||X1|| · · · ||Xn) \ {t1, f1, . . . , tn, fn}. The prop-
erty this process has is that, for any i, j, the transition Li,j → L′

i,j can be
taken iff the literal li,j gets the truth value true under the truth assignment
defined by the processes X1, . . . , Xn. Hence, Qi →∗ Qi+1 can take place iff one
of the literals in the clause Ci gets the truth value true under the assignment
described by X1, . . . , Xn. Thus it can be seen that abab . . . ab is a valid trace
of P (ϕ) iff ϕ has a satisfying assignment.

To prove completeness, we prove that Trace Validity Problem belongs to
NP. We can view a process P as a labeled transition graph GP over a set of
label L rooted at the node nP . For a given process P and a string s ∈ L∗, we
choose a path p corresponding to s from nP be the certificate. Checking can
be accomplished in polynomial time by traversing GP from nP following p.

✷

The main reason for NP-completeness in the trace validity problem is non-
determinism caused by parallel composition of processes. We should be careful
to define or use a requirement property specification language so that trace
validation against properties is tractable.

4 Abstraction of Program Execution

Computational characteristic of run-time monitoring is closely related to ab-
stract view on the target program execution. In this section, we provide an
abstract view on the target program execution. An execution of a program is
a sequence of program states as defined in Definition 1. We define a state as
follows.

Definition 9 (State) A state s of a program execution is a pair of a time
stamp ts ∈ R and an environment ρs ⊆ V → R which is a function from a
set of variables V to a set of real values R.

86

Kim et al

A state in an execution indicates variable change(s) at the time instant
corresponding to the state. ρsi

, however, does not change between time in-
terval starting from a state si until the next state si+1; the information of a
program remains fixed between two states si and si+1. If we keep track of
variable updates, we can capture snapshots of si’s.

Note that not all variables relate to requirement properties. A property p1
may consist of expressions based on a variable v1, but not v2. Furthermore,
not every update of v1 changes evaluation of p1. In other words, a monitor can
abstract out states whose updated variable values do not affect evaluation of
p1. We call this abstraction value abstraction. Value abstraction is a function
from an execution to a shorter execution consisting of less states. Let us
formulate value abstraction formally. We will use S∞ denoting S∗∪Sω. Value
abstraction γexpVm

abstracts out states which do not affect expVm , a set of
boolean expressions over the monitored variables Vm.

Definition 10 (Value Abstraction) A value abstraction γexpVm
with regard

to expVm, a set of boolean expressions over monitored variables Vm is a function
γexpVm

: Sω → S∞. γexpVm
is defined recursively as follows.

γexpVm
(sisi+1σ

′)=

γexpVm

(siσ
′) if ∀e ∈ expVm .[[e]]ρsi

= [[e]]ρsi+1

siγexpVm
(si+1σ

′) if ∃e ∈ expVm .[[e]]ρsi
�= [[e]]ρsi+1

where σ′ is an infinite sequence of states, [[e]]ρsi
for e ∈ expVm is the result of

evaluating an boolean expression e according to an environment ρsi
, and i ≥ 0.

Note that Definition 10 itself does not impose any restriction on the set
expVm except that boolean expressions in the expVm should be expressions over
the monitored variables Vm. For value abstraction to be useful, expVm should
be related to requirement properties propreq.

Definition 11 (Valid Value Abstraction) Value abstraction γexpVm
is valid

with regard to the set of requirement properties propreq if and only if

∀j ≥ 0.
(
∀e ∈ expVm .[[e]]ρsj

= [[e]]ρsj+1
−→ ∀p ∈ propreq.[[p]]ρsj

= [[p]]ρsj+1

)

Definition 11 indicates that the removed states must not affect evaluation of
requirement properties. The remaining states, however, may or may not affect
evaluation result. In other words, valid value abstraction is sound, but not
complete.

So far, we have not decided how to set expVm with regard to propreq. In
one extreme end, expVm can be a set of entire requirement properties, i.e.,
expVm = propreq. In this case, the abstract view taken by the monitor is equal
to a sequence of fail/safe flags obtained by evaluating requirement properties.
In the other extreme end, expVm can be an empty set. In this case, no states are
removed by value abstraction. We need to decide a point between these two
extreme ends for setting expVm with regard to propreq satisfying Definition 11.

87

Kim et al

For example, suppose that a requirement property is

preq = ((3 < x) ∧ (x < 10)) ∨ (y > 2) ∧ (z < 10)

One expVm satisfying Definition 11 with regard to preq is

expVm = {(3 < x) ∧ (x < 10), z < 10}
With this expVm , for example, states updating x from 4 to 9 or states updating
z from 1 to 9 are removed by value abstraction because these states do not
change evaluation result of (3 < x) ∧ (x < 10) or z < 10.

In practice, value abstraction is closely related to reduce monitoring over-
head. To apply value abstraction, a probe need to test ∀e ∈ expVm .[[e]]ρsi

=
[[e]]ρsi+1

(see Definition 10) whenever a monitored variable is updated. There-
fore, we have to consider both property evaluation overhead and probe’s test
overhead to reduce the overall monitoring overhead. Section 5.3 describes how
Java-MaC implements value abstraction.

5 Overview of the Java-MaC

The monitoring and checking (MaC) framework has been designed to ensure
that the execution of a real-time system is consistent with its requirements
at run-time. Java-MaC instruments Java bytecodes and monitors/checks the
correctness of the Java program’s execution with regard to given formal re-
quirement specification. The structure of the Java-MaC architecture is shown
in Fig 2. The architecture includes two main phases: static phase and run-
time phase. A formal specification consists of a low-level implementation de-
pendent specification and a high-level requirement specification. A low-level
specification language is called Primitive Event Definition Language (PEDL).
A high-level specification language is called Meta Event Definition Language
(MEDL). From a target program and PEDL/MEDL specifications, the static
phase (before a target program runs) automatically generates run-time com-
ponents including a filter, an event recognizer, and a run-time checker. In
the run-time phase (during the execution of a target program), information of
the target program execution is collected and checked against a given formal
requirement specification. More detail on Java-MaC can be found in[4,5]

Section 5.1 describes static phase of Java-MaC. Section 5.2 describes run-
time phase of Java-MaC. Finally, Section 5.3 explains implementation of value
abstraction in Java-MaC.

5.1 Static Phase

Java-MaC has three static phase components: an instrumentor, a PEDL com-
piler, and a MEDL compiler. A PEDL compiler compiles a PEDL script into
an abstract syntax tree (pedl.out) which is evaluated by an event recognizer
at run-time. At the same time, a PEDL compiler generates instrumenta-
tion information (instrumentation.out) which is used by the instrumentor.

88

Kim et al

Run-time Checker

(medl.out)
compiled MEDL

medl.out(interpreter of)

(*.class)
target program
instrumented

filter

MEDL compiler

MEDL specification

PEDL compiler

PEDL specification

(pedl.out)

Event Recognizer
(interpreter of)pedl.out

Run-time Phase

Static Phase

information
instrumentation

instrumentor

(*.class)

target program

compiled PEDL

(instrumentation.out)

Fig. 2. Structure of Java-MaC

In addition, a PEDL compiler generates expVm for value abstraction from
a PEDL script and puts expVm into instrumentation.out. A Java-MaC in-
strumentor takes a Java bytecode (*.class) and instrumentation information
(instrumentation.out) containing a list of monitored variables/methods and
expVm generated from a PEDL script. Based on these inputs, the Java-MaC
instrumentor inserts a filter consisting of probes into the target bytecode.
Each probe contains a routine testing whether ∀e ∈ expVm .[[e]]ρsi

= [[e]]ρsi+1
as

well as a routine for sending variable updates to an event recognizer.

A MEDL compiler compiles a MEDL script into an abstract syntax tree
(medl.out) which is evaluated by a run-time checker at run-time. More details
of instrumentor and PEDL/MEDL compilers are in [5].

5.2 Run-time Phase

During the run-time phase, the instrumented target program is executed while
being monitored and checked with respect to a requirement specification.

A filter is a collection of probes inserted into the target program. The
essential functionality of a filter is to keep track of changes of monitored vari-
ables and send snapshots of program execution states to the event recognizer.
Furthermore, a filter tests ∀e ∈ expVm .[[e]]ρsi

= [[e]]ρsi+1
to decide whether a

snapshot should be sent to the event recognizer or not. An event recognizer
detects an event from the state information received from the filter. Events
are recognized according to a low-level specification. Recognized events are
sent to the run-time checker. Although it is conceivable to combine the event
recognizer with the filter, we chose to separate them to provide flexibility in an
implementation of the architecture. A run-time checker determines whether
or not the current execution history satisfies a requirement specification. The
execution history is captured from a sequence of events sent by the event
recognizer. The connection among these run-time components can be made
through one of socket, FIFO file, or user defined communication methods.

89

Kim et al

5.3 Implementation of Value Abstraction

Java-MaC sets expVm as a set of simple expressions obtained from event and
condition definitions in a PEDL script. 5 A simple expression consists of one
variable, a comparison operator, and a constant (ex. x < 5.4). For this set
of expVm , the amount of computation performed by probes for testing ∀e ∈
expVm .[[e]]ρsi

= [[e]]ρsi+1
is very little because comparison between a variable

and a constant is computationally cheap; probes do not perform any boolean
operations or numerical operations for the test.

Construction of expVm from a PEDL script is as follows.

(i) Extract simple expressions sevij for each monitored variable vi from event
definitions and condition definitions in a PEDL script.

(ii) Unless either
• there exists a non-simple expression containing monitored variable vi

• there exists update(vi) in event/condition definitions 6

put sevij into expVm .

If expVm contains sevij, apply value abstraction whenever vi is updated. Oth-
erwise, send vi to an event recognizer whenever vi is updated. When value
abstraction is applied, a probe monitoring a variable vi tests all sevij ∈ expVm

whenever vi is updated. If any simple expression sevij fails the test, i.e. there
exists an sevij which has changed its value according to update of vi, the probe
sends a new value of vi. Otherwise, not.

Consider the following example.

condition c1 = (3 < x && x < 10) || z > 10;

condition c2 = x > 5 && y > 2*z + 3;

The variable x is used only in simple expressions. The filter keeps the truth
values of each of the three simple expressions (3 < x, x < 10, and x > 5)
that involve x and sends an update only when it changes one of the expression
values as in Figure 3. Variables y and z are used in an expression which is not
a simple expression. Thus, every update of y and z will be sent to the event
recognizer. Whether value abstraction can be applied to a variable x or not
can be decided by scanning a PEDL script by a PEDL compiler.

6 Example: the Sieve of Eratosthenes

We illustrate monitoring overhead and effectiveness of value abstraction using
the Sieve of Eratosthenes program. The Sieve of Eratosthenes generates prime
numbers. The algorithm of the Sieve for generating prime numbers less than

5 We assume that all of event/condition definitions in a PEDL script are used to build
requirement properties in a MEDL script.
6 update(vi) becomes true whenever vi is updated.

90

Kim et al

x

updates of x which is not exported

updates of x which is exported

time

103 5
value

Fig. 3. Example of updating x

or equal to n can be described as follows.

Make a list of all the integers less than or equal to n (and greater than one).
Strike out the multiples of all primes less than or equal to

√
n, then the numbers

that are left are the primes. 7

We would like to monitor and check whether there exists a prime number
between 99990 and 100000. For that purpose, an event foundPrime is defined
in lines 5 to 7 of Figure 4. The experiment shows that there exists one prime
between 99990 and 100000.

01:MonScr

02: export event foundPrime;

03: monobj int SieveMain.sa.numTested;

04: monobj int SieveMain.sa.numPrimes;

05: event foundPrime = update(SieveMain.sa.numPrimes) when

06: (99990 <= SieveMain.sa.numTested

07: && SieveMain.sa.numTested <= 100000);

08:end

Fig. 4. PEDL script for checking the existence of prime between 99990 and 100000

Figure 5 shows a Java code for the Sieve of Eratosthenes. An integer
being tested is declared as numTested in line 14. numPrimes declared in line
15 indicates the total number of prime numbers upto numTested. Main code
in execute() from line 22 to line 42 contains a nested loop. Lines 30 to 41
form an outer loop which increases numTested one by one. Lines 33 to 35
make an inner loop which divides numTested with prime numbers less than
or equal to

√
numTested. Lines 37 to 40 store numTested as a prime number

and increase numPrimes by 1 if there is no prime number which can divide
numTested.

The computational complexity of the Sieve program(Figure 5) is O(n
√
n)

(the outer loop takes O(n) and the inner loop takes O(
√
n)) where n is a max-

7 It is well-known mathematical fact that if there exists a prime greater than
√

n which
divides n, there exists a prime less than or equal to

√
n which divides n, too.

91

Kim et al

01:public class SieveMain{

02: Sieve sa;

03: SieveMain() { sa = new Sieve();}

04: public static void main(String[] args) {

05: SieveMain sm = new SieveMain();

06: sm.sa.initialize(Integer.parseInt(args[0]));

07: sm.sa.execute();

08: }

09:}

10:class Sieve {

11: public Sieve sa;

12: public int primes[];

13: public int maxCandidate;

14: public int numTested; // current number being tested

15: public int numPrimes; // number of primes found

16:

17: public void initialize(int i) {

18: maxCandidate = i;

19: primes = new int[maxCandidate];

20: }

21:

22: public void execute() {

23: int k = 0;

24: int sqrt_i=0;

25: boolean flag = false;

26:

27: primes[0] = 1;

28: primes[1] = 2;

29: numPrimes = 2;

30: for (numTested = 3; numTested <= maxCandidate; numTested++) {

31: k = 1;

32: sqrt_i = (int)(Math.sqrt(i));

33: for (flag = true; k < numPrimes && flag; k++)

34: if (primes[k] <= sqrt_i && numTested % primes[k] == 0)

35: flag = false;

36:

37: if (flag) {

38: numPrimes++;

39: primes[numPrimes - 1] = numTested;

40: }

41: }

42: }

43:}

Fig. 5. The code of the Sieve of Eratosthenes

92

Kim et al

imum number to check. The Sieve program sends around 1.08×n snapshots
to an event recognizer (n×numTested + 0.08×numPrimes).

We performed the experiment using Linux 2.2 machine (2X 550 Mhz PIII,
1GB memory, IBM JDK 1.3.1) and Windows 2000 machine (1.4Ghz PIV,
512MB memory, Sun JDK 1.3.1). The sieve program runs on Linux ma-
chine. Event recognizer runs on Windows 2000 machine. The bottom line of
Figure 6.a) shows the execution time of the uninstrumented Sieve program.
Testing integers from 1 to 200000 takes 2.3 seconds. Testing integers from 1
to 800000, however, takes 22.6 seconds. The frequency of taking snapshots
decreases as n increases because of O(n

√
n) computational complexity of the

Sieve program, which decreases the overhead ratio by Java-MaC as n increases.
Figure 6.b) shows the overhead ratios of NoAbstract, and ValueAbstract. NoAb-
stract slows down the Sieve program 3.1 times when n is 200000. The overhead
ratio decreases to 1.5 times when n increases to 800000. ValueAbstract reduces
the overhead 73% compared to the overhead of NoAbstract when n is 200000.
As n increases, the bottleneck of event evaluation diminishes, which decreases
the amount of reduction by ValueAbstract.

a) b)

Fig. 6. Overhead to the Sieve of Eratosthenes (a) Execution time (b) Overhead
ratio

7 Conclusion

We have described theoretical study as well as practical implication of compu-
tational characteristics of run-time monitoring. We define the class of prop-
erties run-time monitoring can evaluate accurately; a class of monitorable
properties is a strict subset of a class of safety properties. In addition, we
proved that evaluating properties written in process algebra takes intractable
time by transforming 3SAT problem to the trace validity problem. Finally, a
sound abstraction of the target program’s execution is developed which filters

93

Kim et al

out states unrelavant to the requirement properties. Java-MaC uses value ab-
straction to reduce the property evaluation overhead. Value abstraction is a
quite effective technique to reduce overhead, as we have seen in the case study
of the Sieve of Erathosthenes, where monitoring overhead is reduced 73% by
value abstraction.

This paper focuses on mathematical treatment of monitoring overhead.
Equally important topic is to measure and limit the range of monitoring over-
head. This topic is important because safety real-time systems require the
upper bound of worst case execution time for their guarantee of correct ex-
ecution. We are investigating real-time JVM as we upgrade Java-MaC to
incorporate steering features. Another topic is to take more advantage of
value abstraction. Current implementation of Java-MaC tests only simple ex-
pressions for value abstraction in order to minimize probe’s overhead. More
aggressive way of applying value abstraction, i.e. setting expVm not only sim-
ple expressions, but more compound ones seems promising. Also, we may
analyze execution history statistically to maximize states reduction of value
abstraction.

References

[1] P. Brémond-Grégoire, I. Lee, and R. Gerber. ACSR: An Algebra of
Communicating Shared Resources with Dense Time and Priorities. In Proc.
of CONCUR ’93, 1993.

[2] Sarah E. Chodrow and Mohamed G. Gouda. Implementation of the Sentry
System. In Software – Practice and Experience. John Wiley & Sons, Ltd., April
1995.

[3] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In
International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), 2002.

[4] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-Mac: a
run-time assurance tool for java programs. Runtime Verification Paris France,
2001.

[5] Moonjoo Kim. Information Extraction for Run-time Formal Analysis. PhD
thesis, Department of Computer and Information Science, University of
Pennsylvania, 2001.

[6] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[7] T. Savor and R. E. Seviora. An approach to automatic detection of software
failures in real-time systems. In IEEE Real-Time Technology and Applications
Symposium, pages 136 –146, June 1997.

[8] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software
Systems. PhD thesis, Department of Computer and Information Science,
University of Pennsylvania, 2000.

94

