
Systematic Testing of Reactive Software with
Non-deterministic Events:

A Case Study on LG Electric Oven

Yongbae Park, Shin Hong, Moonzoo Kim
CS Dept. KAIST, South Korea

Email: {yongbae.park, hongshin}@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

Dongju Lee, Junhee Cho
LG Electronics, South Korea

Email:{dongju81.lee, junhee.cho}@lge.com

Abstract—Most home appliance devices such as electric ovens
are reactive systems which repeat receiving a user input/event
through an event handler, updating their internal state based
on the input, and generating outputs. A challenge to test a
reactive program is to check if the program correctly reacts
to various non-deterministic sequence of events because an unex-
pected sequence of events may make the system fail due to the
race conditions between the main loop and asynchronous event
handlers. Thus, it is important to systematically generate/test
various sequences of events by controlling the order of events
and relative timing of event occurrences with respect to the
main loop execution. In this paper, we report our industrial
experience to solve the aforementioned problem by developing a
systematic event generation framework based on concolic testing
technique. We have applied the framework to a LG electric oven
and detected several critical bugs including one that makes the
oven ignore user inputs due to the illegal state transition.

I. INTRODUCTION

In the ubiquitous computing society, we utilize numerous

devices controlled by software including complex ones such

as PCs and smartphones to simpler ones such as electric

ovens and refrigerators. Most such simple devices are reactive
systems whose main operation is to repeat the following three

tasks in a main event handling loop:

1) receiving an input through an input event handler (for

example of an electric oven, the key event handler adds

a key value of the auto-cook button to the input buffer

when a user pushes the auto-cook button to start cooking

food (see Figure 1 and Figure 2))

2) computing/updating internal state (e.g., an electric oven

updates its internal state as a cooking mode and calcu-

lates electric voltage/current for the auto-cooking oper-

ation, which will be given to the heaters)

3) generating output (e.g., actuating the heaters and updat-

ing the LED display to show that the oven is cooking)

Note that an input event handler can receive an input event

anytime. If an input event is given while the main loop is

computing its internal state, the main loop is suspended and the

event handler is executed instead; the main loop computation

is resumed after the event handler completes its task.

However, this event-driven feature may cause race con-

ditions between the event handlers and the main loop and

result in concurrency errors unless proper synchronization

between the main loop and the event handlers is enforced.

In other words, because an input event can be given non-
deterministically, the corresponding event handler may un-
intentionally interfere the main loop anytime by updating

the global variables shared by the main loop. For example,

suppose that an event handler adds a key input from a user into

an input buffer and the main loop removes a key value from the

buffer to react (see Figure 2). Without proper synchronization,

the input event handler and the main loop can make the input

buffer inconsistent and cause critical errors (see Section V-A).

Unfortunately, developers of home appliance devices often

do not recognize this issue seriously because they think that

home appliance devices such as electric ovens and refrigerators

are simple enough to be free from complex concurrency

problems. Consequently, such systems often suffer corner-case

bugs that can be triggered by exceptional execution scenarios

only. For example, if a user pushes a button and turn a dial at

the same time, an electric oven may result in an abnormal state

where it does not react to any button/dial and a user cannot

control the oven at all (see Section V-B).

In this paper, we report our industrial experience to solve

the aforementioned problem by developing a systematic event
generation framework. The framework can systematically gen-

erate various sequences of events by controlling not only

the order of events, but also relative timing of the event

occurrences with respect to the main loop execution. The main

idea of the framework is to utilize concolic execution (a.k.a.

dynamic symbolic execution) to systematically generate events

at every important execution point of the main loop (i.e., the

framework can generate race conditions between the main loop

and the event handlers if any. See Section III). Since the market

for micro-controllers loaded on reactive systems is large (18

billion units in 2014 [17]) and will increase further with the

advance of the IoT technologies, the benefit of the proposed

technique for reactive systems will become more important.

We have applied the event generation framework to the

controller software of a LG electric oven and detected several

new bugs including atomicity violation bugs at the input buffer

(Section V-A) and an illegal state transition bug (Section V-B)

at system level, which make the oven fail to react to any

button/dial and a user cannot control the oven at all. The

contributions of this paper are as follows:

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.132

29

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.132

29

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.132

29 ICSE 2015, Florence, Italy
Software Engineering in Practice

• This paper addresses the challenges to test reactive sys-

tems with non-deterministic events in detail, particularly

concurrency problems caused by race conditions between

the main loop and the input event handlers. The clearly

reported problem in the paper can help field engineers

avoid possible threats in reactive software (Section V).

• We have developed a systematic and automated frame-

work to generate test executions of various event se-

quences, which can improve the quality of the reactive

software compared to the industrial practice of ad-hoc

manual testing (Section III).

• We have demonstrated the effectiveness of the event

generation framework to detect bugs in an industrial

reactive system (i.e., a LG electric oven) by detecting

new bugs (Section V).

The rest of this paper is organized as follows. Section II

explains the overview of this testing project including the

description of the LG electric oven. Section III explains the

systematic event generation framework based on concolic

testing technique. Section IV describes the testing setup of

the project. Section V reports the testing results and Sec-

tion VI discusses lessons learned from this project. Finally,

Section VII summarizes the paper.

II. PROJECT OVERVIEW

A. Background

Before starting this project in 2014, the authors at KAIST

had collaborated with the LGE research department on auto-

mated testing techniques for embedded software using con-

colic testing (a.k.a., dynamic symbolic execution) [16] in

2013. Through the collaboration with KAIST, LGE was partly

convinced of the advantages of concolic testing techniques in

terms of the corner-case bug detection capability as shown in

the several industrial applications [9], [8], [10], [11]. Thus,

as the first step to adopt a new technology in a long term

roadmap, LGE decided to start a project to apply concolic

testing to simple home appliance products first.

This pilot project was five months long and the project

team consisted of a professor and two graduate students from

KAIST, a research engineer from the LGE research depart-

ment, and a senior field engineer from the LGE production

department for home appliance products. A main goal of this

project was to develop a systematic testing framework based

on concolic testing technique to detect corner-case bugs in

the home appliance products of LGE. We target the controller

software of an electric oven which has been on market for

three years (Section II-B). The electric oven has a well-defined

requirement specification for its behavior (see Figure 3). The

full source code of the oven controller software was given to

the KAIST authors. It took around two months for the KAIST

authors to understand the domain knowledge of the electric

oven and its controller code (Section II-C).

B. LG Electric Oven

Figure 1 shows a target LG electric oven. The target

electric oven is a high-end multi-function electric oven and

Key�
interface

Door

Charcoal�heaterSteam�outlet

Roast
heater

Microwave
emitter

Auto�
cook
button

LED�display Control
dial

LED�display

Enter
button

Stop
buttonFunction

dial
Defrost
button

Fig. 1. LG electric oven

it provides dozens of pre-defined cooking recipes for dishes

such as steaming dumpling and baking bread using the four

heating mechanisms (steam, charcoal heater, roast heater, and

microwave). The oven has temperature sensors, a door sensor,

a cooling fan, and a lamp inside. The front panel of the oven

has four buttons (defrost, auto-cook, enter, and stop buttons),

two multi-function dials (a function dial and a control dial),

and LED display at the center of the panel. The oven provides

multiple functionalities which a user can select by a sequence

of button and dial inputs (see Figure 3).

C. Electric Oven Controller Software

Figure 2 shows the architecture of the electric oven con-

troller software. The controller software consists of a main

loop, two input event handlers (a key/door event handler and

a timed event handler), two output event handlers (a LED event

handler and a cook command event handler), and the shared

memory between the main loop and the event handlers.

• Main loop:
For each iteration, the main loop updates the control state

based on the given input data in the input buffer, and

generates the hardware control commands such as LED

command or cooking command. In addition, the main

loop directly reads sensor data such as oven temperature.

• Input event handlers:
The key/door event handler is invoked when a key event

or a door event is given by a user (i.e., when a user

presses a key or opens a door). The timed event handler is

periodically invoked to report time progress (e.g., cooking

time progress). These input event handlers transform an

external input signal representing a physical event into

input data and then store the data in the input buffer,

which will be retrieved by the main loop.

• Output event handlers:
The LED event handler and the cook command han-

dler are periodically executed to convert the commands

generated by the main loop to low-level signals which

activate the oven hardware such as the LED display and

a microwave emitter.

303030 ICSE 2015, Florence, Italy
Software Engineering in Practice

Key�input

Cooking
command

LED
commandShared�

memory
Input�buffer

Input�signals

Key/door
Event�
Handler Main�Loop

LED�output

Cooking�device�
control�output

Oven�controller�software

Shared�memory Shared�memory

Timed
Event�
Handler

Timer

Door�input

LED
Handler

Cook
Command�
Handler

Output�signals
Fig. 2. Architecture of the electric oven controller software

������
��	
���

�����
������������

�����
�����������

	���������

���������
���������

��������
����������

��������

�����

��	���

��������
�����
����

��������
��	
���

���������
������

�������� ��
���������

�����

�����
��������

��������

��������
�������

event
Legend

�����
��	
���

����

States�in�the�
cooking�mode

	���������

���������
������

	�����
��	
���

�
���
��	
���

���������� �����

��������

�����
�
��
������

�����
���
�

�����
���
����	���

Initial�state

Fig. 3. Requirement specification of the LG electric oven

Figure 3 shows the (simplified) requirement specification on

the controller software as an abstract state transition machine,

which was specified by the original developers of the controller

software. A state of this state machine consists of the two

variables curMode and curView which represent a current

operation mode and a current LED panel view of an oven

respectively. curMode can be one of the following values:

• init: an initial mode when the oven boots up

• menu: a cook menu selection mode

• cooking: a mode where steam/heaters are being used

• finish: a mode representing the cooking is completed

• pause: a mode representing a situation where a user

pauses cooking by pressing the stop button at cook mode.

curView can be one of default, select-recipe, manual-cook,

clean-defrost, cook-option, clean, simple-cook, and preheating
(each of which shows the LED display differently).

The state transition machine transits from one state to

another based on a given input data (including key events, a

door event, and time progress). The key events include events

for the four buttons (i.e., defrost, auto-cook, enter, and stop)

and events for the two dials (i.e., function-L and function-
R that represents events of turning the function dial counter-

clockwise or clockwise, respectively. Similarly, control-L and

control-R are defined for the control dial). For example, when

the oven is initially turned on, the state (i.e., curMode and

curView) of the oven is set as (init,default) (see the left

most state in the figure). After 5 seconds from the oven is

turned on, the state changes to (menu,default) where a user

can give a command through the four buttons and the two

dials on the front panel. Note that the controller should not

transit to “undefined” states that are not specified in the state

transition machine. For example, when the oven state is in

cooking mode (see the middle three states in the figure),

its corresponding curView should be one of simple-cook,

default, or preheating. 1

The main loop can be preempted by an event handler but an

event handler is non-preemptible (i.e., when an event handler

runs, the main loop or another event handler cannot execute

(no nested interrupt handlers allowed)). In other words, when-

ever an event is raised, CPU immediately suspends the main

loop execution and starts executing a corresponding event

handler; CPU resumes the main loop execution after the event

handler completes its task.

The target control software has 658 functions in 180 files,

and the total source code lines is 19,655 lines long (3505

branches) in C. The controller software implements an event

by using an interrupt signal and an event handler as a function

registered for the signal.

III. SYSTEMATIC EVENT GENERATION FRAMEWORK

We have developed an event generation framework that can

systematically control event generation in the following two

ways (and their combination) where e1, e2, and e3 indicate

different events:

• Controlling the order of events:
The framework can generate multiple sequences of events

such as e1.e2.e3..., e1.e3.e2..., e2.e1.e3..., and so on.

1The full state machine specification defines a state as a tuple of the five
variables and contains 122 states and 634 transitions. Figure 3 is an abstract
version and has non-deterministic transitions due to the abstraction.

313131 ICSE 2015, Florence, Italy
Software Engineering in Practice

• Controlling the relative timing of the event occurrence
with respect to the main loop execution:
The framework can generate multiple sequence

of events such as [e1@l1.e2@l2.e3@l3]1[]2...,
[e1@l1.e2@l3]1[e3@l5]2..., []1[e1@l3.e2@l3.e3@l4]2...
where l1, l2, ... are the code locations in the main loop

and [e3@l5]2 means that e3 occurs right before the main

loop executes the statement at l5 at its second iteration.

Note that for the same order of events e1.e2.e3, there

exist various sequences of different relative timing cases.

The framework can instrument the main loop of the target

C source code by statically inserting probes at every important

code location in the main loop (Section III-A). Then, the

probes invoke event handlers systematically by controlling

each probe through concolic testing (Section III-B). Since an

event generation immediately leads to invocation of an event

handler that is registered to handle the event, the inserted

probes directly invoke event handlers (without generating

events) at “important” execution point of the main loop. “im-

portant” code location varies depending on the instrumentation

strategy (see Figure 4).

A. Instrumentation of Target Program

First, a user should specify a segment of the target program

as the main loop by adding #pragma SEGF start and

#pragma SEGF end before and after the segment. The

framework inserts the probes in the specified main loop

segment recursively so that the bodies of the callee functions

in the segment will be instrumented with the probes and so

on (see main_task() in Figure 4(b)).

We have developed the following two strategies to insert

the probes, which have different bug detection capabilities and

different runtime costs:

• Statement-based strategy inserts a probe at every source

code statement in the specified target code segment.

• Basic block-based strategy inserts the probe at the begin-

ning of every basic block in the target code segment.

The statement-based strategy inserts more probes than the

basic block-based one because a basic block usually contains

multiple statements. Consequently, the statement-based strat-

egy will generate execution scenarios where event handlers

are invoked more frequently than the execution scenarios

generated by the basic block-based strategy. Thus, we can

expect that the statement-based strategy will have higher bug

detection capability but require more testing time than the

basic block-based strategy.

Figure 4(a) shows example target code to insert the probes.

Suppose that a user specifies line 5 as the main loop by insert-

ing line 4 (#pragma SEGF start) and line 6 (#pragma
SEGF end). Also, suppose that ev1Hdl() at lines 14-15

is registered as an event handler for events of the ev1 type

(for example, the electric oven has 10 events of the key/door

type including enter, stop, etc. (see Section II-C)). Fig-

ure 4(b) shows the instrumented target code by the statement-

based strategy. The framework inserts a probe p(1) before

main_task() at line 5 where 1 is a probe ID which is a

unique number for each probe. Also, the framework inserts

probes into the body of main_task() (i.e., inserting p(2),

p(3), and p(4) at lines 10 to 12). Similarly, the framework

inserts probes into the body of f() recursively (not shown

in the figure). Note that the framework does not insert a

probe at lines 14-15 because ev1Hdl() is not called from

main_task() or its sub-functions. Figure 4(c) shows the

instrumented target code by the basic block-based strategy.

The framework inserts probes at only line 5 and line 10

because Figure 4(c) has only two basic blocks beginning at

line 5 and line 10, respectively.

Two graduate students spent 2 months to develop the idea

of the current systematic event generation mechanism and

implement the framework. The event generation framework

is written in 1540 lines of C++ code using Clang library.

B. Systematic Event Generation

The event generation framework systematically generates

various sequences of event handler invocations including var-

ious relative timing of event handler invocations with respect

to the main loop execution through concolic execution.

Figure 5 shows the pseudo code of probe_ev1() that

can invoke ev1Hdl() which is registered to handle an

event of the type ev1. ev1Loc at line 1 is a two di-

mensional symbolic array whose values decide which probe

will invoke ev1Hdl() at a specified main loop iteration.

ev1Loc[NUM_ITER_EV1][MAX_EV1_OCCUR] at line 1

indicates that the instrumented target program will invoke

ev1Hdl() at most MAX_EV1_OCCUR times at each itera-

tion of the main loop for total NUM_ITER_EV1 iterations.

ev1Loc[i] contains a sub-array that has a list of the

IDs of the probes each of which will invoke ev1Hdl()
once at the i + 1 th iteration (i.e., ev1Loc[i][j] in-

dicates an ID of a probe that will invoke ev1Hdl() at

the i + 1 th iteration). For example, ev1Loc[1][0]=3,

ev1Loc[1][1]=0, ev1Loc[1][2]=2 indicates that the

ev1Hdl() will be invoked by the probes whose IDs are

3 and 2 at the second main loop iteration. Note that

ev1Loc[1][1] is ignored because 0 is not a valid probe

ID (i.e., no probe has an ID 0). iter at line 2 indicates the

current iteration of the main loop (iter will be increased

by one at the end of every main loop iteration). Lines 4 to

7 declare each element of ev1Loc as a symbolic integer

variable. We use CREST-BV [10] to perform the dynamic

symbolic execution, which is an instrumentation based dy-

namic symbolic execution tool for C programs (faster than

KLEE [10]) (CREST-BV is the extension of CREST [1] by

supporting bit-vector arithmetic).

Lines 9 to 18 explains probe_ev1(). isInHdl at line 10

indicates if a current probe is being executed by an event han-

dler. A probe should not invoke an event handler if it is called

by an event handler since the oven software does not allow

nested interrupt handlers (Section II-C). 2 If isInHdl is false

2A probe may be executed by an event handler because some functions
may be called by both main loop and the event handler.

323232 ICSE 2015, Florence, Italy
Software Engineering in Practice

�
�
�

�
!
"
#
$

�%
��
��
��
�
��

&
��� �
��'(�)
������'&(�)
*��
��
�+,-.��
��
�
��/�
�'(0
*��
��
�+,-.����11

2�����
��/�
�'(�)�
��� 30
34�%055
����
� 2
�
	'6(055
 ���7
��2
�
	'8���(01

2�����2�9��'()
& 0�6::0�&1

��� �����	�
����������������

�
�
�

�
!
"
#
$

�%
��
��
��
�
��

&
��� �
��'(�)
�����'&(�)
*��
��
�+,-.��
��
�'�(0 �
��/�
�'(0
*��
��
�+,-.����11

2�����
��/�
�'(�)�
��� 30
�'�(0 34�%0
�'�(0 	'6(0
�' (0 	'8���(01

2�����2�9��'()
& 0�6::0�&1

�����	�����	���������������

��������	��������������

�
�
�

�
!
"
#
$

�%
��
��
��
�
��

&
��� �
��'(�)
�����'&(�)
*��
��
�+,-.��
��
�'�(0 �
��/�
�'(0
*��
��
�+,-.����11

2�����
��/�
�'(�)�
��� 30
�'�(0 34�%0
	'6(0
	'8���(01

2�����2�9��'()
& 0�6::0�&1

�����	�����	���������������

����������
����������������

Fig. 4. Example showing how the two strategies insert the probes

01:int ev1Loc[NUM_ITER_EV1][MAX_EV1_OCCUR];
02:int iter=0;
03:
04:void init(){
05: for(i=0;i<MAX_ITER_EV1;i++)
06: for(j=0;j<MAX_EV1_OCCUR;j++)
07: sym_int(ev1Loc[i][j]);}
08:
09:void probe_ev1(int probeId){
10: static int isInHdl = FALSE;
11: if(!isInHdl){
12: for(j=0;j<MAX_EV1_OCCUR;j++){
13: if(ev1Loc[iter][j]==probeId){
14: isInHdl = TRUE;
15: ev1Hdl();
16: ev1Loc[iter][j]=COMPLETED;
17: isInHdl = FALSE;
18:} } } }

Fig. 5. Pseudo code of a probe for the event type ev1

and the current probe is the one to invoke ev1Hdl() (i.e.,

ev1Loc[iter][j] == probeId at line 13), isInHdl
is set as true and ev1Hdl() is invoked. After ev1Hdl()
completes its task, the current element of ev1Loc is marked

as completed (line 16) and isInHdl is set back to false (line

17).

For example, a sequence of events [e@l1.e@l3]1[e@l5]2
can be generated by setting evLoc[0]={1,3,0} and

evLoc[1]={5,0,0} with the assumption that each main

loop iteration generates maximum three events. In this way,

the framework can generate various execution scenarios by

systematically invoking event handlers at every important

execution points of the main loop.

Finally, the event generation framework performs the afore-

mentioned task for every event type separately at each inserted

probe. Thus, the framework can comprehensively generate

various sequences of invocations of event handlers including

exceptional ones such as an execution that contains multiple

invocations of an event handler at the single code location of

the main loop (see Figure 10).

C. Related Techniques

Researchers have applied model checking techniques such

as Verisoft [4] and SPIN [6] to find bugs in reactive programs.

For example, SPIN was used to verify an event-driven network

server product of Lucent Technology [7] and Verisoft was

used to test an CDMA library of Lucent Technology [2].

A limitation of these techniques for industrial application is,

however, that a user has to write an abstract model of the target

program (or specify a non-deterministic execution environment

by using VS_toss(n) for Verisoft), which is not affordable

for most industrial software projects under hard time-to-market

pressure. Compared to these model checking techniques, our

approach is more affordable to industrial setting because our

framework, with relatively less human effort, can generate test

executions with various sequences of events including relative

timing of the events in fine granularity.

The idea of testing a sequential version of a concurrent

program has been investigated in the bounded model checking

of multithreaded programs [14]. Still, there are few techniques

that support event-driven reactive programs. Regehr et al. [15]

presents a technique that inserts random interrupt-raising

probes to the target software (TinyOS applications) to gen-

erate various interrupt execution scenarios. Kotker et al. [12]

presents a testing technique that utilizes sequential versions of

interrupt-driven programs for timing analyses. Unlike these

work, our technique systematically generates various event

scenarios and also various input values by concolic testing

technique to detect functional errors in event-driven reactive

software.

IV. TESTING OVEN CONTROLLER SOFTWARE WITH THE

EVENT GENERATION FRAMEWORK

We first applied the framework to test units of the controller

(Section IV-A) and then to test the entire controller software

(Section IV-B). Also, we applied noise-based random testing

techniques for comparison (Section IV-C). The experiments

were performed on the machine with Intel I5 3.6 Ghz and 16

Gigabyte memory, which runs 64 bits Ubuntu linux.

A. Unit-level Testing

We have applied the framework to the following three units:

• a circular queue (calling it CQ) (145 lines of C code with

7 functions) to which the input event handler store input

333333 ICSE 2015, Florence, Italy
Software Engineering in Practice

values and from which the main loop loads input values

(input buffer in Figure 2).

• a load module that enforces the voltage to the heaters

• a model option unit that recognizes the oven hardware

and enables/disables relevant oven features.

We selected these three units to apply the event generation

framework because the original developer of the oven con-

troller put high priority to test these three units due to the

significance of these three units for reliable oven products. In

particular, the correctness of a circular queue (CQ) is very

crucial because the main loop computes and updates the state

of the oven based on the data obtained from CQ. In addition,

CQ is a general unit which can be reused in other products

of LGE. Thus, it is important to detect bugs in CQ if any.

We focus to describe how we applied the event generation

framework to test CQ in detail. 3

1) CQ Data Structure: CQ contains the following variables:

• qArray is an array that serves as a buffer for input

values

• headIdx points to an element of qArray to pop up

• tailIdx points to an element of qArray to store a

new input value

• queueFull indicates if the queue is full. If

headIdx==tailIdx and queueFull is false,

the queue is empty. If headIdx==tailIdx and

queueFull is true, the queue is full.

In addition, CQ uses dequeue() (see Figure 8) and

enqueue() to add (store) and remove (pop up) a new value

to/from the queue.
2) Unit Testing Setup for CQ : Figure 6 explains how we

setup the unit testing driver for CQ. test_init() at line 3

initialize the data structure of CQ symbolically as follows, to

generate various execution scenarios:

• qArray: We set the size of qArray as three which is a

minimal number to represent various situations such as

headIdx �= tailIdx and qArray has a valid element

which is pointed by neither of these two variables (see

Figure 10). In addition, qArray is initialized to have

three concrete values 1, 2, and 3.

• headIdx and tailIdx are declared as symbolic in-

teger variables whose ranges are between zero and two

because the size of qArray is three.

• queueFull is declared as a symbolic Boolean variable

such that if queueFull==true, headIdx must be

equal to tailIdx.

As a result, test_init() represents all possible states of

CQ whose size is three.

We specified line 7 of Figure 6 as the main loop body

which removes a value from CQ. Also we set up that the

input event handler calls enqueue(v++) where v is ini-

tially 4. We tried to setup symbolic environment minimal to

represent various scenarios but still avoid unnecessarily large

symbolic search space that will increase the testing time.

3To secure the intellectual property rights of LGE, information on the units
is not written in the paper except CQ that uses a publicly available algorithm.

1:...
2:int main() {
3: test_init();
4: int qSize = getQSize();
5: for (i=0; i < qSize; i++) {
6: #pragma SEGF start
7: data=dequeue();
8: #pragma SEGF end
9: readData[count++] = *data; }
10:
11: for(i=0; i < count; i++)
12: assert(readData[i]==writtenData[i]);
13:}

Fig. 6. Unit testing driver for CQ

We configured the event generation framework to generate

executions that run the main loop three times and invoke the

input event handler at most twice per main loop iteration (i.e.,

NUM_ITER_EVKEY=3 and MAX_EVKEY_OCCUR=2).

As a test oracle, lines 11 and 12 check if the values

read by dequeue()s are equal to the values written by

enqueue()s.

We used two search strategies for dynamic symbolic exe-

cution: DFS and random negation which randomly selects a

branch condition to negate. We tested the instrumented CQ

for 30 minutes per search strategy. For the random negation

search strategy, we repeated the testing 30 times.

B. Integration Testing

We have applied the event generation framework to the

integrated controller software after removing the functions that

have heavy hardware dependency such as a EEPROM module

and a heater driver module. Note that the event generation

framework serves as a hardware emulator to invoke event

handlers for physical events so that we can test most part of

the controller software without the real hardware. The target

controller software we tested contains 527 functions in 12,691

lines of C code which is around 80% of the all functions or

65% of the all lines of the controller software.

The target controller program has one main loop with the

four event handlers (i.e., the key/door event handler, the timed

event handler, the LED event handler, and the cook command

handler in Figure 2). We built a symbolic environment to

invoke the input event handlers with various key/door events

(e.g., enter, stop, function-L, door-open, etc) and timed

events systematically. For the main loop, we modified the main

loop code to iterate twelve times (i.e., NUM_ITER_EV = 12).

We configured the event generation framework to invoke an

event handler at most n times for each of the four event types

(i.e., a key/door event type, a timed event type, a LED event

type, and a cook command event type) per main loop iteration

where n ∈ {2, 3, 4} (i.e., MAX_EV_OCCUR ∈ {2, 3, 4}).

For test oracles, the full state machine specification is

utilized (see Figure 3 which is the abstract version of the

full state transition machine). In other words, assert()
statements are inserted at the statements that make a state

transition to check if the current state transition is valid (i.e.,

following the state machine specification).

We used two search strategies for dynamic symbolic execu-

tion: DFS and random negation. We tested the instrumented

343434 ICSE 2015, Florence, Italy
Software Engineering in Practice

01:int main() {// a main loop thread
02: ...
03: while(...) {
04: delay(200)); main_task();
05: }}
06:
07:void evHnd() { ... }
08:
09:void *evGen(...){//an event gen thread
10: while(...) {
11: usleep(rand()% MAX_EVENT_GEN_SLEEP);
12: pthread_kill(main_thread...); }}

Fig. 7. Noise injection based random testing

the controller software for 1 hour per search strategy. For the

random negation search strategy, we repeated the testing 30

times.

C. Noise Injection based Random Testing technique

To demonstrate the effectiveness and the efficiency of the

event generation framework through comparison, we applied

noise injection based random testing techniques to the target

program. A noise injection based random testing is a popular

technique to test concurrent programs because it can detect

concurrency bugs without complex analysis of the target

program [3], [13].

Figure 7 shows the pseudo code of the noise injection

based random testing framework. To apply a noise injection

based random testing, we create 2 threads; one thread runs

the main loop and the other thread repeatedly generates

events (i.e., generates signals to the main thread by invoking

pthread_kill(main_thread, SIGUSR<i>)). When

the main thread receives an event (i.e., an interrupt signal

SIGUSR<i>), the main thread suspends its current execution

and executes the registered event handler (e.g., evHnd() at

line 7).

To inject random timing noise, we insert timing delays to

both the main loop thread and the event generation thread to

diversify event generation scenarios.

• Main loop thread:
As shown at line 4, we insert 200 microseconds delay at

every statement in the main loop and its callee functions

recursively (in the similar way of the statement-based

strategy to insert the probes) so that an event generation

thread can probabilistically raise multiple events during

the 200 microseconds delay at each statement of the main

loop. 4

• Event generation thread:
We insert the following three maximum timing delays at

each event generation: 500, 1000, and 1,500 microsec-

onds (i.e., MAX_EVENT_GEN_SLEEP at line 11 can be

500, 1000 or 1500).

For the random unit testing of CQ, we used the similar

unit testing driver in Figure 6 except that CQ is initialized

4An event generation thread takes around 65 microseconds on average
to execute usleep() and pthread_kill() (lines 11-12 of Figure 7)
because usleep(0) takes 60 microseconds on average due to system call
overhead. Thus, the 200 microseconds delay can allow generating three events
at each statement of the main loop.

1:void* dequeue() {
2: void* result = NULL;
3: if (!isEmpty()) {
4: result = headIdx;
5: headIdx = getNextIdx(headIdx);

/* the inconsistency error can occur
if two enqueue()s occur here. */

6: queueFull = false;
/* the overwriting error can occur

if enqueue() occurs here. */
7: } else result = NULL;
8: return result; }

Fig. 8. Buggy dequeue() of the circular queue CQ

randomly not symbolically. We tested CQ for 30 minutes and

repeated the random testing 30 times.

For the integration testing, the random testing uses the

similar integration testing driver used for the event generation

framework except that input events to generate are selected

randomly. We tested the controller software for 1 hour and

repeated the random testing 30 times.

V. TESTING RESULTS ON LG ELECTRIC OVENS

This section describes the results of applying the systematic

event generation framework to the LG electric oven. We spent

a month to apply the framework to the controller.

A. Result of the Unit Testing

We detected the following two atomicity violation bugs in

CQ (Section IV-A) by using the event generation framework 5.

• an overwriting bug which causes the queue to overwrite

the oldest value in the queue with a new value and cause

dequeue() (see Figure 8) to incorrectly return the new

value instead of the oldest value

• an inconsistency bug which causes the queue to lose all

values in the queue because the queue considers itself

empty while it is not

Figure 8 describes a simplified dequeue() of the circular

queue which has these two bugs.

Figure 9 illustrates the overwriting bug. Suppose that the

size of the queue is 3 and the queue contains three elements 1,

2, and 3 as specified in the testing setup of CQ (Section IV-A).

After executing line 4 of dequeue(), result points to

the first element of qArray. After executing line 5 and line

6, headIdx points to the second element and queueFull
becomes false, respectively. Suppose that enqueue(4) is

invoked between line 6 and line 8 (enqueue() can proceed

only when queueFull is false). Note that enqueue(4)
overwrites the first element with 4 because tailIdx points

to the first element and queueFull is false. As a result,

dequeue() will return 4 instead of the oldest value 1. A

main cause for the original developers to miss this bug is that

they could not imagine or test an execution scenario where

5The overwriting bug and the inconsistency bug are multi-variable atomicity
violation bugs [5] on headIdx/queueFull and queueFull/*result,
respectively. However, we decide to use a term ‘atomicity bug’ in this paper
because field engineers are more familiar with the term.

353535 ICSE 2015, Florence, Italy
Software Engineering in Practice

Main�loop execution

�;��<����'(

!;<����.���
4	
��0

��<����' (
event

#;�������
�����0

<����.���
44���� � � �

��
�=�3 �
��=�3

<>��
6
CQ�status

<����.���
44	
�� � � �

��
�=�3�
��=�3

<>��
6

<����.���
44���� � �

<>��
6

�����

����� ��
�=�3�
��=�3

Fig. 9. Error caused by the overwriting bug

the input event handler which calls enqueue() is invoked

between line 6 and line 8 of dequeue() when the queue is

full.

Figure 10 illustrates the inconsistency bug. Suppose that

the size of the queue is 3 and the queue contains only

two valid elements 1 and 2. After executing line 5 of

dequeue(), headIdx points to the second element. Sup-

pose that enqueue(4) and enqueue(5) are executed by

the event handler between line 5 and line 6. Then, the third

element and the first element have 4 and 5, respectively. After

executing line 6, although the queue contains 5, 2, and 4, the

queue considers itself empty because queueFull becomes

false. We fixed these two bugs by modifying the circular queue

algorithm and related variables.

Note that it is more difficult to detect the inconsistency bug

than the overwriting bug because the bug triggering condition

for the inconsistency bug (i.e., two consecutive invocation of

the input event handler between line 5 and line 6) is stronger

than the condition for the overwriting bug (i.e., one invocation

of the input event handler between line 6 and line 8).

Table I shows the testing results of the event generation

framework and the random techniques. The systematic event

generation framework inserted 17 and 11 probes in CQ by the

statement-based and basic block-based, strategies, respectively.

For example, the statement-based strategy detects the incon-

sistency bug in 15.30 seconds (after executing CQ 1128 times)

with the DFS search strategy (see the second column of the

third row in the table). With the random search strategy, the

statement-based strategy detects the bug at every testing run

(i.e., 30 minutes testing) of the 30 testing runs; it detects the

bug in 339.63 seconds on average after executing CQ 19418.60

times. But the basic block-based strategy failed to detect the

bug (indicated as ‘N/A’ in the table) because it did not insert

the probe between line 5 and line 6 of Figure 8 that are in the

same basic block.

Compared to the event generation framework, the random

testing technique completely failed to detect the inconsistency

bug with maximum 1,500 microseconds delay at event gen-

Main�loop execution

�;��<����'(

�;��
�=�34
���?�3�=�3'&(

��<����' (event

!;<����.���
4	
���

<����.���
44	
�� � � �

��
�=�3 �
��=�3

<>��
6
CQ�status

<����.���
44	
�� � � �

�
��=�3��
�=�3

<>��
6

<����.���
44���� � �

<>��
6

�
��=�3��
�=�3

��<����'�(

<����.���
44	
�� � �

<>��
6

�
��=�3��
�=�3
#;�������
�����0

event

Fig. 10. Error caused by the inconsistency bug

eration (see the third row and the 10th column of the table).

Although the random testing technique detected the bug with

maximum 500 and 1,000 microseconds delays, the probability

to detect the bug is only 20% and 23%, respectively (see

the sixth and eighth columns of the third row of the table).

Consequently, the average time taken to detect the bug for

these two delays is more than 100 (=1577.90/15.30) times

longer than the event generation framework.

This is because the bug triggering scenario for the incon-

sistency bug is a very exceptional one and the probability

for the random technique to synthesize this scenario is very

low (also note that random techniques may generate redundant

execution scenarios repeatedly which wastes testing time). In

contrast, the event generation framework systematically tries to

analyze all execution scenarios with the DFS search strategy,

which can certainly detect the bug much faster than the random

technique. For the overwriting bug which is easier to detect

than the inconsistency bug, random testing detected the bug

faster than the event generation framework. Both the event

generation framework and the random testing techniques cover

around 70% of the branches of CQ.

B. Results of the Integration Testing

Through the integration testing, we observed more than 100

assert violations. For example, we found that the controller

made an illegal state transition from the state (menu,default)
to (cooking,select-recipe), which is an undefined state. In other

words, the full state machine specification has no such state.

Thus, once the oven controller gets into the undefined state,

the oven fails to react to any user input.

This illegal transition was made by the two consecutive

events auto-cook and function-L at the same main loop itera-

tion on (menu,default) state. In other words, the error occurs

when a user presses the auto-cook button then immediately
turns the function dial counter-clockwise when the oven is in

the menu mode. This error does not occur if a user presses

363636 ICSE 2015, Florence, Italy
Software Engineering in Practice

TABLE I
TIME TO DETECT THE BUGS IN CIRCULAR QUEUE

Event generation framework Random testing
Statement Basic Block 0–500 μsec. 0–1000μsec. 0–1500 μsec.

DFS Random DFS Random
Detect. Detect. Detect. Detect. Detect. Detect.

rate time rate time rate time

Overwriting 3.00 0.47
N/A N/A 1.00

0.01
1.00

0.01
1.00

0.01
bug (228) (35.13) (1.27) (1.97) (2.57)

Inconsistency 15.30 339.63
N/A N/A 0.20

1653.00
0.23

1577.90
0.00

1800.00
bug (1128) (19.41K) (0.33M) (0.31M) (0.36M)

TABLE II
TIME TO DETECT THE BUG IN THE CONTROLLER PROGRAM

Techniques Detect. time # of exec.

n = 2 STMT 195.10 3991.40
Event BB 172.63 3800.33

generation n = 3 STMT 208.60 2920.60
framework BB 249.43 3845.10

n = 4 STMT 280.03 3210.60
BB 249.63 3307.43

Random
500 μsec. 22.63 1.77

testing
1000 μsec. 23.63 1.97
1500 μsec. 24.30 1.47

the auto-cook button and then turns the function dial not

immediately (e.g., with 0.5 second interval between the two

actions). The original oven developers confirmed this problem

by replaying the erroneous scenario with the real oven device.

After analyzing the erroneous test executions, we found a

bug at the function fmt() which makes multiple state transi-
tions in one main loop iteration. Using fmt(), the controller

can handle multiple events fast in one main loop iteration. But

this makes the controller program complicated and fmt() does

not operate correctly with unexpected event sequences.

In the above erroneous execution, fmt() updates the cur-

rent state from (menu,default) to (cooking,simple-cook) with

auto-cook event first (see Figure 3). Then, with function-
L event, fmt() incorrectly updates the current state based

on the previous state (i.e., (menu,default)) not the recently

updated state (i.e., (cooking,simple-cook). Since some event

such as function-L may update the current state partially

(i.e., updating only curView, not curMode), fmt() updates

curView to select-recipe with function-L (as shown at the

top of Figure 3) because fmt() think that the current state is

still (menu,default). As a result, fmt() updates the current state

as (cooking,select-recipe) which is an undefined state.

A main cause for the original developers to miss this bug is

that they could not imagine or test an execution scenario where

a user presses the auto-cook button and turns the function dial

almost same time (i.e., at the same main loop iteration). After

fixing fmt(), all assert violations were removed.

Table II shows the testing results of the event generation

framework and the random techniques on the controller soft-

ware. The systematic event generation framework inserted

5009 and 2339 probes by the statement-based and basic block-

based strategies, respectively. The event generation framework

detected the illegal transition bug with the random search strat-

egy, but not with DFS at all. With the random search strategy,

the basic block-based strategy (BB) with MAX_EV_OCCUR=2

detects the bug at every testing run (i.e., 1 hour testing) of

the 30 testing runs. It detects the bug in 172.63 seconds after

executing the controller software 3800.33 times on average

(see the second row of the table). In addition, the bug detection

time increases as MAX_EV_OCCUR increases from 2 to 4

(i.e., from 172.63 seconds to 249.63 seconds) because larger

MAX_EV_OCCUR makes larger search space, which requires

more time to detect the bug. The event generation framework

and the random testing cover around 55% of the branches of

the target controller software.

The random testing techniques detected the bug 7.6 times

faster than the event generation framework with the basic

block-based strategy (BB) with MAX_EV_OCCUR=2. For ex-

ample, with the maximum timing delay of 500 microseconds

at the event generation thread, the random testing technique

detected the bug in 22.63 seconds after executing the program

1.77 times on average (see the eighth row of the table). Note

that the symbolic search space of this integration testing is

large (i.e., by containing more than 100 symbolic variables and

each execution generates around 6,000 symbolic conditions

to solve on average due to the large number of the inserted

probes). Therefore, the event generation framework based on

the concolic testing was slower than the random testing to

detect the illegal state transition bug in the control software.

VI. LESSONS LEARNED

A. Effectiveness of the Event Generation Framework

Through the project, we confirmed that the event generation

framework can detect critical corner-case bugs effectively

(Section V). This is because the framework can generate var-

ious timing scenarios of the event occurrences systematically

based on concolic testing including exceptional ones which

human engineers cannot think (Section III). Thus, by applying

the framework, developers can effectively improve the quality

of industrial reactive software.

B. Systematic Testing vs. Random Testing

We have compared the event generation framework with the

carefully designed random testing techniques (Section IV-C).

We observed that the systematic framework detected the

corner-case bug (i.e., the inconsistency bug) 100 times faster

than the random testing on small unit (i.e., CQ) because the

probability for the random techniques to synthesize the corner-

case execution scenarios is very low due to the generation of

the redundant test executions. However, we observed that the

373737 ICSE 2015, Florence, Italy
Software Engineering in Practice

huge symbolic search space is a bottleneck for the framework;

the random testing techniques were 5 times faster than the

framework on the whole controller software whose testing

generates huge symbolic search space (Section V-B).

Thus, it is beneficial to utilize various automated testing

techniques together because they have different characteristics.

For example, a user can apply the event generation framework

to unit testing first but apply the carefully designed random

techniques to system level testing first.

C. Industrial Adoption of the Advanced Testing Techniques

Through the discussion with the LGE field engineers, we

could make the following observations for the successful

technology transfer.

1) High Demand of Corner-case Bug Detection for Home
Appliance Domain: In general, home appliance developers are

sensitive to corner-case bugs because home appliances can

make tragic physical accidents (e.g., an electric oven may ex-

plode). Also, the relatively long lifetime of the home appliance

products encourages developers to improve the quality of their

products. Thus, the original developers of the electric oven

appreciated the bug reports and showed high interest to the

framework. As a result, LGE and KAIST plan to improve the

event generation framework and apply the framework to three

more home appliance domains in 2015.

2) Necessity of Training Developers: Another reason for

the smooth acceptance of the framework by the developers is

that the developers were already exposed to advanced software

analysis techniques before the project began. For example, one

of the developers worked on model checking during his master

study. Also, one KAIST author made a series of the eight

lectures on dynamic symbolic execution including detailed

tool design of CREST to LGE developers in 2012. Thus,

the developers can estimate the benefit and the manual effort

required to apply the new technique to their products and feel

more comfortable to adopt the technique.

D. Technical Challenges

Through the project, we identified the following technical

challenge to improve the quality of target software further.

1) Outdated Requirement Specification: We confirmed the

importance of the requirement specification by utilizing the

state machine specification to detect the illegal state transition

bug (Section V-B). However, we had to revise the specification

with the help of the original developers since the original

specification was outdated. It might be necessary to develop

a technique to generate static/dynamic invariant constraints

and utilize the constraints as test oracles since test oracle

generation is important for testing but still largely dependent

on human engineers.

2) Micro-controller Specific Low-level Compilation: Most

home appliance software are compiled using the micro-

controller specific compilers, which sometimes compile source

code in a non-standard way due to the hardware characteristics.

For example, an original developer told us that, for hardware

dependent variables, sometimes integer type casting does not

follow the standard C semantics. We could not find problems

caused by such issues because we did not test the hardware

dependent functions in this project. We will try to analyze such

low-level issues in the next year project.

VII. CONCLUSION AND FUTURE WORK

We reported our industrial experience to test a real-world

reactive software with non-deterministic events using the sys-

tematic event generation framework based on concolic testing

technique. We detected several critical errors in the controller

software, which had not been detected by the field engineers

before. As a result, through the application of the proposed

systematic event generation framework, we could improve

the quality of the LG electric ovens in practice. This project

result was evaluated high by LGE and we plan to apply the

framework to three more target domain next year and extend

the framework to resolve the technical issues found in the

project.

ACKNOWLEDGMENT

This work is supported in part by the NRF Mid-career

Research Program funded by the MSIP, Korea (NRF-

2012R1A2A2A01046172), the ITRC support program funded

by the MSIP, and supervised by the NIPA, Korea (NIPA-2014-

H0301-14-1023), and CTO Software Center in LG Electronics.

REFERENCES

[1] J. Burnim. CREST - automatic test generation tool for C. http://code.
google.com/p/crest/.

[2] S. Chandra, P. Godefroid, and C. Palm. Software model checking in
practice: An industrial case study. In ICSE, 2002.

[3] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel
Ur. Multithreaded Java program test generation. In ACM-ISCOPE
Conference on Java Grande (JGI), 2001.

[4] P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent
reactive software. In CAV, 1997.

[5] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set serializability violations. In ICSE, 2008.

[6] G. Holzmann. The Spin Model Checker. Wiley, New York, 2003.
[7] G. J. Holzmann and M. H. Smith. A practical method for verifying

event-driven software. In ICSE, 1999.
[8] M. Kim, Y. Kim, and Y. Choi. Concolic testing of the multi-sector

read operation for flash storage platform software. Formal Aspects of
Computing (FAC), 24(2), 2012.

[9] M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic testing
on embedded software: Case studies. In ICST, 2012.

[10] Y. Kim, M. Kim, Y. Kim, and Y. Jang. Industrial application of concolic
testing approach: A case study on libexif by using CREST-BV and
KLEE. In ICSE SEiP track, 2012.

[11] Y. Kim, Y. Kim, T. Kim, G. Lee, Y. Jang, and M. Kim. Automated unit
testing of large industrial embedded software using concolic testing. In
ASE experience track, 2013.

[12] J. Kotker, D. Sadigh, and S. A. Seshia. Timing analysis of interrupt-
driven programs under context-bounds. In FMCAD, 2011.

[13] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform for search-based
testing of concurrent software. In PADTAD, 2010.

[14] S. Qadeer and D. Wu. KISS: Keep It Simple and Sequential. In PLDI,
2004.

[15] J. Regehr. Random testing of interrupt-driven software. In EMSOFT,
2005.

[16] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In ESEC/FSE, 2005.

[17] Electronics Purchasing Strategies. Microcontroller market rebounds in
2014, August 2014. http://electronicspurchasingstrategies.com/2014/08/
14/microcontroller-market-rebounds-2014/.

383838 ICSE 2015, Florence, Italy
Software Engineering in Practice

