
Electronic Notes in Theoretical Computer Science 70 No. 4 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 17 pages

Monitoring, Checking, and Steering of
Real-Time Systems

Moonjoo Kim a Insup Lee b Usa Sammapun b Jangwoo Shin b

Oleg Sokolsky b

a SECUi.com, Korea
b Department of Computer and Information Science,

University of Pennsylvania, U.S.A.

Abstract

The MaC system has been developed to provide assurance that a target program is
running correctly with respect to formal requirements specification. This is achieved
by monitoring and checking the execution of the target program at run-time. MaC
bridges the gap between formal verification, which ensures the correctness of a
design rather than an implementation, and testing, which only partially validates
an implementation. One weakness of the MaC system is that it can detect property
violations but cannot provide any feedback to the running system. To remedy this
weakness, the MaC system has been extended with a feedback capability. The
resulting system is called MaCS (Monitoring and Checking with Steering). The
feedback component uses the information collected during monitoring and checking
to steer the application back to a safe state after an error occurs. We present a case
study where MaCS is used in a control system that keeps an inverted pendulum
upright. MaCS detects faults in controllers and performs dynamic reconfiguration
of the control system using steering.

1 Introduction

The monitoring and checking (MaC) framework [5] has been designed to ensure
that the execution of a real-time system is consistent with its requirements at
run-time. The purpose of run-time analysis based on formal requirements is to
bridge the gap left by the two traditional analysis techniques: verification and
testing. On the one hand, formal verification analyzes all possible executions
of the system, but the analysis is performed on the specification of the system,
not its implementation. Recent advances in model extraction from software
and software model checking [1,3] have improved the situation somwhat. Still,
state-of-the-art verification techniques do not scale up well to handle large
systems. On the other hand, testing is applied to a system implementation

c©2002 Published by Elsevier Science B. V.

95



M. Kim et al.

Monitoring
Script

Event
Recognizer

Code

System
Running

Requirement
Specification

Checker

co
m

pi
la

tio
n

Filter
information

low-level
events and
condition changes

monitored events
conditions

instrumentation

object names

Fig. 1. MaC framework

and is routinely used on very large-scale systems, but does not guarantee that
all behaviors of the implementation are explored and analyzed. In either case,
run-time analysis can provide additional assurance that the current execution
is correct with respect to its requirements.

Figure 1 shows the structure of the MaC framework. The user specifies the
requirements of the system in a formal language. Requirements are expressed
in terms of high-level events and conditions. In addition, a monitoring script
relates these events and conditions with low-level data manipulated by the
system at run-time. Based on the monitoring script, the system is automat-
ically instrumented to deliver the monitored data to the event recognizer at
run-time. The event recognizer, also generated from the monitoring script,
transforms this low-level data into abstract events and delivers them to the
run-time checker. The run-time checker verifies the sequence of abstract events
with respect to the requirements specification and detects violations of the re-
quirements.

The reason for keeping the monitoring script distinct from the requirements
specification is to maintain a clean separation between the system itself, im-
plemented in a certain way, and high-level system requirements, independent
of a particular implementation. Implementation-dependent event recognition
insulates the requirement checker from the low-level details of the system
implementation. This separation also allows us to perform monitoring of het-
erogeneous distributed systems. A separate event recognizer may be supplied
for each module in such system. Each event recognizer may process the low-
level data in a different way, and all deliver high-level events to the checker in
a uniform fashion.

Run-time monitoring provides for efficient detection of violations of system
requirements and raise an alarm when a violation happens. At the same time,
the vast information collected during monitoring in order to detect require-
ment violations allows us to go one step further. The same information can
be used to diagnose the problem that has lead to the violation and suggest a
remedy for it. In order to apply this remedy, we need the means to provide
feedback from the run-time checker back into the system. Such a feedback

96



M. Kim et al.

Monitoring
Script

Event
Recognizer

Code

System
Running

Requirement
Specification

Steering
Script

Checker

co
m

pi
la

tio
n

events and
condition changes

Filter

steering
low-level

information

low-level

monitored events
and conditions

steering
actions

object names

Injector
invocations
steering action

Fig. 2. The monitoring and steering framework

from the checker into the monitored system is called steering.

The extended framework, which we call MaCS, is shown in Figure 2. The
checker has been given a capability to invoke steering actions that are delivered
to the system and executed with the help of an injector. The injector is added
to the system during the instrumentation process. The paper describes the
MaCS framework and its implementation in the Java-based MaCS prototype,
and presents a case study from the domain of automatic control.

The paper is organized as follows: we begin in Section 2 with the overview
of the MaCS framework. In Section 2.2 we introduce the notion of steering
and define a language for describing steering actions and their invocation
in Section 2.3. Section 2.4 presents an implementation of steering in the
MaCS prototype for monitoring, checking, and now, steering of Java programs.
Section 3 describes a case study of steering-based dynamic reconfiguration of
the control system for an inverted pendulum.

2 The MaCS Framework

Figure 1 shows the overall structure of the MaC architecture introduced in [5].
The architecture includes two main phases: static phase and run-time phase.
During the static phase, i.e., before a target program is executed, run-time
components such as a filter, an event recognizer, and a run-time checker are
generated from a target program and a formal requirements specification.
During the run-time phase, the instrumented target program is executed while
being monitored and checked with respect to a requirements specification.

A filter is a collection of probes inserted into the target program. The
essential functionality of a filter is to keep track of changes of monitored ob-
jects and send pertinent state information to the event recognizer. An event
recognizer detects an event from the state information received from the fil-

97



M. Kim et al.

ter. Events are recognized according to a low-level specification. Recognized
events are sent to the run-time checker. Although it is conceivable to com-
bine the event recognizer with the filter, we chose to separate them to provide
flexibility in an implementation of the architecture. A run-time checker de-
termines whether or not the current execution history satisfies a requirement
specification. The execution history is captured from a sequence of events sent
by the event recognizer.

2.1 The MaC Language

In keeping with this design philosophy, two languages have been designed for
use in the MaC framework. The Meta-Event Definition Language (MEDL)
is used to express requirements. It is based on an extension of a linear-time
temporal logic. It allows to express a large subset of safety properties of
systems, including real-time properties. Monitoring scripts are expressed in
the Primitive Event Definition Language (PEDL). PEDL describes primitive
high-level events and conditions in terms of system objects. PEDL is used
to define what information is sent from the filter to the event recognizer,
and how it is transformed into events used in high-level specification by the
event recognizer. PEDL, therefore, is tied to the implementation language
of the monitored system in the use of object names and types. MEDL is
independent of the monitored system. High-level specifications are written in
Meta Event Definition Language (MEDL). The separation between PEDL and
MEDL ensures that the architecture is portable to different implementation
languages and specification formalisms. Both of these languages are based on
the notions of events and conditions.

Events and Conditions. Events occur instantaneously during the system
execution, whereas conditions represent information that holds for a duration
of time. For example, an event denoting the call to method init occurs at the
instant the control is passed to the method, while a condition (difference

< 0.1) holds as long as the value of the variable difference does not exceed
0.1. The distinction between events and conditions is very important in terms
of what the monitor can infer about the execution based on the information
it gets from the filter. The monitor can conclude that an event does not occur
at any moment except when it receives an update from the filter. By contrast,
once the monitor receives a message from the filter that variable difference

has been assigned the value 0.05, we can conclude that position retains this
value until the next update.

We use events and conditions to capture and reason about temporal be-
havior and data behavior of the target program execution; events are abstract
representations of time and conditions are abstract representations of data.
For formal semantics of events and conditions, see [5,6].

To illustrate MEDL and PEDL specification, we will describe their compo-
nents as well as an example in Figure 3, which will check whether an elevator

98



M. Kim et al.

stops at the height level with the floor.

ReqSpec evenLevelElevator // MEDL script
// imported events and conditions
import event startElevator, currentFloor, heightAtStop;
// auxiliary variable declarations
var floorHeight;
var desiredHeight;
var difference;
// definition of events and conditions
condition even = difference < 0.1 && difference > -0.1;
// safety properties and alarms
alarm uneven = start( !even );
// auxiliary variable updates
startElevator ->

{ floorHeight’ = 4; }
currentFloor ->

{ desiredHeight’ = value(currentFloor, 0) * floorHeight; }
heightAtStop ->

{ difference’ = value(heightAtStop, 0) - desiredHeight; }
end

MonScr evenLevelElevator // PEDL script
// exported events and conditions
export event startElevator, currentFloor, heightAtStop;
// declarations of monitored entities
monobj int Elevator.floor;
monobj int Elevator.stop().height;
monmeth void Elevator.init(void);
// definitions of events and conditions
event startElevator = startM( Elevator.init(void) );
event currentFloor = update( Elevator.floor );
event heightAtStop = update( Elevator.stop().height );

end

Fig. 3. MEDL and PEDL scripts for the elevator example

2.1.1 Meta Event Definition Language (MEDL)

The safety requirements (invariants) are written in MEDL. A MEDL specifi-
cation includes the following sections:

Imported events and conditions. A list of events and conditions delivered
by the event recognizer is declared. Definitions of imported events and con-
ditions are given in a separate script discussed below. In Figure 3, the three
imported events are startElevator, currentFloor, heightAtStop.

Definitions of events and conditions. Events and conditions are defined
using imported events, imported conditions, and auxiliary variables, whose

99



M. Kim et al.

role is explained later in this section. These events and conditions are then
used to define safety properties and alarms. The condition even in Figure 3
uses the auxiliary variable called difference to define the even level of the
elevator. Events can have tuples of values asociated with them. For exam-
ple, an event that corresponds to the update of a variable has the single value
that is the new value of the variable. An event for a method call contains
values of all the parameters. Expression value(currentFloor,0) returns
the first (in this case, the only) value associated with event currentFloor.

Safety properties and alarms. The correctness of the system is described
in terms of safety properties and alarms. Safety properties are conditions
that must be always true during the execution. Alarms, on the other hand,
are events that must never be raised (all safety properties [7] can be de-
scribed in this way). Note that alarms and safety properties are comple-
mentary ways of expressing the same thing. The reason that we have both
of them is because some properties are easier to think of in terms of condi-
tions, while others are in terms of alarms. Using the condition even in the
elevator example from previous section, we define an alarm called uneven,
which will alarm whenever the condition even becomes false.

Auxiliary variables. In order to increase expressive power of MEDL, we
allow auxiliary variables to be used in MEDL specifications. Auxiliary vari-
ables can be used to define events and conditions, and their values are
updated in response to events. Auxiliary variables allow us, for example,
to count the number of occurrences of an event, or talk about the ith oc-
currence of an event. From the elevator example, the auxiliary variables
floorHeight, desiredHeight, difference are used to keep the height
of a floor, the desired stop height, and the difference between the desired
stop height and the actual stop height, respectively. The difference vari-
able, for example, is updated by the occurrences of the heightAtStop event.
A special auxiliary variable currentTime is used to refer to the current time
of the target program. It is set to be the last timestamp received from the
filter.

When specifying how the variables are updated, we use primed and un-
primed variables to refer to their new and, respectively, old value of the
variable. This is necessary to ensure that the outcome of checking does not
depend on the order of event evaluation. Consider the following artificial
example.

e -> { x’ = 5 }
event e1 = update(x);
event e2 = start( x == 5 );
e1 -> { x1’ = x; }
e2 -> { x2’ = x1’; }

An occurrence of event e, by assigning a new value to x, triggers both
events e1 and e2. By using x1’ in the update of x2, we require that
event e1 be processed before e2. If, on the other hand, x1 was used in

100



M. Kim et al.

the update, the outcome would be the same for any evaluation order. The
algorithm for evaluating MEDL formulas keeps the dependency graph for all
events, conditions, and variable updates and evaluation proceeds according
to the dependencies. Cyclical dependencies are detected and rejected by
the algorithm. See [10] for more details.

2.1.2 Primitive Event Definition Language (PEDL)

PEDL is the language for writing low-level specifications that map run-time
data of the system execution into high-level events and conditions. PEDL
encapsulates all implementation-specific aspects of the monitoring process,
and therefore, is by necessity specific to the target programming language. A
PEDL specification consists of the following sections.

Exported events and conditions. Events and conditions to be sent from
an event recognizer to a run-time checker are declared, and must match the
imported section of the MEDL script. The exported events in the elevator
example are startElevator, currentFloor, heightAtStop.

Declarations of monitored entities. This section is specific to the target
programming language. In a typical programming language, monitored
entities are variables and control locations in the program. The eleva-
tor example is designated for Java, and its monitored entities, therefore,
are written closely to Java. The monitored objects are Elevator.floor,

Elevator.stop().height, and the monitored method is Elevator.init().

Definitions of events and conditions. This section uses monitored enti-
ties declared in the previous section to define events and conditions. Again,
this is specific to the target programming language. Typical primitive events
are updates of monitored variables and visits to monitored control loca-
tions, such as function calls. In order to make event recognition fast, we
require that all events and conditions defined in a PEDL specification are
in terms of a single state in the execution trace. That is, no history infor-
mation needs to be stored by the event recognizer. In our elevator exam-
ple, the event startElevator occurs when the Elevator.init() method
starts. The event currentFloor and the event heightAtStop occur when
the Elevator.floor and Elevator.stop().height are updated, respec-
tively.

2.2 Steering

In addition to monitoring the system and detecting property violations, MaCS
can provide feedback to the system based on the information collected during
monitoring. This feedback can alter the execution of the system in an at-
tempt to solve the detected problem or avoid a more serious failure. We call
this feedback steering [9]. More generally, we can make the checker perform
a complex computation and communicate the result back to the system to
enhance the system’s functionality.

101



M. Kim et al.

steering script evenLevelElevator

// steering entities
steered objects

boolean Elevator:doorLock;
void Elevator:open();

// steering actions
steering action blockDoor =

{ Elevator:doorLock = true; } before call Elevator:open();

end

Fig. 4. steering script for the elevator example

Steering is accomplished by steering actions. Since the checker is executing
separately from the system, steering consists of two phases. First, a steering
action is invoked by the checker. The invoked action and its parameters are
transferred to the system and the action is executed when the system is ready.
There is by necessity a delay between an invocation and the corresponding
execution of an action. Therefore, it is important that we can control when
invocations as well as executions happen.

The structure of the MaC framework extended with steering is shown in
Figure 2. The functionality of the runtime checker is extended with the ability
to invoke steering actions and pass them to injector, which is incorporated into
the running system during instrumentation. The injector accepts invocations
of steering actions and translates them into low-level steering of the objects,
i.e., calls to methods of system objects or assignments to system variables.

Steering is described in a steering script, discussed in the next session. The
steering script compiler generates an injector from the definition of steering
actions. The compiler also produces additional instrumentation directives that
are applied to the system together with monitoring instrumentation. The user
has the ability to control the moment when a steering action is executed in the
target system. This is done by providing steering conditions with each action.
Execution of a steering action is delayed until its condition is satisfied. Steering
conditions are static, i.e., they are fully evaluated during instrumentation.

2.3 A Language for Steering Actions

To specify steering actions, we designed a special scripting language SADL
(Steering Action Definition Language). Figure 4 shows the steering script
from the elevator example.

The script consists of two main sections: declaration of steered objects
(that is, system objects that are involved in steering) and definition of steer-
ing actions where the declared objects are used. Since steering is performed
directly on the system objects, SADL scripts are by necessity dependent on

102



M. Kim et al.

// *** imported actions ***
import action blockDoor();

// *** the invocation of the blockDoor steering action ***
uneven -> { invoke blockDoor(); }

Fig. 5. Action invocation in the MEDL script

the implementation language of the target system.

Our prototype implementation of the monitoring and steering framework
aims at systems implemented in Java. Because of this, SADL scripts used
in the prototype are also tied to Java. The steered objects can be fields
and methods of Java classes as well as local variables of methods. In the
example, the steered object are the field doorLock and the method open()

of the Elevator class. The first one is updated when the steering action is
invoked, while the second one is used in the definition of the steering condition.

The second section of the steering script defines steering actions and spec-
ifies steering conditions. An action can have a set of parameters that are
computed by the checker and passed to the system together with the action
invocation. The body of an action is a collection of statements, each of which
is either a call to a method of the system or an assignment to a system vari-
able. In the example, the steering action assigns true to the doorLock field
to lock the elevator door, and is allowed to happen before the open() method
is called so that the door cannot be opened by the open() method.

In addition to a steering script, the requirement specification language,
MEDL, is extended to provide for invocation of steering actions. An action is
invoked in response to an occurrence of an event or an alarm.

The MEDL fragment shown in Figure 5 captures the extensions to the
script of Figure 3 needed to prevent the elevator door from opening when
the elevator stops in the wrong position. We declare the steering action
blockDoor, imported from the steering script, which is then invoked in re-
sponse to the alarm uneven.

2.4 Steering in the MaCS Prototype

A prototype implementation of the MaC framework has been implemented and
tested on a number of examples. The prototype is targeted towards monitoring
and checking of programs implemented in Java. Java has been chosen as the
target implementation language because of the rich symbolic information that
is contained in Java class files, the executable format of Java programs. This
information allows us to perform the required instrumentation easily.

The PEDL language of the prototype allows the user to define primitive
events in terms of the objects of a Java program: updates of program variables
(fields of a class or local variables of a method) and method calls. Automatic

103



M. Kim et al.

instrumentation guarantees that all relevant updates are detected and propa-
gated to the event recognizer.

The prototype includes interpreters for PEDL and MEDL. The MEDL in-
terpreter is the run-time checker. It accepts primitive events sent by the event
recognizer and re-evaluates all events and conditions defined in the MEDL
script. The PEDL interpreter is the event recognizer. It accepts the low-
level data sent by the instrumented program and, based on the definitions in
the monitoring script, detects occurrence of the primitive events and delivers
them to the run-time checker. In addition, the PEDL interpreter produces the
instrumentation data that is used to automatically instrument the system.

The MaC instrumentor is based on JTREK class library [4], which pro-
vides facilities to explore a Java class file and insert pieces of bytecode while
preserving integrity of the class. During instrumentation, the instrumentor
detects updates to monitored variables and calls to monitored methods and
inserts code to send a message to the event recognizer. The message contains
the name of the called method and its parameter values, or the name of the
updated variable and its new value. Each message contains a time stamp that
can be used in checking real-time properties.

In order to implement steering in the MaC prototype, we added the fol-
lowing components:

• A parser for SADL. The parser produces two components: 1) a list of ac-
tions together with their conditions in the form that can be used by the
instrumentor; 2) a new class, Injector, discussed below.

• The injector is the component responsible for communication with the
checker. When the system is started, the injector is loaded into the vir-
tual machine of the monitored system. At run time, when a steering action
is invoked, the injector receives a message from the checker and sets a flag
to indicate that the steering action has been requested. The bodies of the
steering actions are also represented in the prototype as methods of the
Injector class.

• The functionality of the instrumentor is extended to insert the additional
code at the positions prescribed by the steering conditions. The code tests
the flag for action invocation and makes calls to the injector to execute
the action. If multiple actions can be executed at the same location, their
invocation flags are checked sequentially.

• The runtime checker is extended to handle action invocations.

3 Steering-based Dynamic Reconfiguration

In this section, we describe the case study that demonstrates the utility of
the MaCS framework in dynamic flexible control systems. We used our MaCS
tool to implement a fault-tolerance layer for an inverted pendulum controller.
The architecture of the control system is based on the Simplex architecture

104



M. Kim et al.

for control systems [8]. The goal of the Simplex architecture is to enable
dynamic reconfiguration of the system in order to improve functionality and
performance without sacrificing safety. The architecture assumes the existence
of a safety controller with known properties. Users are allowed to introduce
experimental controllers that may be more efficient than the safety controller,
but pose a certain degree of risk of misbehavior. In that case, the system falls
back to the safety controller.

The inverted pendulum (IP) system consists of a motor driven cart which
is equipped with two quadrature encoders. One sensor measures the position
(track) of the cart via a pinion which meshes with the track. The other
sensor measures the angle (angle) of the pendulum attached to the cart. The
pendulum has one degree of freedom, freely rotating around the horizontal axis
that is perpendicular to the track. The purpose of the IP control system is to
maintain the pendulum upright by activating an appropriate controller which
transmits a correct voltage output (volts) to the motor. The architecture of
the control system is shown in Figure 6.

The starting point for the case study was to notice that MaCS can be used
to monitor the state of the system and provide the switching logic necessary
to dynamically switch controllers using steering, if necessary.

����
����
����
����

AD/DA

converter

Decision Module

device
driver

Operating System
IP hardware

sensor, actuator signal

IP controller application

Controllers

angle, track

volts

Fig. 6. Inverted Pendulum Control System

In order to use the Java-oriented MaCS prototype in the case study, we had
to implement the control system in Java, which we will refer to as IP-Java.
The class diagram is shown in Figure 7. Users can register experimental con-
trollers at run-time using the ECRegister application. All controllers have to
implement the Controller interface that has methods to set the input val-
ues and perform the computation of the control value. The DMServerThread

class accepts the new controller requests via KnockKnockProtocol and re-
places (or installs) the experimental controller in the decision module. The
DecisionModule class is responsible for communicating with the inverted pen-
dulum device. It first reads the current positioning information (track and
angle values) from the device, then invokes the currently installed controller,
and delivers the control value (volts) to the device. Since the device drivers
were provided to us as C routines, we had to use Java Native Interface to
access them. The IP-Java system also includes the safety controller that can
be used as a fall-back if an experimental controller fails. However, the deci-

105



M. Kim et al.

sion module by itself does not attempt to use the safety controller, relying on
MaCS to initiate the switch at the right moment.

IP

ServerSocket

Socket

DMServerThread

KnockKnockProtocol

DecisionModule

ECRegister

dynamic
controller
loader
application

SafetyController

ExternalController

EC1

EC0

JNI Library

calc_command()
safety_test()
send_command()
getAngle()

. . .

socket
link

JNI
invocation

replaceEC()

IP device

Fig. 7. IP-Java Schematic Diagram

Figure 8 presents the extended control system, IP-MaCS that uses the
checker to monitor the state of the pendulum. Whenever new values are
obtained from the device, the checker computes whether the state of the sys-
tem is within the safety region and, if it is getting into the dangerous area,
invokes the switch to the safety controller.

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

setEC()

setSC()

IP.sadl

IP−Java application
Instrumented

Checker

IP device

monobj ...

event ...

cond abnormal

cond overVolts

IP.pedl IP.medl

calcSafeVal−>...

IP−Java

F
ilter

Injector

Event Recognizer

steering signal

monitored
events

raw
stream
of events

Fig. 8. IP-MaCS Schematic Diagram

The MaCS application is described in three scripts, IP.pedl, IP.medl,
and IP.sadl, discussed below.

Information extraction. The IP.pedl exports four primitive events to
be monitored: startPgm, ev current angle, ev track pos, and ev volts.
The first one is emitted once at the start of the program, while the other
three correspond to the updates of the value exchanged between the control
system and the device. Each of the values is represented as a variable in

106



M. Kim et al.

the decision module: DecisionModule.angle, DecisionModule.track and
DecisionModule.volts, respectively. Figure 9 shows the definition of the
event ev current angle. Definitions of other primitive events are similar.
The value associated with each primitive event is the updated values of the
variable.

MonScr IP

export event ev_current_angle;

// angle is a monitored variable

monobj float DecisionModule.angle;

// send event whenever the monitored variable is updated

event ev_current_angle = update(DecisionModule.angle);

end

Fig. 9. Excerpts from the IP.pedl

Checking safety conditions. The script IP.medl performs the computation
of the safety conditions. The safety conditions are stated in terms of the
control (volts) and the four state variables of the system: angle and track as
well as their first derivatives. The values for the derivatives are not available
directly and have to be estimated by the checker. Every time the value of
angle or track is updated, the checker recomputes the value for the derivative
based on the new difference of the new and old value of the monitored variable:

var float theta, thetadot; // variables for state values

ev_current_angle -> {

theta’ = value(ev_current_angle, 0)/52.29578;

// convert the sensed value to radians

thetadot’ = (theta’ - theta) / 0.020;

// 0.020 is the control period in milliseconds

}

Whenever the primitive event ev volts happens, the checker performs the
safety computation. The result of the safety computation is two conditions:
outOfTrack and overVolts. The first condition is defined as

condition outOfTrack = track_pos’ > 40 || track_pos’ < -40;

meaning that the cart is close to the end of the track. The other condition
means that the value of volts is out of range for the given state of the system.
The computation is a complex expression that we do not show here.

This script also contains sections needed by steering actions. Figure 10
presents a fragment of the MEDL script showing the declaration of the steering
action change2SC, imported from the steering script, the definition of the

107



M. Kim et al.

// imported declarations
import action change2SC();

// event definitions
event invokeSafeController =

start(outOfTrack || overVolts) when (controller == 1);

// steering invocation
invokeSafeController -> { controller’ = 0; invoke change2SC(); }

Fig. 10. Action invocation in the MEDL script

steering script IP

steered objects
// list objects to be steered and point of steering action

DecisionModule IP:dm;
// the target of steering is the object dm of type DecisionModule
// located in the class IP

float DecisionModule:volts;
// anchor position for the injection of steering action

steering action change2SC =
{ call (IP:dm).setSC(); } before read DecisionModule:volts;
// setSC() method invoked
// at the position right before the variable volts is read

end

Fig. 11. The steering script for the inverted pendulum

event invokeSafeController that is raised by the checker when it detects an
abnormal situation, and the invocation of the steering action when the event
invokeSafeController is raised. As soon as either outOfTrack or overVolts
condition becomes true, the checker invokes the steering condition change2SC.

Steering actions. The script in Figure 11 shows two steered objects and one
steering action. These objects are the decision module object, referenced as
the field dm of the main class IP, and the field volts of the DecisionModule

class. The first one contains the methods that are called when the steering
action is invoked, while the second one is used in the definition of the steering
condition.

The steering action change2SC calls a method that replaces the current
controller with the safety controller, and is allowed to happen whenever the
variable volts in the decision module is about to be read.

108



M. Kim et al.

Experiments. We have performed a number of experiments with the sys-
tem, with and without MaCS. The goal of the experiments was to prove that
steering can be used in dynamically reconfigurable real-time control systems.
Perhaps more importantly, we wanted to use the experiments to identify the
bottlenecks in our MaCS implementation.

We first ran the system with just the safety controller to make sure that
MaCS does not interfere with the the operation of the controller. Visually,
the pendulum successfully maintained in the upright position. We observed
more jitter in the cart position in the steady state compared to the original
Simplex implementation of the inverted pendulum control system, but that
had more to do with the Java re-implementation of the system than with the
presence of MaCS. Instrumentation added for MaCS did not increase jitter.
On the other hand, detailed measurements showed that instrumentation in-
troduced by MaCS has caused a significant slowdown of the system. Without
instrumentation, the system running the safety controller took, on the average
27.7 microseconds per control cycle, with very little standard deviation. After
instrumentation has been performed, the execution time rose to 176.7 mi-
croseconds on the average, and the standard deviation rose significantly from
1.44 to 7.67. However, compared to the length of the control cycle, which is
20 milliseconds, the increase is negligible.

We then introduced a faulty experimental controller into the system. The
experimental controller would produce the same outputs as the safety con-
troller for a fixed period of time and then “get stuck,” sending a constant
random value to the motor. In all experiments, the MaCS checker success-
fully detected the fault and invoked the switch to the safety controller in time
for it to keep the pendulum from falling. The constant value sent to the
motor by the faulty controller causes the cart to start moving in one direc-
tion, however in all experiments the cart stayed on track. To experiment with
longer executions, we added a second steering action, switch2EC, which was
invoked within a fixed period of time after switch2SC. This action restored
the experimental controller, giving us a sequence of switches between the two
controllers. The pendulum was successfully stabilized after each fault in all
executions.

This MaCS-based controller switching operates in such a way that faulty
values are delivered to the motor until the checker detects a problem and the
switch takes effect. The “round trip” time of the monitoring/checking/steering
cycle turned out to be 320 milliseconds on the average, which means that about
16 faulty values have been delivered to the motor. The standard deviation of
the round trip time was almost 84000.

The large delay is attributed to the communication between the filter and
the event recognizer. The filter has been optimized for large volumes of mon-
itored data. It uses a buffered stream to send data to the event recognizer.
When there is much data to send, buffered communication offers significant
savings over the non-buffered communication, because of the additional cost

109



M. Kim et al.

associated with each transmission. However, for the inverted pendulum case
study it does not make sense, since the amount of monitored data transmit-
ted in one control cycle is less than the buffer size. The obvious solution to
this problem is to let the user decide whether to use buffering and specify
the buffer size. This feature will be incorporated into the next MaCS release.
Preliminary results show that, without buffering, steering can be performed
withing one control cycle.

4 Conclusions and Future Work

We have described an approach to perform run-time correction of system
behavior by supporting the notion of steering actions. Steering is embedded
into a monitoring and checking framework, which detects violations of formal
requirements in the observed execution of the monitored system. Monitoring
in conjunction with steering can be used to provide an additional layer of fault
tolerance in the system.

The case study described in this paper demonstrates that it is possible
to use checking and steering features of the MaCS framework in dynamic
control applications. The advantages of using MaCS is the increased flexibility
of implementing control algorithms and the ability to completely separate
design of controllers for a particular control problems and switching logic for
dynamically replacing controllers.

Synchronous steering. Results of the case study encouraged us to explore
an alternative approach to steering, which we call the synchronous steering.
In the current implementation, the checker is sent the computed data for cor-
rectness checking asynchronously, and the system is allowed to proceed with
its computation while the checking is performed. In this case, incorrectly
computed values may be delivered by the system to its environment before a
steering action takes effect to correct the problem. While this has not been a
problem in the inverted pendulum case study, in general, it may not be accept-
able. Alternatively, we can pause the system while checking is performed, and
let it proceed with its computation only if the checker confirms correctness.
In this way, we can guarantee that incorrect values can never be output. We
note that a similar notion has been suggested as the “before-store” placement
of events in [2].

We have originally settled on the asynchronous scheme since our initial es-
timates of MaCS performance suggested that steering delays will be unaccept-
ably long in the steering scheme. However, recent aggressive improvements in
the MaCS implementation have made it significantly more efficient. At the
same time the inverted pendulum case study shows that for some systems with
relatively slow dynamics the synchronous steering may be a viable alternative,
which would deliver more stringent guarantees of the system correctness. We
are currently extending to support the notion of synchronous steering.

Acknowledgements.

110



M. Kim et al.

We thank Prof. Lui Sha and Kihwal Lee at the University of Illinois at
Urbana-Champaign for many fruitful discussions on the Simplex architecture
and for help in the experimental setup of the inverted pendulum case study.
This research was supported in part by ONR N00014-97-1-0505, NSF CCR-
9988409, NSF CCR-0086147, NSF CISE-9703220, and ARO DAAD19-01-1-
0473 grants. The paper is dedicated to late Anirban Majumdar.

References

[1] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting finite-state models from java source code.
In Proceedings of the 22nd International Conference on Software Engineering,
June 2000.

[2] A. Gates, S. Roach, O. Mondragon, and N. Delgado. DynaMICs:
Comprehensive support for run-time monitoring. In Proceedings of the First
Workshop on Run-Time Verification, July 2001.

[3] K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, Apr. 2000.

[4] Java Technology Center, Compaq Corp. Compaq JTrek . Online
documentation: http://www.digital.com/java/download/jtrek/.

[5] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokolsky.
Formally specified monitoring of temporal properties. In Proceedings of the
European Conference on Real-Time Systems - ECRTS’99, pages 114–121, June
1999.

[6] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime
assurance based on formal specifications. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
1999.

[7] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

[8] L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28,
July/August 2001.

[9] O. Sokolsky, S. Kannan, M. Kim, I. Lee, and M. Viswanathan. Steering
of real-time systems based on monitoring and checking. In Proceedings
of WORDS’99F, Fifth International Workshop on Object-Oriented Real-time
Dependable Systems, Nov. 1999.

[10] M. Viswanathan. Foundations for the Run-time Analysis of Software Systems.
PhD thesis, CIS Dept. Univ. of Pennsylvania, 2000.

111


