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ABSTRACT

Programmers maintain and evolve their software in a variety of programming languages to take

advantage of various control/data abstractions and legacy libraries. The programming language ecosys-

tem has diversified over the last few decades, and non-trivial programs are likely to be written in more

than a single language. Unfortunately, language interfaces such as Java Native Interface and Python/C

are difficult to use correctly and the scope of fault localization goes beyond language boundaries, which

makes debugging multilingual bugs challenging. Moreover, since existing fault localization techniques

mostly focus on small-size monolingual programs, the techniques show low accuracy on localizing the

fault of large-size multilingual programs.

To overcome the aforementioned limitations, I propose a mutation-based fault localization technique

for real-world multilingual programs. The key intuition behind the mutation-based approach is that

mutation testing results will be largely different depending on whether mutation is on correct statement

or mutation is on faulty statement. To improve the accuracy for locating multilingual bugs, I have

developed and applied new mutation operators as well as conventional mutation operators.

The evaluation of the proposed approach is performed on six non-trivial multilingual bugs which

are obtained from bug repositories for real-world open-source projects, such as Eclipse SWT, SQLite-

jdbc, Java-gnome, and Azureus. The size of target projects is ranging from 6KLOC to 341KLOC. The

result is promising in that the proposed technique identifies the faulty statements as the most suspicious

statements for all six bugs. Even in the worst case a programmer can locate the faulty statement within 8

statements recommended by the proposed technique. Especially, I describe a detailed experiment result

to suggest that mutation-based approach often provides the mutants which can be served as a hint to

fix the multilingual bug.
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Chapter 1. Introduction

As software evolves, many software systems are written in multiple programming languages to reuse

legacy code and leverage the languages best suited to the developers’ needs. Over the last few decades

language designers have made various choices in designing the syntax and semantics of their languages.

The result is a robust ecosystem where a few languages cover the most use in part due to open source

libraries and legacy code while many languages exist for niche uses [37]. This ecosystem is likely to make

developers write a multilingual program which is a non-trivial program written in more than a single

language. High-level languages such as Java, Python, and OCaml provide standard libraries, which

typically call legacy code written in low-level languages (e.g., C) to interface with the operating system.

A number of projects for the legacy libraries that have evolved for decades provide language bindings for

each language. A large scale software project employs a number of libraries written in multiple languages.

Correct multilingual programs are difficult to write in general in part due to the complex language

interfaces such as Java Native Interface (JNI) and Python/C, which require the programs to respect

a set of thousands of interface safety rules over hundreds of application interface functions [29, 33].

Moreover, once a bug occurs at interactions of code written in different languages, programmers are

required to understand the cause-effect chains across language boundaries. Despite the advances of

automated testing techniques for complex real-world programs [19, 24–26, 44], debugging multilingual

bugs in real-world programs is still challenging and requires significant human effort. For instance, Bug

322222 in the Eclipse bug repository crashes JVMs with a segmentation fault in C as an effect when

the program throws an exception in Java as the cause (Chapter 7). Locating and fixing this bug took a

heroic debugging effort of more than a year from 2009 to 2010 with hundreds of comments from dozens

of programmers before the patch went into Eclipse 3.6.1 in September 2010.

The most time-consuming step in debugging activity is to find the root cause of a bug (i.e., fault

localization). When a developer faces a program error (e.g., an assertion failure and a rule violation),

the developer should spend a lot of time on fault localization before fixing the error. More particularly,

as the complexity of a program increases like multilingual programs, the difficulty of fault localization

on the program also increases. For example, the Eclipse bug 322222 took 99% of the debugging time

to perform fault localization. However, many researchers did not conduct a study on fault localization

targeting multilingual bugs.

This dissertation presents a mutation-based fault localization (MBFL) technique for multilingual

programs which is effective (i.e., it identifies the locations of bugs precisely) and language agnostic (i.e.,

extensible for combination of various programming languages). The technique takes multilingual source

code of a target program and a set of test cases including at least one failing test case as input; it then

and generates a list of statements ordered by their relevance to the error (i.e., suspiciousness score).

To calculate the suspiciousness score of a statement, a MBFL technique first generates diverse variants

of target programs by systematically changing each statement (i.e., mutants), and then observes how

testing results change if a certain statement is mutated. In addition, to improve the accuracy of localizing

multilingual bugs (e.g., bugs whose causes and effects are located in code segments written in different

languages), I have developed new mutation operators focusing on localizing multilingual bugs 1.

1The proposed technique is an extension for multilingual bugs based on MUSE which targets to localize C bugs [38].
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The empirical evaluation of six real-world Java/C bugs demonstrates that the proposed technique

locates the bugs in non-trivial real-world multilingual programs far more precisely (i.e., the technique

identifies the buggy statements as the most suspicious statements for all six bugs) than do the state-of-

the-art spectrum based fault localization (SBFL) techniques (Chapter 4). For example, for Bug 322222

in the Eclipse bug repository, the technique indicates the statement at which the developer made a fix

as the most suspicious statement among a total of 3482 candidates (Chapter 7).

1.1 Limitations of Previous Approaches

A number of bug detection techniques targeting multilingual program errors [27, 29–32, 45–47, 49]

have been proposed. However, the techniques are not effective in debugging, because they can only

report certain kinds of safety rule violations; they cannot indicate the root cause of the bug, especially

when the bug does not explicitly involve any known safety rule violations. Moreover, these bug detectors

do not scale well to a large number of languages and various kinds of program errors since they have to

deeply analyze the semantics of each language for each kind of bug.

On the other hand, to indicate the root cause of a bug, many techniques [11, 22, 38, 51, 54] which

is only for fault localization have been suggested. Among them, a well-known approach is spectrum-

based fault localization (SBFL) technique which utilizes program spectrum (i.e., execution traces of the

program) collected by the coverage measurement tool for the program. SBFL takes source codes and

test cases as an input and then reports suspiciousness score of each program element to guide a good

starting point to localize the bug.

However, existing SBFL techniques only focus on monolingual program bugs. If a developer applies

existing SBFL techniques to multilingual programs, program spectrum written in different language is

not collected. Since multilingual bugs may be involved with code fragments of different languages, SBFL

techniques show bad precision for multilingual program bugs. Despite such weakness, until now, there

is no work to extend SBFL techniques to cover multilingual programs.

In addition, since the accuracy of SBFL techniques depends on the quality of a test suite, SBFL

techniques often show low accuracy under the poor quality of a test suite in real-world programs. If

SBFL techniques cannot collect diverse execution paths of the program due to the poor quality of the

test suite, SBFL techniques are more likely to assign the same suspiciousness score for multiple program

elements. A developer does not know which program element is more suspicious among the program

elements sharing same suspiciousness score, in the worst case, the developer may inspect all of the

program elements in the score group.

In the view point of manual debugger, recently Blink [28] combining Java debugger and C debugger

is suggested. However, multilingual bugs often have a long propagation path between the root cause of

the bug and its symptom, A developer may consume a lot of effort to indicate the buggy line (i.e., root

cause) without any suggestion of a good starting point to perform quickly debugging the bug.

1.2 Proposed approach

To overcome aforementioned limitations, I suggest a fault localization technique, called MUSEUM

(MUtation baSEd fault localization for mUltilingual prograMs), which shows a promising results on

real-world multilingual bugs and operates on the basis of two observations regarding the impact analysis

of mutants. MUSEUM reports suspiciousness score of program elements precisely in multilingual bugs
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that can reduce the human effort in debugging activity. In the fault localization field, MUSEUM is a

novel approach in terms of targeting multilingual bugs.

MUSEUM extends a mutation based fault localization technique, MUSE [38], which is restricted to

target monolingual bugs. To add multilingual features, I have analyzed JNI specification, and the result

is 15 new mutation operators that assist to localize the root cause of multilingual bugs. MUSEUM finally

works together with conventional mutation operators for C, Java and 15 new mutation operators.

1.3 Contribution

This dissertation provide the folliwing contributions:

• New mutation operators targeting multilingual program errors which are highly effective at locating

multilingual bugs (Section 3.3)

• Empirical demonstration of the high accuracy of the mutation-based fault localization technique

for the six real-world multilingual bugs (Chapter 4)

• Detailed report on three case studies to determine why and how the proposed technique can pre-

cisely localize real-world multilingual bugs (Chapter 5, 6 and 7).

1.4 Structure of the dissertation

The remaining dissertation is structured as follows.

Chapter 2 describes the background on multilingual debugging and fault localization techniques.

It begins by explaining safety rules in multilingual programs, then introduces existing multilingual bug

checkers with static and dynamic approach. Next, I describe fault localization techniques with an

illustrative example.

Chapter 3 explains our mutation based fault localization technique for multilingual bug. I first

describe a motivating example for the proposed approach. Then, I deliver the details of the proposed

approach with new mutation operators.

Chapter 4 provides an overview of the empirical study on the six real-world multilingual bugs. I

first explain the experiment setup, then I demonstrate the superior accuracy of the proposed technique

through the experiment results.

Chapter 5, 6, and 7 describe three case studies on real-world multilingual bugs in detail. For

each bug, the bug overview and a buggy line causing the bug are described. Then, I illustrate actual

mutants that assist the proposed technique to infer the buggy line.

Chapter 8 discusses observations made through the experiment. I address advantages of mutation

based approach and effectiveness of new mutation operators for localizing multilingual bugs

Chapter 9 concludes this dissertation with future work.
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Chapter 2. Background and Related Work

2.1 Multilingual Bugs

A multilingual program is composed of code segments in different languages that execute each

others through language interfaces (e.g., JNI [33] and Python/C). These language interfaces require the

multilingual programs to follow safety rules across language boundaries. Lee et al. [29] classifies safety

rules in Java/C and Python/C programs into three classes: (1) state constraints, (2) type constraints,

and (3) resource constraints.

• State constraints ensure that the runtime system of one language is in a consistent state before transiting

to/from a system of another language. For instance, JNI requires the program to not propagate a Java

exception before executing a JNI function from a native method in C. Python/C requires C code to

not acquire a global lock in Python twice because the global lock causes deadlock.

• Type constraints ensure that the programs in different languages exchange valid arguments and return

values of expected types at a language boundary. For instance, the NewStringUTF function in JNI

expects its arguments not to be NULL in C.

• Resource constraints ensure that the program manages resources correctly. These resource constraints

are comparable to the contracts of calling the free function for dynamically allocated memory in C.

For example, a local reference l to an Java object obtained in a native method m1 should not be reused

in another native method m2 since l becomes invalid when m1 terminates [33] (see Chapter 6 as an

example of a multilingual bug that violates this resource constraint).

A multilingual bug is caused by violating safety rules at language interface (i.e., foreign function

interface (FFI) bugs), and/or by unintended interactions of code across language boundaries. When a

program breaks an interface safety rule, the program crashes or generates undefined behaviors. Multilin-

gual programs respecting all interface safety rules still can have multilingual errors when the cause-effect

chain goes through languages interfaces. For instance, a program would leak a C object referenced by a

Java object that is garbage collected at some point. The cause of the memory leak is in Java at the last

reference to this Java object while the effect is in C because Java code is expected to free the C object

(Section 3.1).

2.2 Multilingual Bug Checkers

There are several static or dynamic approaches to check the constraints described in Section 2.1.

The majority of approaches targets the constraint violations in JNI because the most used language

combination is Java/C.

2.2.1 Static approach

Furr et al. [18] presents multilingual type inference system (called JSaffire) to ensure the type safety of

multilingual programs which use JNI. Some JNI functions (e.g., FindClass, GetFieldID, GetMethodID)
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use constant strings as a parameter to indicate a class name, a field name or a method signature in

Java. Since the constant string does not contain any type information, it is easy to get wrong. JSaffire

infers the type assumption of the constant strings in C and checks that the type assumption is consistent

with actual Java definition. However, JSaffire only checks statically type constraint violations at JNI

invocations while state constraint violations (e.g., pending exception) are still not resolved.

Tan et al. [49] proposes a framework (calling it ILEA) that enables existing Java analysis tools

to understand the behavior of C code. To do that, ILEA partially compiles the target C code into a

specification which is based on Java so that an existing Java analysis tools can understand the behavior

of C code through the Java specification and finally the tools can be extended to cover C code. However,

ILEA is suffer from its compilation precision, and also from the effectiveness of the Java analysis tools.

Although various static checkers for multilingual bug including above works exist, they are hard to

use in practice because they have trouble with a lot of false positives [18,27]. Also, since the specification

of interface languages natively include dynamic properties, static approaches themselves have limitations.

2.2.2 Dynamic approach

Dynamic approach detects interface errors by inserting codes at a languague boundary [48] or by

monitoring language transitions between different languages [29].

Tan et al. [48] proposes a framework called Safe Java Native Interface (SafeJNI) to ensure type safety

of multilingual programs which contain Java and C components. SafeJNI explains several pitfalls in JNI

(e.g., direct access through Java references, exception handling) and then suggests three methodologies

to prevent these vulnerabilities. (1) a pointer type system based on CCured [40], which statically enforces

usage of C pointers according to their capability (e.g., read-only pointer) (2) inserting dynamic checks

which are performed before and after a JNI function is invoked (3) a memory management scheme which

ensures safe memory management by additional validity tag for C pointers referencing Java object.

However, even though SafeJNI shows acceptable effectiveness and performance in its evaluation, SafeJNI

is difficult to use in practice because it needs source-code rewriting.

Lee et al. [29] suggests a JNI bug detector, called Jinn, which checks violation of all constraints in

Section 2.1 dynamically at runtime. Jinn is based on 11 finite-state machines each of which describes

JVM states regarding JNI function invocations. Each state in the finite-state machines is moved to

another state according to a corresponding language transition in JNI function invocations. If a state

is transited to predefined error state, Jinn reports an error message and the program is terminated.

However, Jinn cannot detect unintended interactions of code across language boundaries (i.e., program

semantic error which does not violate any pre-defined constraints)

JVMs, such as HotSpot [7] and IBM J9 [17], support a built-in dynamic JNI checker (calling it

checkJNI) in a command-line option (i.e., -Xcheck:jni). checkJNI detects automatically some JNI rule

violations (e.g., null value passed to JNI function, invalid JNI reference is used) at the cost of slower

execution. Since checkJNI does not handle all JNI rule violations as a critical error, in some cases (e.g.,

pending exception error), checkJNI just reports warning messages and does not kill the program.

2.3 Fault Localization Techniques

Fault localization techniques [35, 50] aim to locate the root cause of an error in the target program

(i.e., the second step of debugging) by observing test runs. Fault localization has been extensively
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studied for monolingual programs both empirically [11,22,38] and theoretically [51,54]. Among the fault

localization techniques, spectrum-based fault localization (SBFL) techniques are widely used due to its

intuitive approach. However, recently mutation-based fault localization techniques are introduced to

overcome the low accuracy of spectrum-based fault localization techniques.

2.3.1 Spectrum-Based Fault Localization

SBFL technique utilizes program spectrum, which is a collection of execution information of a

program, to infer that a code entity of the program (i.e., a program element) is suspicious for an error

if the code entity is likely executed when the error occurs. Note that SBFL techniques are language

agnostic because they calculate the suspiciousness scores of target code entities by using information on

the testing results (i.e., fail/pass) of test cases and the code coverage of these test cases without complex

semantic analyses.

Suppose that a program P = {e1, . . . , en}, which contains a set of program elements ei, is executed

by a set of test cases T = {t1, . . . , tm}, and the execution result is pass or fail. SBFL techniques’ scoring

metric that calculating suspiciousness score of a program element e can be expressed by 4 notations:

Tf (e), Tp(e), Tf , Tp, where Tf (e) is a set of test cases that covers e and fails on P , Tp(e) is a set of test

cases that covers e and passs on P , Tf is a set of test cases that fails on P , and Tf is a set of test cases

that passes on P .

In the empirical study by Lucia et al. [34], effectiveness of 40 spectrum-based fault localization

techniques is evaluated on programs from Siemens test suite and three larger programs from Software

Infrastructure Repository (SIR) benchmark. As a result, Ochiai [41] outperforms other SBFL techniques

in terms of the average percentage of code inspected for localizing the root cause of a buggy program.

Ochiai is derived from a product term P(P fails|e covered)× P(e covered|P fails), where first term rep-

resents precision, second term indicates recall, and through the derivation the following metric is used

for calculating suspiciousness of a program element e.

Ochiai(e) =
|Tf (e)|√

|Tf | × (|Tf (e)|+ |Tp(e)|)
(2.1)

According to the other empirical evaluation for 42 SBFL techniques by Hofer et al. [20], Jaccard [21]

as well as Ochiai is the best performing metric for fault localization in spreadsheet applications. Jac-

card matric originates from an intuitive approach which is the number of matches over the number of

attributes, that is
|Tf (e)|+|Tp(¬e)|

|Tf (e)|+|Tf (¬e)|+|Tp(e)|+|Tp(¬e)| , where Tf (¬e) is a set of test cases that does not cover e

and fails on P and Tp(¬e) is a set of test cases that does not cover e and passes on P . For this formula,

since Jaccard considers that |Tp(¬e)| is an irrelavent property to infer the root cause of a fault, |Tp(¬e)|
is discarded and then finally Jaccard metric is defined as follows:

Jaccard(e) =
|Tf (e)|

|Tf (e)|+ |Tf (¬e)|+ |Tp(e)|
(2.2)

Instead of empirical evaluation for effectiveness of SBFL techniques, Naish et al. [39] theoretically

analyzes 30 SBFLs on a sample program that simulates a single fault program. As a result, an optimal

ranking matric (called Op2) is proposed, which is effective for the given model in terms of that the matric

gives different ranks when necessary. Op2 metric is defined as follows:

Op2(e) = |Tf (e)| − |Tp(e)|
|Tp|+ 1

(2.3)
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However, the accuracy of SBFL techniques is often too low to localize faults in large real-world

programs. The reason is that although SBFL technique are premised on the availability of a high-quality

test suite that provides good coverage of the program entities [14], the quality of a test suite in real-world

programs is in general poor to support SBFL techniques.

2.3.2 Mutation-Based Fault Localization

To improve the accuracy of fault localization, mutation-based fault localization (MBFL) techniques

have been proposed recently. These techniques can analyze diverse program behaviors using mutants

(i.e., target program versions that are generated by applying simple syntactic code changes such as

replacing if(x>10) with if(x<10)). MBFL techniques are also language agnostic since they utilize only

information on the testing results (i.e., pass or fail) of test cases on the original target program and

its mutants. Moon et al. [38] demonstrate that their MBFL technique (calling it MUSE) is 6.5 times

more precise than state-of-the-art SBFL techniques such as Ochiai and Op2 on the 15 versions of the

SIR subjects. The key idea of MUSE is as follows. Consider a faulty program P whose execution with

some test cases results in error. Let mf be a mutant of P that mutates the faulty statement, and mc

be one that mutates a correct statement. MUSE assesses the suspiciousness of a statement based on the

following two observations:

Observation 1 : a failing test case for P is more likely to pass on mf than on mc. Mutating a faulty statement

is more likely to cause the tests that failed on P to pass on mf than on mc because a faulty program

might be partially fixed by modifying (i.e., mutating) a faulty statement, but not by mutating a correct

one. Therefore, the number of test cases whose results change from fail to pass will be larger for mf

than for mc.

Observation 2 : a passing test case for P is more likely to fail on mc than on mf . A program is more easily

broken by mutating a correct statement than by mutating a faulty statement. Thus, the number of

the test cases whose results change from pass to fail will be greater for mc than for mf .

For a statement s of P and given test suite T , let Tf (s) be the set of tests that covered s and

failed on P , and Tp(s) the set of tests that covered s and passed on P . With respect to a fixed set

of mutation operators, let mut(s) = {m1, . . . ,mk} be the set of all mutants of P that mutates s with

observed changes in test results. For each mutant mi ∈ mut(s), let Tmi

f and Tmi
p be the set of failing

and passing tests on mi respectively. And let Tf2p and Tp2f be the set of tests that their results are

changed from failure to pass and vice versa between before and after executing all mutants of P on the

test suite T. Then, MUSE(s) is defined as follows:

MUSE(s) =
1

|mut(s)|
∑

m∈mut(s)

(
|Tf (s) ∩ Tm

p |
|Tf2p|

−
|Tp(s) ∩ Tm

f |
|Tp2f |

) (2.4)

The first term,
|Tf (s)∩Tm

p |
|Tf2p| , reflects the first observation: it is the proportion of the number of tests

that failed on P but now pass on a mutant m that mutates s over the total number of all failing tests

that pass on a some mutant (it increases the suspiciousness of s if mutating s causes failing tests to

pass). Similarly, the second term,
|Tp(s)∩Tm

f |
|Tp2f | , reflects the second observation, being the proportion of the

number of tests that passed on P but now fail on a mutant m that mutates s over the total number of all

passing tests that fail on a some mutant (it decreases the suspiciousness of s if mutating s causes passing
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Execution Traces of Test Cases (x, y) Jaccard Ochiai Op2

int max;

void setmax(int x, int y){
TC1

(3,1)

TC2

(5,-4)

TC3

(0,-4)

TC4

(0,7)

TC5

(-1,3)

|fP (s)| |pP (s)| Susp. Rank Susp. Rank Susp. Rank

s1: max = −x; //should be ‘max = x;’ • • • • • 2 3 0.40 5 0.63 5 1.25 5

s2: if (max < y){ • • • • • 2 3 0.40 5 0.63 5 1.25 5

s3: max = y; • • • • 2 2 0.50 2 0.71 2 1.50 2

s4: if (x∗y<0) • • • • 2 2 0.50 2 0.71 2 1.50 2

s5: print(” diff . sign”);} • • 1 1 0.33 6 0.50 6 0.75 6

s6: print(max);} • • • • • 2 3 0.40 5 0.63 5 1.25 5

Test Results Fail Fail Pass Pass Pass

Test Result Changes MUSE

Statements Mutants TC1

(3,1)

TC2

(5,-4)

TC3

(0,-4)

TC4

(0,7)

TC5

(-1,3)

|fP (s)

∩ pm|
|pP (s)

∩ fm|
Suspiciousness Rank

s1: max = −x;
m1: max −= x−1; P→F 0 1

0.475 1
m2: max=x; F→P F→P 2 0

s2: if (max < y){
m3: if (!( max<y)){ P→F P→F P→F 0 3

-0.125 6
m4: if (max==y){ P→F P→F 0 2

s3: max = y;
m5: max = −y; P→F P→F 0 2

-0.100 4
m6: max = y+1; P→F P→F 0 2

s4: if (x∗y<0){
m7:if (!( x∗y<0)) P→F P→F 0 2

-0.075 3
m8:if(x/y<0) P→F 0 1

s5: print(” diff . sign”);}
m9:return; P→F 0 1

-0.050 2
m10:; P→F 0 1

s6: print(max);}
m11:printf(0);} P→F P→F 0 2

-0.125 6
m12:;} P→F P→F P→F 0 3

Figure 2.1: Example of how fault localization techniques work

tests to fail). When averaged over |mut(s)|, the first term and the second term become the probability

of test result change per mutant, from failing to passing and vice versa respectively.

There exist a few other MBFL approaches. Papadakis et al. [42, 43] utilizes the similarity between

the behavior of generated mutants and the behavior of a program with an ”unknown fault”. If a mutant

(i.e., a mutated program where single statement is transformed) behaves like non-mutated program (i.e.,

test results are same), then the mutated statement is suspected of faulty. This approach is different from

MUSE in that not considering test result changes comes from mutant executions.

2.3.3 An Illustrative Example

Figure 2.1 1presents an example of how SBFL techniques (e.g., Jaccard, Ochiai, Op2) and MBFL

technique (e.g., MUSE) localize a fault. The example code is a function called setmax(), which sets a

global variable max (initialized to 0) with y if x < y, or with x otherwise. Statement s1 contains a fault,

as it should be max=x. Let us assume that we have five test cases (tc1 to tc5): the coverage of individual

test cases are marked with black bullets (•). TC1 and TC2 fail because setmax() updates max with the

smaller number, y. The remaining test cases pass. Thus, |fP | = 2 and |pP | = 3.

First, MUSE generates mutants by mutating only one statement at a time. For the sake of simplicity,

here we assume that MUSE generates only two mutants per statement, resulting in a total of 12 mutants,

{m1, . . . ,m12} (listed under the “Mutants” column of Figure 2.1). Test cases change their results after

the mutation as noted in the middle column. For example, TC1, which used to fail, now passes on the

1This example is originally presented in [38]
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mutant m2.

Since there are two changes from failure to pass, f2p = 2 (TC1 and TC2 on m2) while |fP | = 2.

Similarly, p2f = 20 (see the changed results of TC3, TC4, and TC5), while |pP | = 3.

MUSE calculates the suspiciousness of s1 as 1
2 ·{(

0
2−

1
20 )+( 2

2−
0
20 )} = 0.475, where |fP (s1)∩pm1 | = 0

and |pP (s1) ∩ fm1
| = 1 for m1 and |fP (s1) ∩ pm2

| = 2 and |pP (s1) ∩ fm2
| = 0 for m2. MUSE calculates

the suspiciousness scores of the other five statements as -0.125, -0.100, -0.075, -0.050, and -0.125. The

suspiciousness of the s1 is the highest. In contrast, Jaccard, Ochiai, and Op2 choose s3 and s4 as the

most suspicious statements, while assigning the fifth rank to the actual faulty statement s1. The example

shows that MUSE can precisely locate certain faults that the state-of-the-art SBFL techniques cannot.
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Chapter 3. MUSEUM: Mutation-Based Fault

Localization for Real-world Multilingual Programs

To alleviate the difficulty of debugging multilingual programs, we have developed a MUtation-baSEd

fault localization technique for real-world mUltilingual prograMs (MUSEUM). MUSEUM is language-

independent because it generates syntactic mutants and statistical reasoning with testing results on a

target program and its mutants. MUSEUM does not require special build/runtime environments but

only a mutation tool and a coverage measurement tool for target programming languages. This is a great

advantage over other debugging techniques which require specific infrastructure such as virtual machines

or compilers.

MUSEUM targets both monolingual and multilingual bugs. To localize multilingual bugs precisely,

MUSEUM utilizes conventional mutation operators and new mutation operators designed for directly

mutating interactions between language interfaces. These new mutation operators (Section 3.3) improve

the accuracy of MBFL by generating mutants whose testing results are informative to locate multilingual

bugs (Chapter 6).

3.1 Motivating Example

Target program

Figure 3.1 presents a target Java/C program with a memory leak bug failing the assertion at

Line 71 1. The program is composed of source files in C and Java defining three Java classes: CPtr,

Client, and ClientTest.

CPtr (Lines 2–31) characterizes the peer class idiom [33, p. 123] of wrapping native data structures,

which is widely used in language bindings for legacy C libraries. The peer field (Line 4) is an opaque

pointer from Java to C to point to a dynamically allocated integer object in C. The CPtr constructor

(Line 9) executes the nAlloc native method (Lines 17–21) to allocate an integer object in C and stores

the address of the integer object in peer. While JVMs automatically reclaim a CPtr object once the

object becomes unreachable in the Java heap, the clients of CPtr are required to dispose manually the

integer object by executing dispose (Line 12) on the CPtr object. If the client does not dispose an CPtr

object before it becomes unreachable, the peer integer object becomes a unreachable memory leak in C.

Client (Lines 34–45) is a client Java class of using CPtr. The m field (Line 35) holds a reference to

a CPtr object. add (Lines 36–39) and remove (Lines 40–45) write/read a value to/from the CPtr object

respectively. add instantiates a CPtr object, assigns the reference of the new object to m, and then writes

a value to the object. remove reads the value of the CPtr object pointed by m, disposes the CPtr object,

deletes the reference to the object, and returns the value of the CPtr object.

ClientTest (Lines 48–73) is a Java class of driving test cases directly for Client and indirectly

for CPtr. It contains one passing test passingTest (Lines 55–63) and one failing test failingTest

(Lines 64–73). The testing oracle validates a program execution by using (1) the assertion statements

(Lines 59 and 69) and (2) the exception handler statements (Lines 61 and 71). The assertion statements

1This example is a simplified version of a real-world bug found in Azureus 3.0.4.2 (Bug1 in Table 4.1).
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1 : /* CPtr.java */
2 : public class CPtr {
3 : static {System.loadLibrary("CPtr");}
4 : private final long peer;
5 : private native long nAlloc();
6 : private native void nFree(long pointer);
7 : private native int nGet(long pointer);
8 : private native void nPut(long pointer, int x);
9 : public CPtr(){peer = nAlloc();}
10: public int get(){return nGet(peer);}
11: public void put(int x){nPut(peer, x);}
12: public void dispose(){nFree(peer);} }
13:
14: /* CPtr.c */
15: #include <jni.h>
16: #include <stdlib.h>
17: jlong Java_CPtr_nAlloc(JNIEnv *env,jobject o){
18: jint *p;
19: p =(jint *)malloc(sizeof (jint)); /*Mutant m1*/
20: return (jlong)p;
21: }
22: void Java_CPtr_nFree(JNIEnv *env,jobject o,jlong p){
23: free((void *)p);
24: }
25: jint Java_CPtr_nGet(JNIEnv *env,jobject o,jlong p){
26: return *(jint *)p;
27: }
28: void Java_CPtr_nPut(JNIEnv *env,jobject o,jlong p,
29 jint x){
30: *((jint *)p) = x;
31: }
32:
33: /* Client.java*/
34: public class Client {
35: CPtr m = null;
36: void add(int x){
37: m = new CPtr(); /*Mutant m2*/
38: m.put(x);
39: }
40: int remove(){
41: int x = m.get();
42: m.dispose();
43: m = null;
44: return x; /*Mutant m3*/
45: } }
46:
47: /* ClientTest.java */
48: import java.util.*;
49: public class ClientTest {
50: static final List pinnedObj=new LinkedList();
51: public static Object pinObject(Object o){
52: pinnedObj.add(o);
53: return o;
54: }
55: void passingTest(){ // passing test case
56: try {
57: Client d = new Client() ;
58: d.add(1) ;
59: assert d.remove() == 1;
60: } catch(VirtualMachineError e) {
61: assert false; /*potential memory leak in C*/
62: }
63: }
64: void failingTest(){ // failing test case
65: try {
66: Client d = new Client() ;
67: d.add(1) ;
68: d.add(2) ;
69: assert d.remove() == 2;
70: } catch (VirtualMachineError e) {
71: assert false; /*potential memory leak in C*/
72: }
73: } }

Figure 3.1: A Java/C program leaking memory in C after garbage collection in Java
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at Line 59 and Line 69 validate the program state after executing a sequence of add and remove by

checking if remove correctly returns the last value given by add. On the other hand, the exception

handler statements at Line 60 and Line 70 detect failures at arbitrary locations. For instance, runtime

monitors such as QVM [13] and Jinn [29] would throw an asynchronous Java exception either at GC safe

points or at language transitions.

Passing test

passingTest executes successfully. It satisfies the assertion statement at Line 59 because both the

CPtr object and the peer integer object in Java and C are reachable, and remove at Line 59 returns 1

stored at Line 58. The runtime monitor does not throw any Java exception indicating a memory leak in

C because the native integer object is released in the call to remove.

Failing test

failingTest fails at Line 71 because the runtime monitor throws an exception due to a memory

leak in C. The test case creates one Client object (Line 66) and two CPtr objects (Lines 67–68), and

two native integer objects. The first native peer integer object is a leak in C heap while all the other

objects are reclaimed automatically by garbage collectors and manually by C memory deallocator (i.e.,

dispose). The first CPtr object and its peer integer object are created in a call to add at Line 67. Both

become unreachable after the second call to add at Line 68. The CPtr object would be garbage collected

while the program does not manually execute dispose on the unreachable native integer peer object.

The runtime monitor would perform a garbage collection and find out the native integer peer object is a

unreachable memory leak. This memory leak bug appears because add does not call dispose if m already

points to a CPtr object. Thus, we indicate Line 37 as the buggy statement.

Our approach

MUSEUM generates mutants each of which is obtained by mutating one statement of the target

code. Then, MUSEUM checks the testing results of the mutants to localize buggy statements. For

example, suppose that MUSEUM generates the following three mutants m1, m2, and m3 by mutating

each of Lines 19, 37, and 44.

m1, a mutant obtained by removing Line 19

This mutation resolves the memory leak as the mutant will not allocate any native memory. However,

both test cases fail with the mutant because an access to p raises an invalid memory access (at

nGet/nPut of CPtr).

m2, a mutant obtained by inserting a statement of pinning the Java reference before Line 37 2

This mutation inserts a statement of pinning the object: ClientTest.pinObject(m); before Line 37,

where pinObject stores the Java reference m into a global data structure pinnedObj. This mutation

intends to prolong the lifetime of the Java object referenced by m to the end of the program run.

This mutation resolves the memory leak in failingTest because the first CPtr object will not be

reclaimed and, thus, will not leak its peer native integer object. The two test cases pass with the

mutant because the mutation does not introduce any new bug.

2 See Pin-Java-Object mutation operator in Table 3.1
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Figure 3.2: Fault localization process of MUSEUM

m3, a mutant obtained by replacing the return value with 0 in Line 44

This mutation replaces the variable x with an integer constant 0 at Line 44. This mutation fails the

assertion at Lines 59 and 69 since the return value of remove is always 0.

From these testing results, MUSEUM concludes that Line 37 is more suspicious than Line 19 and Line 44

because the failing test case passes only with m2 and the passing test case fails with m1 and m3 (see

Step 4 of Section 3.2).

Locating the root cause of this memory leak poses challenges in runtime monitoring and fault lo-

calization techniques. Memory leak detectors [23, 53] locate memory leaks and their allocation sites not

the cause of the leaks in general. While some leak chasers [13, 15, 52] locate the cause of memory leak,

they do not scale well across language boundaries since they do not track opaque pointers and their stal-

eness values across languages. SBFL techniques cannot localize the bug because both passingTest and

failingTest cover the same branches/statements in their executions. Consequently, SBFL techniques

cannot indicate any code element that is more correlated with the failure than the others.

3.2 Fault Localization Process of MUSEUM

Figure 3.2 describes how MUSEUM localizes faults. MUSEUM takes the target source code and the

test cases of the target program as input, and returns the suspiciousness scores of the target code lines

as output. MUSEUM has the following basic assumptions on a target program P and test suite T :

1. Existence of test oracles

A target program has explicit or implicit test oracle mechanism (i.e., user-specified assert, runtime

failure such as null-pointer dereference, and/or runtime monitor such as Jinn [29]) which can detect

errors clearly.

2. Existence of a failing test case

A target program has test cases, at least one of which violates a test oracle.

MUSEUM operates in the following four steps:

Step 1: MUSEUM receives P and T and selects target statements St and test cases Ts. St is the set

of the statements of P that are executed by at least one failing test case in T . MUSEUM selects St as

target statements for bug candidates. Also, MUSEUM selects and utilizes a set of test cases Ts, each of

which covers at least one target statement because the other test cases may not be as informative as test

cases in Ts for fault localization. To select St and Ts, MUSEUM first runs P with T while storing the test

results and the test coverage for each test case. Testing results are obtained from the user given assert
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statements, runtime failures, and multilingual bug checkers such as CheckJNI, Jinn [29], and QVM [13]

(Section 2.1).

Step 2: MUSEUM generates mutant versions of P (i.e., m1,m2, ...mk) each of which is generated

by mutating each of the target statements. MUSEUM may generate multiple mutants from a single

statement since one statement may contain multiple mutation points [12]. 3

Step 3: MUSEUM tests all generated mutants with TS and records the testing results. Since a mutation

may induce an infinite loop, we consider a test fails if the testing time exceeds a given time limit.

Step 4: MUSEUM compares the test results of TS on P with the test results of TS on all mutants.

Based on these results, MUSEUM calculates the suspiciousness scores of the target statements of P as

follows.

For a statement s of P , let f(s) be the set of tests that covers s and fails on P , and p(s) the set

of tests that covers s and passes on P . Let mut(s) = {m1, . . .mk} be the set of all mutants of P that

mutates s.

For each mutant mi ∈ mut(s), let fmi
and pmi

be the set of failing and passing tests on mi

respectively. And let f2p and p2f be the numbers of changed test result from fail to pass and vice versa

between P and all mutants of P . The suspiciousness metric of MUSEUM is defined as follows:

Susp(s) = 1
|mut(s)|

∑
mi∈mut(s)(

|f(s)∩pmi
|

f2p − |p(s)∩fmi
|

p2f )

The first term,
|f(s)∩pmi

|
f2p , reflects the first observation: it is the proportion of the number of tests

that failed on P but now pass on a mutant mi that mutates s over the total number of all failing tests

that pass on a some mutant (the suspiciousness of s increases if mutating s causes failing tests to pass).

Similarly, the second term,
|p(s)∩fmi

|
p2f , reflects the second observation, being the proportion of the number

of tests that passed on P but now fail on a mutant mi that mutates s over the total number of all passing

tests that fail on a some mutant (the suspiciousness of s decreases if mutating s causes passing tests to

fail). After dividing the sum of the first term and the second term by |mut(s)|, Susp(s) indicates the

probability of s to be a faulty statement based on the changes of test results on P and mut(s). 4

3.3 New Mutation Operators for Multilingual Bugs

In addition to the conventional mutation operators, MUSEUM utilizes new mutation operators to

effectively localize multilingual bugs because these mutation operators can directly mutate interactions

between language interfaces. We have made 15 new mutation operators, which change semantics of a

target program regarding the JNI constraints based on the previous JNI bug studies [5, 17, 29, 48] and

JNI specifications [33]. Table 3.1 shows the list of the new mutation operators. The description of the

new mutation operators are as follows:

1–3. These mutation operators clear, propagate, or generate a pending exception in a native method

to ensure the JVM state constraints. Targets of the three mutation operators are all JNI function

calls (i.e., (*env)-><JNIFunction>(...);). For example, Clear-pending-exceptions clears

a pending exception in currrent thread by inserting

3MUSEUM can localize a bug spanning on multiple statements (not limited for locating a single-line bug). This is

because mutating a part of a bug (i.e., one statement among multiple statements that constitute a bug) can still change a

failing test case into passing one, which will increase the suspiciousness of the statement constituting the bug [38].
4 If a target statement has no mutant (i.e., |mut(s)|=0), Susp(s) is defined as 0. MUSEUM defines the first term as 0 if

f2p is 0. Similarly, the second term is defined as 0 if p2f is 0. For a concrete example of how to calculate the suspiciousness

score of MBFL, see Section II.C of Moon et al. [38].
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(*env)->ExceptionClear(env);

immediately before a JNI function call and immediately after a JNI function call that may throws

a Java exception.5 Propagate-pending-exceptions propagates a pending exception to the caller

by inserting

if((*env)->ExceptionOccurred(env)) return;

immediately before a JNI function call and immediately after a JNI function call that may throws

a Java exception. Throw-new-exceptions creates a new Java exception by inserting

Throw New Java Exception(env, "java/lang/Exception");

immediately before a JNI function call and immediately after a JNI function call that may throws

a Java exception. The first and the second mutation operators are defined based on a best practice

in JNI programming [17] and a general solution for JNI exception bugs [30]. The third mutation

operator is motivated by a case of a real-world multilingual bug regarding exception handling across

language boundaries [10].

4. Type-cast-to-jboolean explicitly converts an integer expression to JNI TRUE or JNI FALSE when

the expression is assigned to a jboolean variable. 6 In other words, Type-cast-to-jboolean

changes an assignment jbool var = int expr; with

jbool var=int expr?JNI TRUE:JNI FALSE;

This mutation operation is motivated by the common pitfall of JNI programming [33, pp.132–133].

5. Type-cast-to-superclass changes a JNI call to get the reference of a class with the JNI call to get

the reference of its superclass by mutating jclass cls = (*env)->GetObjectClass(env,obj);

with

jclass cls = (*env)->GetSuperclass(env, ((*env)->GetObjectClass(env,obj)));

This mutation operator is motivated by a report of a real-world bug found in Eclipse 3.4 [29].

6. Replace-array-elements-with-constants replaces a Java array reference with another constant

Java array. This mutation operator changes a Java array reference used at a JNI function call

to the reference to the predefined constant array. For example, this mutation operator change

(*env)->GetIntArrayElements(env, arr, null); into

(*env)->GetIntArrayElements(env, IntConstArr, null);

This mutation is inspired by a real-world bug with an incorrect array data transfer from Java to

C [6].

7. Replace-target-Java-member replaces a target field in a class member access with the field of

a different class member with the same type, by mutating (*env)->GetFieldID(env, class,

NAME1, SIG); with

(*env)->GetFieldID(env, class, NAME2, SIG);

5154 among total 229 JNI functions may throw an exception [33].
6 jboolean is an 8 bit integer type. If a 32 bit integer value is assigned to a jboolean variable, the variable can have an

unintended Boolean value due to the truncation (e.g., jboolean var = 256 will make jboolean var as false).
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where NAME1, NAME2, and SIG are the strings of the original and the changed field names and their

type signature, respectively. This mutation operator is motivated by a common pitfall in JNI

programming [33, pp.131–132].

8–13. These mutation operators increase or decrease the life time of a reference to a Java object (and

probably the life time of the referenced Java objects too). For example, Make-global-reference

increases the life time of a local reference l by making the reference as a global one. In other words,

Make-global-reference inserts the following statement after an assignment statement to a local

reference l (i.e., l = expr):

l = (*env)->NewGlobalRef(env,l);

In contrast, Remove-global-reference decreases the life time of a global reference g (and probably

the referenced Java object too) by inserting the following statement for a global reference g:

(*env)->DeleteGlobalRef(env,g);

We have developed four other mutation operators for local references and weak global references.

These mutation operators are related to a bug fix pattern regarding reference errors in native

code [5].

14. Pin-Java-object prevents garbage collectors from reclaiming a Java object by placing a Java

reference to the object into a class variable in Java before a reference to the object is removed

by an assignment statement. Before an assignment statement x = obj;, the mutation operator

inserts a statement:

Test.pinnedObjects.add(x) ;

where Test.pinnedObjects is a Java class variable of a list container type. The Java object pointed

by x is transitively reachable from the class variable, and Java garbage collectors cannot reclaim the

object. This mutation operator intends to extend the lifetime of Java objects in a target program

and influence interactions of Java and native memory managements. This mutation operator is

inspired by a safe memory management scheme of SafeJNI [48].

15. Switch-array-release-mode alternates the release mode of a Java array access. The release mode

decides whether an updated native array will be copied back to the Java array or discarded. For

every (*env)->Release<Type>ArrayElements(env, arr, elems, mode), this mutation operator

changes the mode value from 0 to JNI ABORT, or vice versa. This mutation operator is motivated

by a best practice in JNI programming [17].

3.4 Implementation

We have implemented MUSEUM targeting programs written in Java and C (support for other lan-

guages will be added later). MUSEUM is composed of the existing mutation testing tools for C and

Java, together with the fault localization module that analyzes testing results and computes suspicious-

ness scores. MUSEUM consists of 1,500 lines of C/C++ code and 1,802 lines of Java code.

MUSEUM uses gcov and PIT [16] to obtain the coverage information on C code and Java code of

a target program, respectively. MUSEUM uses existing mutation tools Proteum [36] and PIT, together
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Table 3.1: New mutation operators of MUSEUM

No. Mutation operator
Corresponding language

interface rule (Section 2.1)

1 Clear-pending-exceptions

JVM state constraints2 Propagate-pending-exceptions

3 Throw-new-exceptions

4 Type-cast-to-jboolean

Type constraints
5 Type-cast-to-superclass

6 Replace-array-elements-with-constants

7 Replace-target-Java-member

8 Make-global-reference

Resource constraints

9 Remove-global-reference

10 Make-weak-global-reference

11 Remove-weak-global-reference

12 Make-local-reference

13 Remove-local-reference

14 Pin-Java-object

15 Switch-array-release-mode

with the 15 new mutation operators for multilingual bugs (Section 3.3). Proteum implements 107

mutation operators defined in Agrawal et al. [12] which mutate C code in source level. Among the

107 mutation operators, MUSEUM uses 75 mutation operators that change only one statement. To

reduce the runtime cost of the experiments, MUSEUM generates only one mutant for every applicable

operator at each mutation point 7. MUSEUM generates Java mutants by using PIT which mutates Java

bytecode. MUSEUM uses all 14 mutation operators of PIT. Among the 15 new mutation operators, 14

new mutation operators for C code are implemented with Clang, and the one new mutation operator for

Java (i.e., Pin-Java-object) is built with the ASM bytecode engineering tool.

7 For example, if(x+2>y+1) has one mutation point (>) for ORRN (mutation operator on relational operator) and two

points (2 and 1) for CCCR (mutation operator for constant to constant replacement) [12]. MUSEUM generates only one

mutant like if(x+2<y+1) using ORRN and only if(x+0>y+1) and if(x+2>y+0) using CCCR. The selection of a mutant

to generate using a mutation operator depends on the Proteum implementation. Note that MUSEUM generates multiple

mutants for a code location when multiple mutation operators are applied to the code location .
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Table 4.1: Target multilingual Java/C bugs, sizes of the target code, the number of test cases used, and

references

Size of target program # of
Bug report or

Bug Target program Symptom Java NativeC TC
bug-fixing revision

Files LOC Files LOC used

Bug1 Azureus 3.0.4.2 Memory leak in C 2,705 340.6K N/A N/A 8 CVS revision 1.64 of ListView.java [1]

Bug2 sqlite-jdbc 3.7.8 Assertion violation in Java 20 4.6K 3 1.8K 150 Issue 16 [8]

Bug3 sqlite-jdbc 3.7.15 Assertion violation in Java 19 4.2K 2 1.7K 159 Issue 36 [9]

Bug4 java-gnome 4.0.10 Invalid JNI reference in C 1,097 64.2K 496 65.6K 170 Bug 576111 in Bugzilla database [3]

Bug5 java-gnome r-658 Double free in C 1,134 67.1K 514 69.2K 184 Subversion revision 659 [2]

Bug6 SWT 3.7.0.3 Segmentation fault in C 582 118.7K 29 34.4K 50 Bug 322222 in the Eclipse bug repo. [4]

Chapter 4. Empirical Evaluation

This chapter evaluates MUSEUM on the six bugs in four real-world multilingual programs to demon-

strate its effectiveness. Section 4.1 describes the experiment setup, and Section 4.2 presents the fault

localization results. 1

4.1 Experiment Setup

4.1.1 Real-world multilingual program bugs

Table 4.1 presents the six multilingual bugs in four real-world programs with their programs, symp-

toms, line of code (LOC) in Java and C, the number of the test cases used to localize the fault, and

bug reports or bug-fixing revisions of the target programs. As described in the assumption 1 for fault

localization (Section 3.2), the bug reports and commit logs in the last column describe the symptoms of

the target bugs so that our test oracle detects test failures. A corresponding bug report indicates both

buggy version and its fixed version. We have applied MUSEUM to Java code and native C code of the

target program, not library code nor external system code. All target programs are written in Java and

C except for Azureus. While Azureus is a pure Java program, it triggers a memory leak in C when it

misuses the application program interface of the Eclipse SWT library written in Java and C.

4.1.2 Real-world Test Cases

Regarding test cases, we have used the test cases maintained by the developers of the target pro-

grams. We utilize the test cases of the fixed version, at least one of which reveals the target bug in the

buggy version (see the assumption 2 in Section 3.2). If the fixed version does not have a test case that

fails on the buggy version (e.g., Azureus memory leak bug), we create a failing test case based on the

bug report. In addition, to localize a fault precisely, we focus to localize one bug at a time by building

a new test suite out of the original test suite. The new test suite consists of one failing test case and all

passing test cases that cover at least one statement executed by the failing test case.

1 The full experiment data and the target program code are available at http://swtv.kaist.ac.kr/data/museum.zip.
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4.1.3 System Platform

The experiments were performed on the 30 machines equipped with Intel i5 3.4 GHz with 8 GB main

memory (we performed experiment on one core per machine). All machines run Ubuntu 8.10 32-bits,

gcc 4.3.2, and OpenJDK 1.6.0. MUSEUM distributes tasks of testing each mutant to the 30 machines. 2

4.2 Experiment Results

Table 4.2 reports the experiment data on the six bugs. The second row counts the number of the

source target lines which are executed by the failing test case (see Step 1 of Section 3.2). The third row

shows the total number of the mutants generated by MUSEUM, and the forth row describes the total

number of the target lines on which at least one mutant is generated. The fifth and sixth rows show the

number of the mutants on which testing results have changed. The last row describes the runtime cost.

For example, to localize the fault in Bug4 (an invalid JNI reference in C), we built a test suite containing

one failing test case and 169 passing test cases out of the original test suite (see the eighth column of the

fifth row at Table 4.1). For Bug4, MUSEUM generated 718 mutants with at least one mutant for 70%

of the target lines (=130/186). Among the 718 mutants, there are two mutants on which the failing test

case passes (see the sixth row of Table 4.2). 3 We call such mutants as “partial fix” because the failing

test case passes on the mutant (but passing test cases may fail on these mutants). The table shows that

only 0.28% of the mutants are partial fixes (=2/718). However, these mutants contribute significantly to

localize a fault precisely because a partial fix increases the first term of the suspiciousness metric formula

much (see the metric formula in the Step 4 of Section 3.2).

Regarding time cost, although MUSEUM consumes large amount of computing resources to compile

and execute a large number of mutants, the overall elapsed time can be modest. This is because tasks

of testing mutants can be distributed to a large number of machines (e.g., Amazon EC2) as these tasks

are independent to each other. For example, it takes around 90 minutes (=(12+66+54+96+60+252)/6)

to localize each bug of the six multilingual bugs on average by utilizing 30 machines.

Table 4.3 compares the fault localization results of MUSEUM and the cutting-edge SBFL techniques

including Jaccard [21], Ochiai [41], and Op2 [39]. Each entry reports the suspiciousness score ranking

which is the maximum number of statements to examine until finding a faulty statement described

in the bug report. The percentage number in the parentheses indicates the normalized rank of the

faulty statement out of the total target statements (i.e., rank
# of the target statements ). The second row of the

table clearly shows that MUSEUM precisely identifies the buggy statement. MUSEUM ranks the buggy

statements in Bug1, Bug3, and Bug4 as the most suspicious statements (i.e., the first rank). Even for

Bug2, Bug5, and Bug6, MUSEUM identifies the buggy statement as the most suspicious statement with

the other one, seven, and two statements together, respectively (e.g., for Bug5, the suspiciousness scores

of the eight statements including the buggy statement are equal). Thus, from these experiments, we

conclude that MUSEUM localizes a multilingual bug precisely.

In contrast, SBFL techniques fail to localize multilingual bugs precisely. For Bug6, Op2 ranks the

buggy statement as the 3,494th among the 3,494 target statements (see the fifth row of Table 4.2), which

means that a developer has to examine all target statements (i.e., 100%) to identify the bug. One main

2 We set the time limit (10 seconds) at each test run on a mutant to avoid the infinite loop problem caused by mutation.

Time taken to execute a test run was less than one second on the six subjects on average.
3The number of mutants that make the failing test case pass is equal to f2p since the test suite contains only one failing

test case in our experiments.
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Table 4.2: Overview of the experiment data

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6

# of the target lines
1,939 299 443 186 186 3,494

(executed by the failing test case)

# of mutants 2,861 691 965 718 369 9,479

# of lines which have a mutant 1,575 219 327 132 103 2,524

# of mutants that make a passing
305 555 793 358 311 3,617

test case fails (breaking)

# of mutants that make a failing
1 3 7 2 51 32

test case passes (partial fix)

Time cost (min) 12 66 54 96 60 252

Table 4.3: The ranks of the buggy line identified by MUSEUM and other SBFL techniques

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6

MUSEUM
1 2 1 1 8 3

(0.1%) (0.7%) (0.2%) (0.1%) (4.3%) (0.2%)

Jaccard
80 4 5 83 61 3,494

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%)

Ochiai
80 4 5 83 61 3,494

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%)

Op2
80 4 5 83 61 3,494

(4.1%) (1.3%) (1.1%) (44.6%) (32.8%) (100.0%)

deficiency of traditional SBFL techniques is the low resolution in fault localization (i.e., all statements in

the same branch have same suspiciousness scores because the statements in the same branch are covered

by the same test cases). This is one reason why those SBFL techniques assign the same suspicious ranks

to the buggy statements in the experiments. In contrast, MUSEUM mutates each statement in multiple

different ways and can assign different suspiciousness scores to the statements in the same branch.
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Chapter 5. Case Study 1: Azureus Memory Leak

Bug (Bug1)

5.1 Bug Overview

Azureus is a popular P2P file-sharing application. Azureus 3.0.4.2 has a memory leak bug because

Azureus may allocate native memory for an Image object, but never de-allocate the memory. In more

detail, Image class uses native C methods to allocate/de-allocate native memory for its member objects.

Such allocated native memory should be explicitly freed by calling Image.disposed() before an Image

object is not used anymore and garbage collected. Otherwise (i.e., Image object is garbage collected

without calling Image.dispose()), the allocated native memory is not reclaimed and the native memory

leak occurs. A problem is that ListView.handleResize() of Azureus allows an Image object to be

garbage collected without calling Image.disposed(). The memory leak bug in Azureus 3.0.4.2 was fixed

on Jan 12, 2008 [1] (used as an example in the QVM case study [13]).

The QVM parper [13] describes that the following code in ListView.java as the memory leak bug

because the code misses imgView.dispose() before the line 523 where the old Image object referenced

by imgView is not used anymore.

496:public void handleResize(boolean bForce) {

...

508: if (imgView == null || bForce){

...

523: imgView = new Image(...) ;

A developer might introduce this bug because he or she might fail to recognize the necessity of

freeing the native memory in Java code, which is necessary for multilingual programs written in both

Java and C.

5.2 Detailed Experiment Result

Since Azureus code has no test case, we created a failing test based on the bug report. Also, we

built additional seven passing test cases which covers handleResize(). In addition, we add the following

test oracle to detect memory leak on Image objects by using the isDisposed() method of Image class

which checks if all members get freed:

public final class Image ... {

protected void finalize() throws Throwable {

if(!isDisposed()) reportLeak();

super.finalize();}}

Finally, we make all test cases to invoke System.gc() and Thread.sleep(10) so that JVM can

garbage collect all unused objects before the execution terminates.
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MUSEUM identifies the line 523 of ListView.java as the most suspicious statement (i.e., the first

rank). As shown in the second column of Table 5.1, the line 523 has four mutants. Mutant m4 is

generated by the new mutation operator Pin-Java-Object designed for multilingual bugs (particularly

targeting resource constraints, see Table 3.1). m4 adds the corresponding new statement in Table 5.1

before the target statement. Mutants m1, m2 and m3 are generated by the mutation operators provided

by PIT which replace the target statement with the statements in the table.

m4 makes the failing test case as a passing one (the third column) because it adds an extra reference

to the old object pointed by imgView, which prevents the old object from being garbage collected. As

a result, the native memory leak does not occur. m4 make the failing test case as a passing one (the

third column), which makes the first term of the MUSEUM suspiciousness metric large and increases

the suspiciousness score significantly. In contrast, m1 and m3 make two and four passing test cases as

failing ones (the fourth column), which increases the second term but in only limited degree due to the

large denominator (i.e., p2f=1961).

Among the 1939 target statements, only the line 523 has a mutant that fixes the bug (i.e., m4)

with regard to the given test cases and the given test oracle (i.e., making the failing test case passes).

Consequently, the line 523 has the highest suspiciousness score. Thus, through the case study for the

bug 1, we confirm that the new mutation operators such as Pin-Java-Object can increase the precision

of MUSEUM.

Table 5.1: The four mutants generated at the buggy statement of the bug 1

No.
Mutant generated from imgView = new Image(listCanvas.getDisplay(), |f(s) |p(s)

clientArea); at line 523 of ListView.java ∩ pm| ∩ fm|

m1 imgView = null; 0 2

m2 imgView = new Image(null, clientArea); 0 0

m3 new Image(listCanvas.getDispaly(),clientArea); 0 4

m4 global ref list.add(imgView); 1 0
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Chapter 6. Case Study 2: Locating The Cause of

Invalid Use of JNI References (Bug4)

This case study illustrates how MUSEUM localizes the cause of dangling JNI references (Bug4)

accurately by using the new mutation operators (Table 3.1).

6.1 Bug Overview

Dynamic error detectors [29] detect Bug4 and report the calling context at the fault location of using

the dangling JNI reference as an argument to a JNI function. However, they cannot report the cause

location where the JNI reference was stored into a callback object in C heap, which occurs at Line 524

of binding java signal.c as indicated as the buggy statement in the bug report:

387: GClosure* bindings(JNIEnv *env,

jobject handler, jclass receiver, ... ) {

...

524: bjc->rec = receiver;

... }

When bindings at Line 387 is invoked, the receiver parameter is assigned with a local JNI reference.

Line 524 stores the local reference in a data structure in the C heap pointed by bjc. However, once

bindings returns back to Java, the local reference stored in bjc->rec is not valid anymore (i.e., becoming

a dangling reference, see Resource constraints in Section 2.1). Later, when the application calls a JNI

function with an argument containing the dangling reference, the application crashes with a JNI invalid

argument error.

6.2 Detailed Experiment Result

MUSEUM localizes the fault exactly by ranking Line 524 as the most suspicious statement (i.e., the

first rank without a tie). Table 6.1 describes nine mutants (m1 to m9) that are generated by mutating

Line 524. The second column shows the changed statement of each mutant. The third and the forth

columns report the number of tests that failed on the original program but pass on the mutant (i.e.,

|f(s) ∩ pm|), and the number of tests that passed on the original program but fail on the mutant (i.e.,

|p(s)∩fm|), respectively (Section 3.2). m1, m2, m4, m6, m8, and m9 are generated by applying our new

multilingual mutation operators in Table 3.1. These mutants are generated by inserting the statements of

changing the life time of JNI references right after the target statement. m3, m5 and m7 from Proteum

terminate the control flow at the level of procedure, statement, and whole program.

In the testing runs, our new mutation operators prevent mutated programs m1 and m4 from crashing

in the failing test case (i.e., Make-weak-global-reference and Make-global-reference in Table 3.1,

respectively). m1 and m4 turn the failing test case into a passing one (the third column) because they

keep bjc->rec to store a weak global reference and a global reference respectively and eliminate the
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Table 6.1: The nine mutants generated by mutating the buggy statement of Bug4

No.
Mutant generated by mutating Line 524 of |f(s) |p(s)

bindings java signal.c ∩pm| ∩fm|

m1
bjc->rec=receiver;

1 0
bjc->rec=(*env)->NewWeakGlobalRef(env,bjc->rec);

m2
bjc->rec=receiver;

0 0
bjc->rec=(*env)->NewLocalRef(env,bjc->rec);

m3 return; // return back to the caller. 0 0

m4
bjc->rec=receiver;

1 0
bjc->rec=(*env)->NewGlobalRef(env,bjc->rec);

m5 ; // remove a statement at Line 524 0 2

m6
bjc->rec=receiver;

0 2
(*env)->DeleteGlobalRef(env, bjc->rec);

m7 kill(getpid(), 9); //terminate the process 0 2

m8
bjc->rec=receiver;

0 2
(*env)->DeleteLocalRef(env, bjc->rec);

m9
bjc->rec=receiver;

0 2
(*env)->DeleteWeakGlobalRef(env,bjc->rec);

dead reference problem caused by the short-lived local reference. On the other hand, the conventional

mutation operators (i.e., m3, m5, and m7) do not affect the test results. m1 and m4 make the first

term of the MUSEUM suspiciousness metric large and increase the suspiciousness score of Line 524

significantly because the denominator of the first term is small (i.e.,f2p=2) (Section 3.2). In contrast,

each of the mutants m5 to m9 make two passing test cases fail (the fourth column), which increases the

second term but in only limited degree due to the large denominator (i.e., p2f=6034).

Among the 186 target statements, only Line 524 has mutants that fix Bug4 with regard to the

given test cases and the given test oracle (i.e., making the failing test case pass). Consequently, Line

524 has the highest suspiciousness score due to the new mutation operators which generate partial

fixes. Thus, through the case study for Bug4, we confirm that the new mutation operators such as

Make-global-reference can increase the accuracy of MUSEUM (Section 8.2).

In contrast, the SBFL techniques rank the buggy statement as the 83rd suspicious one among the

186 target statements. Such poor result is due to the two coincidentally correct test cases (CCTs) that

execute Line 524 but pass because the target program does not use bjc->rec as an argument to a

JNI function call later with these test cases. Thus, the SBFL techniques considers Line 524 has low

correlation with the failure and assign low suspiciousness score to Line 524.

Note that these CCTs do not make adverse effect to MUSEUM. This is because the mutants (i.e.,

m1 to m9) obtained by mutating the buggy statement (i.e., Line 524) do not make these two CCTs fail
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as the target program and the mutants do not use bjc->rec as an argument to a JNI function call later

with these CCTs (i.e., the mutation on the buggy statement is inactive with CCTs because the buggy

statement is dormant with CCTs). Thus, these CCTs do not increase the second term of the MUSEUM

suspiciousness metric (Section 3.2) and do not lower the suspiciousness score of the buggy statement.
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Chapter 7. Case Study 3: Locating the Cause of a

Segmentation Fault in Eclipse SWT (Bug6)

This case study in this chapter demonstrates how MUSEUM accurately localizes a complex mul-

tilingual bug whose cause-effect chain is long and complicated, which is often the case for multilingual

bugs and makes debugging multilingual bugs very difficult.

7.1 Bug Overview

Bug 322222 (Bug6) in the Eclipse bug repository for Standard Widget Toolkit (SWT), a standard

open-source GUI development library for Java programs crashes JVMs with a fatal segmentation fault

by dereferencing NULL at Line 271 of pango-layout.c:

262: PangoLayout *

263: pango_layout_new (PangoContext *context)

264: {

...

271: layout->context = context;

...

275: }

The origin of NULL is the native C function (callback) that acts as a gateway from C to Java in the

SWT library. callback returns NULL when a Java exception is pending in the current thread. While

the detection of this bug is trivial, locating the root cause took a heroic debugging effort for more than

a year with hundreds of comments from dozens of programmers. This bug was difficult for experts to

debug since the cause-effect chain goes through Java exception propagation and language transitions.

Although the multilingual debuggers [28] aid programmers to locate the origin of NULL, they do not

locate the root cause of the bug.

The root cause is turned out to be an immature implementation of a callback handler at Line 2602

of Display.java. 1

// Simplified patch for Bug6

2595 :if(OS.GTK_VERSION>= OS.VERSION(2,4,0)) {

...

2601--: OS.G_OBJ_CONSTRUCTOR(PLClass);

2602--: OS.G_OBJ_SET_CONSTRUCTOR(PLClass, newProc);

2601++: p = OS.G_OBJ_CONSTRUCTOR(PLClass);

2602++: OS.G_OBJ_SET_CONSTRUCTOR(PLClass, new NewProcCB(p));

1The bug report on Bug6 does not describe the root cause of the crash but only its symptom, which is often the case

for real-world applications. Thus, we had to identify the buggy statement by analyzing the bug patch.
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Table 7.1: The top four statements of the SWT target code whose suspiciousness scores are high

Rank
Susp. |f(s) |p(s)

Statement Mutant
score ∩pm| ∩fm|

3 0.0313 1 0
/*Display.java:2602*/ ; /* the function

OS.G OBJ SET CONSTRUCTOR(PLClass,NewProc); call is removed */

3 0.0313 1 0
/*OS.java:8115*/

return 0;
return major version;

3 0.0313 1 0
/*OS.java:8125*/

return 0;
return minor version;

4 0.0306 1 1
/*Display.java:2392*/ ; /* the function

initializeSubclasses(); call is removed */

This patch replaces the newProc that calls callback at Line 2602 with a new NewProcCB(p) object that

calls another callback function that never returns NULL at the presence of a pending exception. Although

the location of the failure in C at the segmentation fault is fairly far away from the callback handler in

Java, MUSEUM locates the root cause of the failure as most suspicious (i.e., the suspiciousness rank of

Line 2602 is 3 as Line 2602 is tied with other two statements).

7.2 Detailed Experiment Result

We utilize a test suite consisting of one failing test case and 49 passing test cases. We selected these

49 passing test cases that cover the display module of SWT because all error traces in the bug report

contain a method in the display module.

Table 7.1 presents the top four suspicious statements and their mutants, which increase the suspi-

ciousness scores. 2 MUSEUM ranks the first three statements in a tie as rank 3 that include the location

of the root cause of the failure: Display.java:2602. The mutants for the top three statements change

the failing test case into passing one without affecting passing test cases (see the third and the fourth

columns).

These mutants disable the immature callback handler that transitively calls callback. The first

mutant eliminates Line 2602 of Display.java that registers the immature callback handler. The second

and the third mutants change the return value with zero, which in turn reverses the control flow decision

at Line 2595 of Display.java, deactivates transitively Line 2602 of registering the immature callback

handler, and avoids the segmentation fault. The fourth mutant disables the immature callback handler

at the cost of turning one passing test case into a failing one, which decreases the suspiciousness of Line

2392 and lowers its rank to 4.

2 All of the top four statements have only one mutant due to the limitation of PIT which supports only small number

of mutation operators for Java code compared to Proteum for C code.
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Table 8.1: Statistics on the mutation operators that generate mutants in the experiments

Bug1 Bug2 Bug3 Bug4 Bug5 Bug6

# of tests where the failing TC passes on the mutants 1 3 7 2 51 32

# of mutation operators that generate a mutant
1 3 6 2 12 14

on which a failing TC passes

# of tests where the failing TC passes on the mutants
1 0 0 2 2 0

generated by the new mutation operators

# of the new mutation operators that generate a mutant
1 0 0 2 1 0

on which a failing TC passes

Chapter 8. Discussions

8.1 Advantages of Mutation-based Fault Localization for Real-

world Multilingual Programs

One of the issues that make debugging real-world programs difficult is the poor quality of a test suite

because fault localization can be more accurate if a test suite covers more diverse execution paths. For

large real-world programs, however, it is challenging to build test cases that exercise diverse execution

paths because it is non-trivial to understand and control a target program. In addition, generating diverse

test cases for multilingual programs has additional burden to learn and satisfy constraints for foreign

function interface such as JNI constraints. Therefore, it is often the case that multilingual programs are

developed with a set of similar test cases. As a result, as shown in Table 4.3, the SBFL techniques fail

to precisely localize the six real-world multilingual programs.

For example, the statement coverages of the test suites used for Bug2 and Bug3 are around 85%

and 86% and the SBFL techniques localize these bugs somehow precisely (i.e., the suspiciousness rank

of Bug2 and Bug3 are 4 and 5, respectively). However, the statement coverages of the test suites used

for Bug1, Bug4, Bug5, and Bug6 are around 1%, 22%, 24%, and 19% and the accuracy of the SBFL

techniques for these bugs are very low (Table 4.3). In contrast, MUSEUM can overcome this limitation

by achieving the effect of diverse test cases through the diverse mutants with limited test cases. Thus,

MUSEUM can be a promising technique for debugging complex real-world multilingual programs.

8.2 Effectiveness of New Mutation Operators for Localizing Mul-

tilingual Bugs

Table 8.1 presents the information on the mutation operators that generate mutants on which the

failing test case passes (i.e., partially-fixing mutants). The second row shows the number of tests where

the failing test case on the target program passes on a mutant. The third row represents the number of
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mutation operators that generate a mutant on which the failing test case changes to pass. The fourth

and the fifth rows show the similar information to the second and the third rows but on the mutants

generated by the new mutation operators for multilingual programs (Section 3.3).

Table 8.1 shows that only the new mutation operators generate partially fixing mutants for Bugs

1 and 4 (i.e., since the numbers in the third row and the fifth row are the same). For Bug1, only the

Pin-Java-Object mutation operator generates a mutant on which the failing test case passes, which

indicates that the target statement of the mutant is closely related to the bug (i.e., memory leak in this

case). Similarly, for Bug4, only Make-global-reference and Make-weak-global-reference generate

the mutants that make the failing test case pass.

The table shows that the new mutation operators are effective to mutate multilingual program

behaviors and discover critical code points related to the JNI constraints. To assess the impact of the

new mutation operators on fault localization, we ran MUSEUM for Bugs 1, 4 and 5 without the new

mutation operators. For Bugs 1 and 4, the suspiciousness ranks of the faulty lines become 1737 for Bug1

(89.6%) and 117 (62.9%) for Bug4. For Bug5, the rank of the faulty line changes from 8 to 9 (the faulty

line no longer has the highest suspiciousness score). This result implies that language-interface specific

mutation operators can effectively supplement the existing mutation operators for finding multilingual

bugs.

For the other four bugs, the existing mutation operators generate more partially fixing mutants

than the new ones. Among the 89 (=75 mutation operators for C + 14 mutation operators for Java)

existing mutation operators, the top-3 operators that generate a large number of partially fixing mutants

are ‘remove a function call’, ‘remove a statement’, and ‘change the return value at a return statement’.

These three mutation operators generate mutants on which 46 failing tests pass out of total 96 failing

tests that pass on mutants (see the second row of the table). We found that these three operators

generate mutants that change function call/return behaviors. We conjecture that mutating function

call/return effectively changes multilingual behaviors of a target program as the interaction between

different languages are made through function calls.
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Chapter 9. Conclusion and Future Work

9.1 Summary

I have presented MUSEUM which localizes bugs in complex real-world multilingual programs in a

language agnostic manner through mutation analyses. The experiments on the six real-world multilingual

programs show that MUSEUM precisely locates the faulty statement for all non-trivial Java/C bugs. In

addition, I have showed that the accuracy of fault localization for multilingual programs can be increased

by adding new mutation operators relevant with FFI constraints.

9.2 Future Work

As future work, I will focus on developing our technique in the direction of improving the effective-

ness, the effeciency, and application to other language combinations (e.g., Python/C)

9.2.1 Improving Effectiveness

Although current MUSEUM localizes JNI bugs precisely in our case studies by employing 15 new

mutation operators for JNI, in order to guarentee the promising results to other JNI bugs, I will add

more mutation operators to cover more features in multilingual programs.

9.2.2 Improving Efficiency

Mutation based fault localization requires a lot of computing power to compile mutants and execute

the mutants on given test suite. To reduce the computational cost, I will apply selective mutation testing,

such as using selective mutation operator, reducing mutation points, and test case selection.

9.2.3 Application to Different Languages

MUSEUM can be applied to multilingual programs written in other language combinations such

as Python-C, PHP-JavaScript, etc. To adapt and apply MUSEUM, a target language should provide a

statement coverage measurement tool and a mutation tool. I believe that one can easily add a support

for a new language in MUSEUM using those tools since required tools are available for the popular

programming languages (e.g., mutations tools such as Nester for C#, Humbug for PHP, MutPy for

Python, Heckle for Ruby, Grunt-mutation-testing for Java Script and coverage tools such as NCover for

C#, Xdebug for PHP, JSCover for JavaScript, etc.).
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Summary

Mutation-based Debugging of Real-world Multilingual Programs

오늘날많은소프트웨어는기존라이브러리(legacy library)를재사용하거나각프로그래밍언어가갖는

장점을 최대한 활용하기 위해 다중 언어로 구성되는 경우가 많이 있다. 다중 언어로 프로그램을 개발하게

되면 겪는 어려움 중 하나는 언어 간의 인터페이스 규칙을 정확히 이해하고 개발하지 않으면 고치기 어려운

결함이 발생할 수 있다는 점이다. 다중 언어 프로그램에서 발생하는 결함은 실행 흐름이 언어의 경계선을

넘나들기 때문에 개발자가 결함의 위치를 추적하기가 쉽지 않다. 또한, 기존의 결함 위치추정 방법은 단

일 언어로 구성된 프로그램을 대상으로 하기 때문에, 다중 언어 프로그램에서는 정확도가 매우 떨어져서

개발자에게 도움을 주지 못한다.

본 논문에서는 다중 언어 프로그램의 결함을 효과적으로 디버깅할 수 있는 프로그램 변이를 활용한

결함 위치추정 기법인 MUSEUM을 제시한다. MUSEUM은 두 가지 관찰된 사실에 기반한 프로그램 변이

분석을 통해 결함의 위치를 추정한다. 두 개의 관찰된 사실은 변이된 프로그램에 원본 프로그램과 동일한

테스트 케이스를 실행 했을 때 테스트의 결과가 달라지는 경우를 이용하기 위한 이론적 근거를 제공해준다.

MUSEUM의 결과는 실행 가능한 구문에 대한 결함 의심도 순위이다. 이 결과는 개발자가 디버깅을 수행할

때 살펴보아야 할 구문의 우선순위를 정하는 데에 도움을 준다. 기존에 제시되었던 단일 언어 프로그램에

대한 변이 규칙만 이용하는 것은 다중 언어 프로그램의 결함 위치를 추적하는데 한계점이 있으므로, 본 논문

에서는 프로그램 변이 분석 방법을 다중 언어 프로그램에 효과적으로 적용하기 위하여 다중 언어의 특징을

반영한 새로운 15개의 변이 규칙을 제시하여 프로그램 변이 기반 방식의 정확도를 높였다.

MUSEUM을 평가하기 위해 실제 사용 중인 오픈 소스 프로젝트의 버그 저장소에서 6개의 결함을 수

집하였고 해당 프로젝트의 크기는 6KLOC에서 341KLOC까지이다. MUSEUM이 알려주는 각 프로그램

구문의 의심도 순위에 따라 실제 결함의 원인이 되는 구문을 찾아내기 위해 살펴보아야 하는 구문의 수를

측정하였고, 이 결과를 대표적인 결함 위치 추정 방법인 스펙트럼에 기반한 결함 위치추정 기법(SBFL:

Spectrum-Based Fault Localization)의 결과와 비교하였다. MUSEUM의 결과에 따르면 최악의 경우에서

도 8개의 구문(전체의 4.3%)을 살펴보면 실제 결함 구문을 찾아낼 수 있었지만, SBFL의 결과를 이용하면

최악의 경우에는 모든 구문을 살펴보아야 결함 구문을 찾아낼 수 있음을 실험 결과를 통해 보였다. 특

히, MUSEUM은 구문에 대한 의심도 순위를 제공할 뿐만 아니라, 의심도 순위를 추론하기 위해 사용되는

프로그램 변이를 분석하면 실제 결함을 고치는 데 도움을 줄 수 있음을 구체적인 사례를 통해 보였다.
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혼자 고민하기 어려운 일을 함께 고민할 수 있어서 좋았습니다. 항상 같은 자리에서 격려해주고 응원해

준 고등학교 친구인 김상섭, 류성근, 이상호, 차승민, 중학교 친구 장광희에게도 진심으로 감사합니다. 늘

바쁘다는 핑계를 대고 연락도 잘 못 하고 만나기도 어려웠지만 이해해주고 배려해주었습니다.

이외에도, 여기에적지못한많은분들께감사드립니다. 이러한도움이더욱빛나도록앞으로도최선을

다하겠습니다. 감사합니다.
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