
석 사 학 위 논 문

Master’s Thesis

시맨틱 정보를 이용한 패턴 매칭을 통한

동시성 결함 검출

Concurrency Bug Detection through Improved Pattern

Matching Using Semantic Information

홍 신 (洪 申 Hong, Shin)

전산학과

Department of Computer Science

KAIST

2010

시맨틱 정보를 이용한 패턴 매칭을 통한

동시성 결함 검출

Concurrency Bug Detection through Improved

Pattern Matching Using Semantic Information

Concurrency Bug Detection through Improved

Pattern Matching Using Semantic Information

Advisor : Professor Kim, Moonzoo

by

Hong, Shin

Department of Computer Science

KAIST

A thesis submitted to the faculty of the KAIST in partial

fulfillment of the requirements for the degree of Master of Science

in Engineering in the Department of Computer Science

Daejeon, Korea

2009. 12. 17.

Approved by

Professor Kim, Moonzoo

Advisor

시맨틱 정보를 이용한 패턴 매칭을 통한

동시성 결함 검출

홍 신

위 논문은 한국과학기술원 석사학위논문으로 학위논문심사

위원회에서 심사 통과하였음.

2009년 12월 17일

심사위원장 김 문 주 (인)

심사위원 신 인 식 (인)

심사위원 이 영 희 (인)

MCS

20073636

홍 신. Hong, Shin. Concurrency Bug Detection through Improved

Pattern Matching Using Semantic Information. 시맨틱 정보를 이

용한패턴매칭을통한동시성결함검출. Department of Computer

Science . 2010. 70p. Advisor Prof. Kim, Moonzoo. Text in English.

Abstract

Many software systems today are concurrent programs as multi-core pro-

cessors become popular. However, the correctness of an industrial-size concur-

rent program (e.g. operating system) is difficult to achieve by the traditional

testing or model checking technique. In this research, we propose a light-weight

concurrency bug detection technique based on bug pattern matching targeting

for Linux kernel source code. In order to understand concurrency bugs (e.g.

deadlock, data race), we first survey the previously reported bugs detected

from Linux file systems, and then classify the bugs with respect to the five

attributes: symptom, fault, resolution, synchronization primitives, and syn-

chronization granularity. Second, we identify ten concurrency bug patterns.

And then we develop the bug pattern detectors and applied to the Linux file

systems. Finally, and foremost, we improve the accuracy of the concurrency

bug detection technique by enhancing semantic information in pattern match-

ing. We demonstrate the effectiveness of our technique through detection of

concurrency bugs in the Linux file systems.

i

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Concurrent Program . 1

1.2 Concurrent Programming Problems 2

1.3 Error, Bug, Failure, Fault . 3

1.4 Concurrency Errors . 4

1.5 Approach . 6

1.6 Contributions . 6

1.7 Structure of this paper . 7

2 Related Work 8

2.1 Program Analysis Techniques 8

2.1.1 Code pattern based techniques 8

2.1.2 Rule based techniques 9

2.1.3 Stateful model checking 12

2.1.4 Dynamic analysis . 13

2.2 Bug Detection Techniques . 18

2.2.1 Deadlock . 18

iii

2.2.2 Race condition . 20

3 Concurrency Bug Classification 30

3.1 Linux File System . 30

3.2 Survey of Reported LFS Bugs 32

3.3 Classificaion According to Five Aspects 33

4 Concurrency Bug Pattern 36

4.1 Studied Bug Patterns . 37

4.1.1 Misused Test and Test-and-Set 37

4.1.2 Unlock before I/O operations 38

4.1.3 Unintended Big Kernel Lock releasing 39

4.1.4 Unsynchronized data passing to child thread 39

4.1.5 Use atomic instructions in non-atomic ways 41

4.1.6 Waiting already finished thread 41

4.1.7 Busy-waiting on atomic variable without memory barrier 43

4.1.8 No memory barrier after object initialization 44

4.1.9 Waiting with lock held 45

4.1.10 Releasing and re-taking outer lock 45

4.2 Automatic Bug Pattern Detection 47

4.2.1 Code analysis using EDG C/C++ parser 47

4.2.2 Bug detection to Linux file systems 48

4.2.3 Bug detection to other parts of Linux 50

5 Improved bug pattern matching using semantic infor-

mation 51

5.1 Multiple Code Pattern Matching 52

5.2 Lock Analysis . 53

5.3 Points-to Analysis . 56

iv

5.4 Experiment . 58

6 Conclusion 62

Summary (in Korean) 64

References 65

Appendix 71

v

List of Tables

4.1 Suspected bug reports by the bug pattern matching 49

4.2 Confirmed bugs from device drivers and network stacks of Linux 50

5.1 Suspected bug reported by the improved bug detection techniques 60

5.2 Effect of different combinations of semantic information consid-

eration to misused test and test-and-set bug pattern matching . 61

vi

List of Figures

3.1 Classification with respect to symptom and fault 35

4.1 Canonical form of Misused Test and Test-and-Set 37

4.2 Canonical form of Unlock before I/O operation bug pattern . . 38

4.3 Canonical form of Unintended Big Kernel Lock releasing 40

4.4 Canonical form of Unsynchronized data passing to child thread . 40

4.5 Canonical form of Use atomic instruction in non-atomic ways . . 41

4.6 Canonical form of Waiting already finished thread 42

4.7 Canonical form of Busy-waiting on atomic variable without mem-

ory barrier . 43

4.8 Canonical form of No memory barrier after object initialization 44

4.9 Canonical form of Waiting with lock held 45

4.10 Canonical form of Releasing and re-taking outer lock 46

4.11 Example of the intermediate language generated by EDG C/C++

front end parser . 48

5.1 The lock analysis algorithm for functions 55

5.2 The lock analysis algorithm for statements 55

5.3 The lock analysis algorithm for expressions 56

5.4 False positive caused by dynamic memory allocation 57

5.5 The points-to analysis algorithm 59

6.1 Classification with respect to symptom and fault 73

6.2 Classification with respect to symptom and synchronization prim-

itive . 73

6.3 Classification with respect to symptom and granularity 74

vii

6.4 Classification with respect to fault and synchronization primitive 74

6.5 Classification with respect to fault and granularity 75

6.6 Classification with respect to synchronization granularity and

synchronization primitive . 75

viii

Chapter 1

Introduction

Many software systems today are concurrent programs. As multi-core proces-

sors become popular, most software systems are designed and implemented as

concurrent programs, and moreover some programs are converted into concur-

rent programs to improve its performance and responsiveness. Many recent

embedded systems use concurrent programs in their software as the embedded

processors are improved and the functional requirements are increased.

1.1 Concurrent Program

By the definition in [1], a concurrent program is a collection of interacting com-

putational processes that may be executed in parallel. Each interacting com-

putational processes communicates with other processes via message passing

or shared memory. The concurrent program refers to a wide area of programs

including multithreaded programs and distributed systems. In this research,

we concentrate on multithreaded programs. Multithreaded programs refer to a

type of concurrent programs with the following characteristics: (1) each inter-

acting computational process is implemented as a thread, (2) A program has

a shared memory space which can be accessed by all threads, (3) On a single

process, threads are executed by interleaving with fair scheduling, and (4) Syn-

chronization mechanisms such as conditional variables, locks, and semaphores

are used. Many concurrent software systems are multithreaded programs writ-

ten in C and Java.

1

In multithreaded programs, threads communicate through shared resources

in shared memory space. A shared resource might be a data structure or

an interface in shared memory space. Therefore, proper synchronizations on

shared resources are necessary for correct program behaviors. For this purpose,

critical sections are widely used. A critical section is a sequence of instructions

(or a code block) for which atomicity is guaranteed. Atomicity of instructions

refers to a property that the results of concurrent executions of the instructions

are always the same as the result of an execution without any interleaving with

respect to a starting state. This property enables programmers to program a

complex code safely with sequential execution semantics.

One naive approach to implement critical sections is interrupt-disabling.

However, this approach results bad performance, and also inappropriate for

multi-core environments. In most multithreaded programs, locks are used for

implementing critical sections. In this approach, all critical sections which ma-

nipulate one shared resource are guarded by one lock. This enables atomicity

of the critical sections since no two code block guarded by one lock can be ex-

ecuted concurrently and there is no other code which manipulates the shared

resource. This approach has better performance than the first approach since

two critical sections which manipulate independent shared resource can be

executed concurrently.

1.2 Concurrent Programming Problems

As concurrent programming becomes widespread, the correctness assurance

of concurrent program becomes much important issue. However, it is much

difficult to implement, verify, and debug concurrent programs than sequential

programs. There are the following three reasons for the difficulties.

First, concurrent programming requires the understanding of whole program

codes. In sequential programming, behaviors of a part of code depend on input

2

data and other codes nearby. Unit testing is effective to sequential program

analysis. However, in concurrent programs, behaviors of a part of code de-

pend on not only input data but also all other code which can be executed

concurrently with the target code. Therefore, compositional analysis (or un-

derstanding) of concurrent program codes is hard to achieve.

Second, the number of distinguishable interleaved executions from a concur-

rent program increases exponentially with respect to the number of processes

in a program and the average process size. For this reason, it is unfeasible

to apply traditional testing and model checking techniques to industrial size

concurrent programs such as operating systems and database management

systems.

Third, the complexity of concurrent program code is generally high since

programmers apply many optimization techniques to improve program per-

formance. Moreover, the most widely used programming language C does

not support concurrency in the programming language level. Therefore, the

code structure for controlling concurrency in C programs varies depending on

programmers’ style. For the above reasons, it is complicated to analyze the

concurrent program codes in general.

1.3 Error, Bug, Failure, Fault

In this paper, we use the vocabularies for indicating software defects based

on IEEE Standard 729 Glossary for Software Engineering Technology [2]. For

a terminology ’error’, the standard 729 describes four different meanings: (1)

Error is the difference between a computed value, an observed, and a theoret-

ically correct value. (2) Error is an incorrect step, process, or data definition.

(3) Error is an incorrect result. (4) Error is a human action that produces an

incorrect result.

We refine second and third meanings for further discussion. We will use

3

’bug’ for second meaning, and ’error’ for third meaning. We never use ’error’

with first meaning, and also fourth meaning since programs are required to be

aware of all possible human actions.

The IEEE standard introduces ’failure’ and ’fault’. Failure is the inability

of a program to perform its required functionality. And a fault is a defect in

either hardware or software which causes a failure. Two terminologies ’bug’

and ’faults’ are conceptually similar, but ’bug’ accents software, whereas ’fault’

accents system including both software and hardware. Correspondingly, ’error’

and ’fault’ are similar but different. For this reason, we mainly use ’bug’ and

’error’ in this paper since the research targets software defects.

1.4 Concurrency Errors

Concurrency errors refer to unexpected program behaviors caused by incorrect

synchronizations in concurrent programs. A distinction of concurrency errors

from non-concurrency errors is that the condition where a concurrency error

occurs in a program not only depends on input data but also depends on

thread scheduling. For the same given data, an execution results concurrency

errors but other execution with a different thread schedule may not result any

concurrency errors.

There are mainly two types of concurrency errors: one is race condition,

and the other is deadlock. A race condition refers to a situation that there

exists an execution of a critical section results an unexpected state. Race

conditions are mainly caused by incorrect implementations of critical sections,

which do not guarantee the atomic executions. Race condition bugs can be

classified into two types. One type is data race bug which indicates a case that

a shared resource is not synchronized properly. The other type is atomicity

violation. An atomicity violation bug is caused when a critical section which

manipulates two or more shared resources is not always executed atomically.

4

In Section 6, we survey the currently developed race detection techniques.

A deadlock refers to a situation that an execution of a critical section

is indefinitely stopped depending on thread scheduling. Deadlock is caused

when a set of threads try to hold at least two locks simultaneously. In general

multithreaded programs, one thread can hold one lock by one instruction. So,

in order to acquire several locks, a thread first holds one lock and then acquires

the other lock in a sequence. Deadlocks can happen when two threads try

to acquire a set of locks concurrently without proper synchronization. Most

simple example is as follow. There are two threads Thread1 and Thread2. Two

threads try to acquire lock A and B. Thread1 first acquire lock A and then lock

B. Thread2 first acquire lock B and then lock B. Deadlock happens in following

execution scenario: (1) Thread 1 holds lock A, (2) Thread 2 holds lock B, (3)

Thread 1 acquire lock B, (4) Thread 2 acquire lock A. Deadlock has been

studied since concurrent programming was introduced. Coffman introduced a

reasonable necessary deadlock condition called Coffman condition in 1971 [3].

An execution is deadlock if it satisfies the following four conditions:

• Mutual exclusion condition: A resource that cannot be used by more

than one process at a time

• Hold and wait condition: Processes already holding resources may re-

quest new resources

• No preemption condition: No resource can be forcibly removed from a

process holding it, resources can be released only by the explicit action

of the process.

• Circular wait condition: Two or more processes from a circular chain

where each process wait for a resource that the next process in the chain

holds.

5

Many researchers have developed the techniques to detect deadlock errors

or potential deadlock. In Section 6, we survey these techniques.

Livelock refers to either starvation or infinite execution in general. Star-

vation is a situation where a task on a resource is not scheduled so that its

progress is standstill. Infinite execution is a situation where a thread’ s exe-

cution is not progressed even though it is scheduled. In most cases, infinite

executions stuck in loops [3].

1.5 Approach

In this research, we propose a light-weight concurrency bug detection technique

based on bug pattern matching. This technique aims to result fast and effective

bug detections from industrial size multithreaded C program codes.

1.6 Contributions

The contributions of this research are the followings:

• Classify concurrent bugs

We report analysis result of previous concurrency bugs in Linux kernel.

And we suggest the concurrency bug classification which can be used

to assist systematic understanding of concurrency bugs and define bug

patterns.

• Detect concurrency bugs using the studied bug patterns

We suggest an approach to define concurrency bug patterns and use the

defined bug patterns for bug detections. This approach can be used for

other bug patterns. Moreover, it can be used for other techniques using

bug patterns. We detected suspected bugs in Linux kernel using the

defined bug patterns. We report the detected bugs to Linux maintainers.

6

• Enhance accuracy of bug pattern matching

We developed the improved bug pattern matching technique by consid-

ering semantic information from codes. This technique effectively elimi-

nates the false alarms from the syntactic bug pattern matching results.

This technique can be utilized for other static analysis for concurrency

bug detections.

1.7 Structure of this paper

We first explain the basic concepts of concurrency and concurrency bugs in Sec-

tion 2. In Section 3, we introduce the concurrency bug classification developed

by previous Linux bug surveys for better understanding of real concurrency

bugs. We introduce five concurrency bug patterns and report two bug pattern

detector implementations and the results of applying the tools to Linux file

system code in Section 4. In Section 5, we suggest an improved bug pattern

matching using semantic information for more accurate results. In Section 6,

we explain the related works on various concurrency bug detection techniques.

We conclude our research results and suggest future work in Section 7.

7

Chapter 2

Related Work

Many researches have been developed to detect concurrency bugs including

race condition and deadlock. Each bug detection technique has a bug defini-

tion and a program analysis algorithm. A bug detection technique apply the

algorithm to analyzes the behavior of target program to check whether the bug

definition can be satisfied by a target program. In this section, we classify the

concurrency bug detection techniques with respect to these two aspects: One

is program analysis technique and the other is bug detection technique. And

then we survey the previoulsy developed techniques in each attribute.

2.1 Program Analysis Techniques

2.1.1 Code pattern based techniques

FindBugs [4] detects bug canddiates by pattern matching Java binary with

respect to the specified various Java bug patterns. FindBugs framework use

BCEL Java binary parser for binary code pattern matching by class structure

analysis, linear code analysis, control flow analysis, and data flow analsys. In

[5], the authors introduce FindBugs approach for finding concurrency bugs in

Java programs.

Dawson Engler and his research group analyze the previously reported bugs

from Linux and OpenBSD codes in [6]. They first study the nature of bugs with

respect to the distribution of bugs over operating system modules and the time

8

duration between a bug introduction and the bug path. In following research

[7], they suggest a bug detection approach using code pattern matching. In this

work, they introduce a state-machine based bug specification language MetaL.

A MetaL description specifies a set of execution path. Many bugs including

both sequential bugs and concurrency bugs are detected by this techniques

from Linux and OpenBSD.

ConTest infrastructure has a feature which utilize bug patterns to trigger

concurrency errors during test runs. Farchi and his research team in IBM Haifa

introduce this technique in [8]. This technique first finds a candidate concur-

rency bugs through code patterns. And then, it inserts noise injections at the

candidate bug site in order to detect concurrency bugs with high probability in

testing. Upon ConTest, this technique contributes to active testing of concur-

rent Java program. Farchi and his research team also adopt bug patterns for

assisting code review process [9]. The authors extend the regular expression

in Perl language for bug specifications and bug detections. As a preprocessing

to code review by experts, this technique automatically attach the comments

on a code which is corresponding to a given bug specification.

Opera Laboratory at UCSD(Previously at UIUC) published empirical study

on concurrency bugs with meaningful discussion on bug patterns [10]. This re-

search analyze previously detected concurrency bugs from 4 large opern source

programs: MySQL, Apache, Mozilla, and OpenOffice. The authors advocate

an idea to develop bug detection techniques motivated from common charac-

tersitics of concurrency bugs.

2.1.2 Rule based techniques

The techniques belong to this category enforce a set of programming rule

which guarantee that generated programs do not result any incorrect behavior.

There exist both top-down approach and buttom-up approach to enforcing

programming rules. Top-down approach assumes that programming rules are

9

given before analysis. Buttom-up approach rather extract the programming

rules used in a target program and then check whether the programming rule

is consistently used around whole program.

Top-down approach

Most techniques of this approach extend the type systems of existing program-

ming languages. The extended type systems check a program correctly follows

a given programming rules to ensure that the desired properties holds for the

program. The type systems are noramlly implemented as a part of compilers.

Flangan and Stephen N. Freund [11] introduce an extended Java type sys-

tem to avoid concurrency errors including deadlock and data race. This type

system requires every shared member has a specification of its synchronization

object. Users should specify the specification and then the type system auto-

matically check whether there is a possibility of deadlock and data race error.

The authors implement this type system as rccjava which inputs annotations

and automatically check the absence of deadlock and data race from an anno-

tated Java program. Flangan and Shaz Qadeer extend the concept to dynamic

analysis in [12]. They suggest an algorithm based on Lipton’s reduction theory

to ensures the absence of atomicity violation from an observed execution.

In [13], the authors introduce a similar type system approach to Flanagan’s

work for Safe Concurrent Java. This type system enforces partial-order of

locking orders to avoid deadlock and also enforces lock disciplines to avoid data

race. This type system adopts ownership types to consider encapsulations.

And this system has a capability to extract type in order to reduce human

labors.

Cyclone is a dialect of C for writing safe system programs. In [14], the au-

thors extend Cyclone’s type system to generate data race free multithreaded

C programs. Cyclone is a C style programming language which supports ad-

ditional language features for safe and effective programming such as region

10

based memory management and parametric polymorphism. The extended Cy-

clone input a lock name for every pointer type, a lock name for every lock type

and a locking constrain for every function as annotations to guarantee absence

of data race.

NesC [15], a dialect of C language for safe programming, avoid data race

error in compiler level by enforcing simple invariant. It checks all variables

accessed in any asynchronous code should be accessed in atomic blocks.

These type system based program analysis techniques guarantee the cer-

tian properties from target programs. However, there are two shortcomings

of this approach to be applied to general programs. First, these systems re-

strict programmers to write codes in simple manner strictly. Second, these

methods require programmers to specify the additional information related

to synchronization used in a code. These two shorcomings are unfeasible for

targeting system programs. In system programs, fine tuning of synchroniza-

tion operations are common in order to improve performance. Moreover, the

size of program is normally too large for programers to give the additional

information manually.

Buttom-up approach

The techniques in this approach first extract suspected programming rules

with respect to programming rule templates. And then, the techniques check

whether the programing rules are consistently and completely applied to the

target program or not. The most popular programming rule templates are lock

discipline and partial order in nested lock acquiring order. A lock discipline is

a rule to enforce the existence of a lock which synchronizes every access to a

shared variable. It gurantees the absence of data race of the shared variable.

Partial order in nested lock acquiring order (simply lock ordering) is a rule that

enforce the existence of partial order relation in nested lock acquiring order.

This rule gurantees the absence of deadlock.

11

Dawson Engler and Ken Ashcraft develop RacerX [16] which extract lock

discipline and lock ordering to detect data race bugs and deadlock bugs respec-

tively. RacerX extract programming rules in use by traversing inter-procedural

control-flow graph. The absence of consistent lock discpline and the absence of

partial order relation in a program are interpreted as data race bug and dead-

lock bug respectively. RELAY also checks the existence of lock discipline to

detect data race bugs. The fundamental concept of RELAY is similar to that

of RacerX. But RELAY adopts lock analysis, function summary, and symbolic

execution techniques for better accuracy in the analysis result.

These techniques are effectively detect programming rule violations from

program source code. The major limitation of these techniques is the extensi-

bility. These techniques only can verify the correct use of given programming

rules.

2.1.3 Stateful model checking

Model checking techniques exhaustively check the possible behaviors of a model

to provide sound and complete verifications. Software model checking tech-

niques aim to verify software by automatic model constructions from source

code and aslo by abstraction techniques which alleviate state explosion. Com-

plete analysis is desirable for verifying concurrent programs since concurrent

programs have non-determinism in nature. However, state-of-art software

model checking techniques are still not scalable enought to verify large-size

concurrent software. Most techniques still concentrate on sequential program

verification.

TCBMC [17] is a bounded model checker for multithreaded programs.

TCBMC translate a given multithreaded C program into the corresponding

SAT formula with a given bound as CBMC works. TCBMC additionally in-

put a context-bound which is a upper bound of the number of context switching

in an execution.

12

KISS transforms a given concurrent program into a sequential program

which simulates a partial behavior of the concurrent program. KISS verifies

the transformed sequential program using SLAM model checker. Users can

specify requirement properties as assertion statements. In [18], the authors

report experimental results of applying KISS to Windows device drivers with

several thousand lines of codes. In the experiments, test harness was manually

constructed before the model checking.

Blast employs thread modular abstraction technique for verifying multi-

threaded programs [19]. This technique model checks concurrent execution of

one thread and environment model at a time, and then refine the environment

model by the result of the model checking until the environment model reaches

to a fixed point and every thread satisfy the requirement property with the

environment model.

MOKERT framework adopts SPIN model checker with semi-automatic

model extractor MODEX. In this framework, an abstract model is extracted

from C codes using Modex tool and then the model is verified using SPIN model

checker. This framework supports counter example replay module through

which the validity of counter example and the abstract model can be checked.

2.1.4 Dynamic analysis

Dynamic analysis techniques (a.k.a runtime analysis) aim to verify a certain

property of a program by evaluating its actual executions. By observing inter-

nal states during target program executions, the dynamic analysis techniques

can use accurate information of program behaviors. In dynamic analysis, it is

possible to achieve value-sensitive and alias-sensitive analysis with much less

computation cost than in static analysis.

Dynamic analysis extends traditional testing to check meaningful proper-

ties using intermediate state information in program executions. Concurrent

executions are not only determined by test cases but also by thread scheduling.

13

Dynamic analysis includes the technique for controlling thread scheduling.

Dynamic analysis techniques can be categorized into three independent

layers. First layer is systematic testing layer. This layer is to execute target

programs within policies. These policies aim to reach error states effectively.

Second layer is information extraction layer. The information on the internal

behaviors of the target programs is extracted to be used for the program cor-

rectness checking. At third layer, the monitors generate abstract model of the

target program from the extracted information and then verify the abstract

model to detect possible errors in the program.

Dynamic analysis techniques share the limitations of testing inherently.

Dynamic analysis cannot support complete analysis for target programs since

it uses monitored partial behavior of the target programs. The other limita-

tion is that dynamic analysis techniques are difficult to be applied unless target

programs are complete. Dynamic analysis techniques require executable envi-

ronments and test cases. However, these can be delivered only at later phase

of software development especially for embedded software.

For checking industrial concurrent programs such as Linux file systems, our

bug pattern detection approach has the advantages for the following points.

First, the bug pattern detection technique can be applied for incomplete program

source code so that it may be applied for early phase of software developments.

Second, the bug pattern detection technique is scalable for the complexity of

target programs whereas dynamic analysis techniques are not. Systematic test-

ing techniques including ConTest [8] and AtomRace [20] investigate concur-

rency bug patterns in systematic testing layer to simulate common concurrency

error execution patterns.

In this section, we survey the techniques for stateless systematic testing

techniques and information extraction techniques. Former one is used for first

layer, and later one is used for second layer. The techniques for third layer

will be discussed in the next subsection.

14

Stateless systematic testing

Systematic testing techniques regulate thread scheduling to reach error states

effectively in testing. By non-determinism in thread scheduling, the num-

ber of distinguishable thread scheduling scenarios increases exponentially with

respect to target program size. Traditional testing methods cannot verify con-

current programs effectively.

The motivations underneath systematic testing techniques are to increase

high coverage and explore a property of thread scheduling which is commonly

observed from concurrency errors. Systematic testing techniques use the in-

formation of internal structures of target programs. For this point, systematic

testing is different from traditional black box testing. Systematic testing is

similar with software model checking since these two techniques verify imple-

mentation directly. However, systematic testing does not use the visited state

information for controlling thread scheduling whereas software model checking

does.

One motivation is to explore as many distinguishable thread scheduling

scenarios as possible in a given time. For two distinguishable thread schedul-

ing scenario, one thread scheduling is reducible to the other thread scheduling

if their resulting states are the same. There are many distinguishable thread

scheduling scenarios which result the same program state or program behav-

ior. For effective testing, it is desirable to explore thread scheduling scenarios

that are not reducible to each other. Exploiting different states would increase

the probability of reaching error states in a given amount of time. Using par-

tial order reduction techniques, it is possible to avoid exploration of reducible

thread scheduling scenarios. Verisoft [21] uses partial order reduction con-

cept in systematic testing of concurrent programs. Verisoft controls message

passing among processes and non-deterministic choice in a process to test non-

reducible scheduling scenarios. A dynamic model checking technique Inspect

improves dynamic partial order reduction technique to additionally consider

15

locking behavior of target programs [22].

The other motivation is to explore error-prone thread scheduling scenarios

to detect a certain type of errors effectively. CHESS [23] uses context-bounded

search which limit the number of context-switching for a thread scheduling

scenarios in a testing. This approach is motivated by an observation that

most of concurrency bugs cause concurrency errors within a small number of

context-switches. CHESS allows users to specify requirement property as lin-

ear temporal logic formulae. And CHESS can check whether an execution

satisfies the Good Samaritan property which is a desirable fairness property

in concurrent programs or not. ConTest [8] is an infrastructure for concur-

rency program testing. This technique inserts noise injection probes to target

programs to generate concurrency errors in high probability. A noise injec-

tion probe is a piece of code which does not affect original program behaviors

except for execution timing by yielding and sleeping for an amount of time.

ConTest uses concurrency bug patterns. Many concurrency bugs are caused by

undesirable context switching in a code. ConTest insert noise injection probes

at critical points of pattern matched codes to induce errors. CalFuzzer [24]

is an active testing framework which enforces error-prone thread scheduling

scenarios. CalFuzzer understands candidate bugs in a program by applying

dynamic analysis to the program, and then guide thread scheduling in testing

to generate the error by the candidate bugs. CalFuzzer instruments target

program source code to control thread scheduling.

Information extraction

Dynamic analysis techniques transform target programs to access the internal

state information during executions for verifying the target programs. Dy-

namic analysis techniques statically analyze a target program to indicate for

which variables correctness properties will be checked. And then, additional

programming features are inserted into the target program to monitor the value

16

of the interested variables in dynamic analysis. Deadlock detection techniques

track the behavior of synchronization objects such as mutex, semaphore, and

etc. Race condition detection techniques target the behaviors of both shared

variables and synchronization objects in use. Information extraction should

not change any state (semantic) behavior of taret programs, but it degrades

the time performance of target programs since the transformed program exe-

cutes additional code for the monitoring. For efficient dynamic analysis, novel

information extraction techniques to reduce the runtime cost of monitorings

have been developed. Choi et al suggest a novel algorithm to reduce useless

insertion of monitoring probes in object-oriented programs by static analysis

techniques. Velodrone [25] imporve the performance of happen-before moni-

toring by additionally considering lockset information at each probe execution.

Dynamic analysis techniques insert monitoring probe codes by several program

instrumentation techniques. Eraser [26] uses ATOM [27] binary modifica-

tion system to instrument target programs. Velodrome [25] uses BCEL[28]

Bytecode Engineering Library to instrument Java intermediate code. ConTest

infrastructure [8] use its own instrumentation engine specialized for multi-

threaded Java program testing. In [29], the tool uses its own compiler for

instrumenting Java intermediate codes. The concurrency bug detection tech-

niques developed by Scott D. Stoller et al. [30] In [30], the technique transforms

target programs’ source code to extract internal behavior during program ex-

ecutions. MultiRace [31] instrument the source code of target C / C++ pro-

grams to use page fault handler for logging interesting read and write opera-

tions.

17

2.2 Bug Detection Techniques

2.2.1 Deadlock

A deadlock is a situation where threads stay in waiting state indefinitely so

that their executions are stopped. Major source of deadlocks is circular waiting

situation which is that thread A is waiting for thread B’s execution meanwhile

thread B is waiting for thread A’s execution. The deadlock problem related to

the major source has been studied since concurrent programming concept was

first introduced. As a minor source of deadlock, a program can result deadlock

situations when a thread disable preemptive scheduling by incorrect interrupt

disabling. However, a program controls scheduling freely in general. Only in

specific circumstances such as operating system kernel can make this type of

deadlock. Therefore, most deadlock detection techniques concentrate on the

major type deadlock.

Coffman condition [1] is a practical necessary condition of deadlock oc-

currence, which is suitable for lock based multithreaded programs. In order

to check fourth condition of Coffman’s deadlock condition, lock graph which

represent dependency relations among threads and resources has been used in

dynamic analysis and model checking. Coffman introduces a sufficient condi-

tion of deadlock occurrence in an execution. The following is four conditions.

• Mutual exclusion condition

A resource that cannot be used by more than one process at a time

• Hold and wait condition

Processes already holding resources may request new resources

• No preemption condition

No resource can be forcibly removed from a process holding it, resources

can be released only by the explicit action of the process.

18

• Circular wait condition

Two or more processes from a circular chain where each process wait for

a resource that the next process in the chain holds.

Lock graph can be used to check whether an execution satisfies Coffman’s

condition or not. This method is post-mortem since it reports deadlock bugs

only if actual deadlock error is occurred in testing. However, post-mortem

deadlock detection helps debugging only if deadlock errors are revealed in

testing. Potential deadlock detection technique is desirable since achieving

high coverage of multithreaded program in testing is in general difficult.

Many synchronization mechanisms in use satisfy mutual exclusion, hold

and wait, and no preemption conditions. Most potential deadlock detection

techniques check a program can reach a state of any circular waiting. Other-

wise, it cannot report any possibility of deadlock bugs which might be located

in uncovered by testing. In general, checking the presence of deadlock from a

given program is undecidable. Recently, researchers developed the technique

by (1) checking partial ordering in lock order relation, and (2) checking dead-

lock in abstract synchronization models for checking possible deadlocks.

Static potential deadlock detection techniques

There exists a lock ordering relation from lock A to lock B if the program

acquires lock B while it holds lock A in an execution. It is known that if there

exists partial ordering in lock ordering relations, deadlock will never occur.

This condition is a stronger condition of the absence of deadlock. However, en-

forcing partial ordering is used as deadlock avoidance policy in large program

including Linux file system. RacerX [16] statically traverse inter-procedural

control-flow graph of a program while it records lock ordering relation. It

reports not partially ordered lock ordering relations as deadlock bugs by con-

straint solving. RccJava [32] checks the presence of a partial order relation in

a program by type checking in compiler level. It does not allow any program

19

unless a strict partial order relation exists in the lock ordering relation of the

program.

Dynamic potential deadlock detection techniques

Dynamic potential deadlock detection techniques construct an over-approximated

abstract model which reflects synchronization behavior of a target program

based on the monitored information. And then, the techniques perform dead-

lock checking in the abstract model. The modified lock graphs are used for

abstract models in these techniques. Researchers suggest ideas of reducing

false alarm caused by the gap between an abstract model and the original

program in deadlock detection techniques.

It is possible to construct an abstract model which represents synchroniza-

tion behavior of a target system. We can detect deadlock in the abstract model

in order to detect deadlock in the target program.

GoodLock algorithm constructs a lock tree for each thread, and then de-

tects two opposite lock ordering in two threads’ lock tree. In the detection, the

algorithm check the presence of any guarding lock, a lock always held before

two locks, to exclude false alarms. In [33], the generalized GoodLock algorithm

for arbitrary number of threads is introduced for dynamic potential deadlock

detection. In [30], the authors suggest an approach to consider deadlock related

to conditional variables and semaphores. In [34], another generalized Good-

Lock algorithm which is parallel to [30] is introduced. The authors adopts the

generalized GoodLock algorithm in deadlock detection using Java Path Finder

software model checker and suggest a method to validate a potential deadlock

detection using Java Path Finder [35].

2.2.2 Race condition

A race condition refers to a situation where a program execution reaches to

unexpected states due to concurrency. Race conditions are caused when the

20

synchronizations for critical sections are incorrect so that the atomicity of the

critical sections does not hold. Many race condition detection techniques have

been proposed, but it is still difficult to assure the absence of race condition

because most programming languages including C and Java do not support

any language feature to declare critical sections. For this reason, race con-

dition detection techniques first identify the critical sections from a target

program. Depending on the assumptions used for identifying critical sections,

race condition detection techniques are categorized into two types: one type is

called datarace detection, and the other is atomicity violation detection. For

each type of race condition detections, many algorithms to check atomicity

of critical sections have been introduced. In this section, we first survey the

approaches and techniques for identifying critical sections, and then various

techniques for datarace detections and atomicify violation detections.

Defining critical sections

Identifying which parts of codes are written as critical sections is not trivial in C

and Java programs. Each race detection technique deploys its own technique to

define critical sections based on the properties of target program domains. The

accuracy of a race condition detection technique highly relies on the accuracy

of critical section definitions. If a technique regards much code as critical

sections than actual, the techniques may report false positives. In opposite,

false negatives would be resulted if a technique regards less code as critical

sections than actual.

One approach to define critical sections is regarding every shared variable

access as a critical section. This approach is naive but most widely accepted

in race condition detection techniques. The race condition detection tech-

niques with this particular approach are called as datarace detection tech-

niques. These techniques define a data race as a situation where a shared

variable is accessed by at least two different threads concurrently where at

21

least one access is writing. This approach is neither sound nor complete but

its usefulness is proven by many techniques for finding programming errors by

missing proper lock operations.

The other approaches assume that a critical section consist of a consequence

accesses rather than a single access. The race detection techniques based on

this assumption are called as atomicity violation detection techniques. There

are mainly three approaches to define a sequence of accesses as a critical section

for atomicity violation detection techniques. First approach is to expect users

to specify code blocks intended to be critical sections. Atomizer [36] and

Velodrome [25] allow users to specify code blocks as critical sections using

additional keyword atomic.

Second approach is to employ a certain type of existing code blocks as criti-

cal sections. In [37], the technique assumes that each method is intended to be

a critical section. In [38], the technique assumes that a code block guarded by a

synchronize construct as an atomic code block. In [39], non private methods,

synchronized private methods, synchronized blocks inside non-synchronized

private method except for main method, and thread spawning methods are

regarded as critical sections.

Third approach is to infer the critical sections by analyzing data depen-

dency of a target program code. This approach is motivated by the observation

that atomicity violations might occur if two statements with data dependency

does not belong to a critical section. In [40], the technique inputs user given de-

pendency relations among object members and then check whether dependent

members are manipulated without possibility of atomicity violations. The

technique reports a possibility of atomicity violation if any two dependent

members are not updated in a critical section. MUVI [41] infers data depen-

dency in a program by a heuristic algorithm which estimates the presence of

data dependency by code distance information. Based on inferred dependency

information, the technique reports a possibility of atomicity violation if the

22

shared variables of a dependency are not updated consistently in a program.

In [42], the technique detects a specific type of atomicity violations called

stale-value concurrency error. This technique analyzes Java programs to find

methods with two adjacent synchronized blocks where later one depends on

former one via local variables. The technique reports a possibility of atomicity

violation since the executions where context-switching may occur between two

synchronized blocks. AtomRace [20] has the code patterns of critical sections.

This tool infers critical sections from a given code by pattern-matching the

code patterns.

Checking race condition of critical sections

There are two major categories in the techniques for checking atomicity of

critical sections with respect to critical section definitions. First categories

targets on datarace detection. The techniques in the other categories aim to

detect atomicity violations. Datarace detection technique concentrates on find-

ing two unsynchronized accesses to a shared variable which can be executed

simultaneously. Atomicity violation detection techniques find two critical sec-

tions which can be executed concurrently and apply additional techniques to

verify these two critical sections are executed atomically for any interleaved

execution. We first survey data race detection techniques and then atomicity

violation detection techniques.

Datarace detection techniques

In datarace detection techniques, datarace error is defined by the following

three conditions :

• There exists two accesses where at least one access is writing, and

• These two accesses manipulate the same shared variable (or memory

location), and

• These two accesses can be executed concurrently.

23

These conditions are deployed in various ways depending on the purpose of

datarace detection techniques.

In dynamic analysis techniques, it is possible to check first condition for any

two accesses since the extract exact memory location of an access is available.

However, in static analysis techniques, it is difficult to check whether any two

statements would access the same variable in real executions. Many techniques

over-approximate to check whether two statements access the same variable or

not using type information, escape analysis, and points-to analysis.

In order to check third condition, many dynamic analysis techniques com-

pute happen-before relation of each access in a monitoring execution. For an

execution with happen-before relation, two accesses without happen before or-

dering are considered to be executed concurrently. This technique never results

false positive if happen before relation is correctly measured. Vector clock is

widely used for computing happen before relation.

The other widely used technique is lockset algorithm which checks a suffi-

cient condition of third condition. This detection technique is motivated by a

programming idiom that every statement which accesses a shared variable is

guarded by one lock consistently over a program. This programming idiom is

called lock discipline and widely used in lock based concurrent programs. Lock-

set algorithm tracks the set of locks held by the current thread at an execution

point to check whether there exists at least one lock which is consistently held

when a thread accesses the shared variable. Since lockset algorithm adopts

a sufficient condition of absence of datarace, many techniques using this al-

gorithm investigate additional false positive filtering techniques for increasing

accuracy of results.

There exist approaches which employ both happen before relation and lock-

set algorithm to improve dynamic datarace detection techniques. The static

analysis technique such as Chord uses neither happen-before relation nor lock-

set algorithm. This technique first statically find a set of candidate datarace

24

accesses pairs from a Java program, and then check whether two candidates

accesses can be executed concurrently by various static analysis techniques

including reachability analysis, thread-escape analysis, and lock analysis.

Eraser [26] infers lock discipline from a multithreaded C program execution

to check whether the program has data race bugs. A program has a lock

discipline if every shared variable is consistently synchronized by at least one

lock. Eraser understands the absence of lock discipline of a shared variable

means that two concurrent accesses to the shared variable can result data race

in an execution of the program. In order to infer lock discipline, the tool

records each variable’s lockset, a set of locks held at a time of the variable

accessing through an execution. Eraser tool uses ATOM binary modification

system to instrument a binary program to execute the lockset algorithm in run

time. Eraser tracks a lockset for every 32-bit sized memory locations of global

variables and heap variables.

MultiRace [31] detects data race from executions of C++ programs us-

ing Djit+ algorithm which is based on happen-before execution model and an

improved lockset algorithm. Considering memory characteristic of object ori-

ented programs, the memory granularity in data race detection is the size of

objects rather than fixed size (double words in Eraser). This technique aims

to reduce runtime detection cost by using region trap library instead of using

information extraction by inserting probes.

Racer [43] is a dynamic data race detection tool for Java program. It adopts

Eraser’s lockset algorithm with the modified state machine suitable for Java

memory model. And the authors use aspect-oriented programming concept

for information extraction. The functionality of aspect is extracting runtime

information and the authors define three point cuts: locking points, unlocking

points, accessing variables suspected to be shared ? where the aspects are

added.

RCAnalyzer [44] finds shared variables which have conflicting accesses (read

25

accesses with at least one write access) from a given program and then check

whether a lock is consistently held at every access to each shared variable. RC-

Analyzer is implemented upon Bauhaus infrastructure which supports various

pointer analysis and control flow analysis techniques. RCAnalyzer handles in-

accuracy of each analysis by ranking each warning. This approach is similar

to our approach in the point that the technique first finds a pair of conflict-

ing codes and then checks whether two codes can be executed in parallel by

lock analysis. But, RCAnalyzer indicates candidate bugs by inferring lock

discipline, however in our approach, we indicates candidate bugs by pattern

matching.

Chord [45] statically analyzes Java programs to find data race bugs. Chord

first set the set of conflicting accesses as a set of candidate bugs. And then it

refines the set of candidate bugs using alias analysis, thread-escape analysis,

call-graph construction, and lock analysis. Chord considers the execution se-

mantics of thread creation, thread join, and lock synchronization. The criteria

of Chord are similar to our approach. Chord targets for open programs and

results counter examples. Chord concentrates on finding data race bugs mean-

while our approach is to find general concurrency bugs including atomicity

violations. Chord is built upon Soot Java optimization framework.

RacerX [16] checks the presence of consistent lock discipline for each shared

variables. RacerX traverse the inter-procedural control-flow graph in flow-

insensitive manner while it maintains the held lock in the path of traversal.

RacerX updates lockset of a shared variable whenever it reaches the accessing

statement in the traversal. It reports an error when there is no consistent lock

discipline for a shared variable. In order to reduce the false alarms caused by

inaccurate lockset analysis, RacerX uses many heuristics in lockset analysis

and bug ranking.

Choi et al. [29] suggest a method for efficient dynamic data race detection

using preceding static analysis. The static phase of this technique indicates

26

only necessary points to monitor using weaker-than relations. The definition

of datarace in this technique is (1) the two accesses are to the same memory

location and at least one of them is writing, (2) the two accesses are executed

by different threads, (3) the two accesses are not guarded by a common syn-

chronization, and (4) there is no enforced execution orderings such as ordering

by thread start and join operations.

Atomicity violation detection

After the critical sections in a program are recognized, the atomicity vio-

lation techniques checks whether each critical section is executed atomically

or not. There are mainly three approaches to check the atomicity of a code

block. First approach is based on type system check whether a program follows

a safe guaranteed manner or not. Second approach is to check the absence of

interference in an execution of an atomic block. Third approach is to check

the serializability of atomic block executions. The goal of atomicity viola-

tion checking is to check whether execution of atomic block starting from any

state always result the same state with all possible interference of concurrent

threads. However, this problem is NP complete. Therefore each approach

investigates a strong but useful condition to ensure atomicity.

Atomicity is also important issue in transaction control in database sys-

tems, so that researchers of database system have tried to solve the same

problem. Actually, the atomicity violation checking is rediscovery of concur-

rency control techniques for database transactions in the programming lan-

guage point of view. First approach corresponds to two phase locking in

transactions. Second approach corresponds to serial scheduling techniques.

And Third approach corresponds to conflict-serializability analysis techniques.

• Checking safe locking patterns

Two interleaved executions are equivalent if two there reaching (final) states

are the same with respect to a starting state. Using Lipton’s reduction theory,

27

we can check the equivalence of two interleaved executions. If an interleaved

execution is reducible to a serial executions where once atomic block is started,

only the execution of the atomic block should appears until the atomic block is

finished, we can say that the interleaved execution does not violate atomicity.

Atomizer verifies an interleaved execution can be reducible to one of serial ex-

ecutions. In general, Lipton’s reduction results many false positives. Atomizer

introduces a modified reduction theory by using lock discipline information.

Atomizer assumes that a program which has a consistent lock discipline for

every shared variables and uses the lock discipline information in the atomicity

violation checking. However, this technique only accepts a program with two

phase locking patterns. Therefore, it restricts synchronization patterns.

• Checking exclusive execution of atomic blocks

In [38], the authors define a view as a set of variables which is synchronized

by a lock at least once in a program. And then, the technique searches view

consistency. View consistency is a situation that there exist two variables in

a view which is accessed in different two synchronization blocks. AtomRace

dynamically monitors an interleaved execution. AtomRace reports when it

observes a situation that one thread is executiong an atomic block and the

other thread executing an atomic block is scheduled before the thread finishes

the execution of atomic block.

• Checking serializability checking

Serializability holds for critical sections if every interleaved execution of

the critical section result the same as a serialized critical section execution.

The techniques in the previous approaches restrict interleaved executions to

avoid race condition. However, well-designed critical sections allow as many

interleaved execution as possible. Therefore, serializability is much appro-

priate condition to check the atomicity violation. Since checking serializ-

28

ability for an arbitrary code is undecidable, many techniques adopt conflict-

serializability, a strong condition of serializability. An interleaved execution is

conflict-serializable if there exists a serial execution where the orders of con-

flicting accesses are the same. In conflict-serializability, it allows interleaving

of two atomic code block executions as long as the orders of conflicting variable

accesses are the same in the two threads. Two methods are widely used for

the decision procedures: one is conflict-graph, and the other is accessing pat-

terns. Velodrome [25] maintains a conflict graph using happen before relation

of an execution. Liqiang Wang and Scott D. Stoller introduce an algorithm

[39] to check conflict-serializability and view-serializability using commit-nodes

which is similar to conflict graph. They also propose an algorithm to validate

conflict-serializability based on execution patterns in [37].

29

Chapter 3

Concurrency Bug Classification

3.1 Linux File System

Linux kernel is a large multithreaded program. Each kernel thread is either

executing kernel code or executing user application. A thread with a user ap-

plication can execute kernel code as the application program invokes a system

call. When a user program invokes a system call, the thread which executes

the user application program will execute the corresponding system call han-

dling function. Since user applications cannot allow to access kernel memory

spaces, there is no possibility to occur concurrency error with a kernel program

execution and a user application program execution. There are two ways for a

thread to execute kernel programs. One ways is that a kernel program creates

a kernel thread for handling a special task such as garbage collector or timer.

The other way is that a user application program invokes a system call. In this

case, the thread which executes the user application program will temporary

executes the corresponding system call routine.

In traditional Linux kernel, only one system call routine can be executed

at a given time in order to avoid concurrency errors. Big kernel lock which

is acquired by lock kernel and relased by unlock kernel has been used for

the atomic execution of each system call execution. However, from Linux 2.5,

concurrent execution of system call has been allowed. Many synchronization

mechanisms are used to synchronize concurrent accesses to shared resources.

In most cases, an object has its synchronization mechanism as its members.

30

There is the following synchronization mechanisms commonly used in Linux

file systems. Each synchronization mechanism has its own purpose, implemen-

tations and usages.

• Binary lock

A binary lock is used for guarantee mutual exclusive accesses of a set

of resources. A binary lock may synchronize a set of variables or a set

of data structures. A binary lock can be implemented as a spin lock or

a semaphore whose counter is one. Before processing a shared variable,

the accessing thread acquires the protecting lock of the shared variable.

After the processing, the accessing thread releases the protecting lock.

In many cases, operations on a set of shared variables are integrated into

a function. Then, a thread which invokes the function is asked to acquire

the proper protecting locks before the function invocations.

• Readers writer lock

This synchronization mechanism allows concurrent read accesses on a

shared data structure by multiple threads but mutually exclusive write

access on the shared data structure. There exists a library which support

readers/writer lock interface. However, kernel developers implement the

readers/writer lock using two binary locks and a counter.

• Atomic instructions

Atomic operations support cheap synchronization mechanism. This op-

erations are used for frequently accessed shared variables such as refer-

ence counters. There are library functions which execute machine in-

structions for atomic operations. The following operations execute two

operations atomically.

• Barriers

Linux support memory barriers as library functions. A barrier operation

31

enforces the explicit operation ordering in compiled code. Concurrency

behaviors might differ depending on the instruction execution orders in

a thread. The execution order for operations on flag variable and count

variables are sensitively intended so that disordering in compiling might

result incorrect programs. Barriers are used for avoiding this type of

errors.

• Thread operations

Linux kernel programs can create a new kernel thread and communi-

cate to the thread via thread operations. These thread opereations are

supported as library functions. It is possible to create a thread using

kthread create and kthread run functions. And kthread stop() is

to join on a target thread after sending killing signal to the thread.

3.2 Survey of Reported LFS Bugs

We review bug reports to understand real concurrency bugs in system pro-

grams. We search the patch information which is related to concurrency issues

from Linux file system codes. There are two reasons for targeting bug reports

from Linux file system. First, Linux file system use many concurrency features.

Second, patch information is available via Linux change log documents.

We searches Linux change log from kernel 2.6.1 to 2.6.28 using keywords.

The keywords file system, vfs, ext, fs are used for collecting patches for

file system related parts. And the following keywords are used for collecting

concurrency related patches: deadlock, livelock, race, concurrent, and so

on. Since Linux change logs are written in plain text, we write a simple script

program to finding the patch which contains the keywords of interest. Within

more than 200 Linux change log documents, we found that 3And within the

file system related patches, we found that about 40 patches are directly related

to both concurrency issues and file systems.

32

We chose Linux 2.6 as the domain of survey for the reason that Linux 2.6 is

changed from Linux 2.4 (Linux 2.5 is unofficial) for supporting full concurrency.

We expect that many unrevealed concurrency bugs are issued as the kernel

becomes supporting full concurrency.

Linux kernel supports a bug reporting system, Bugzilla. We did not rely on

the bugzilla, since not all of bug finding and fixings are reported through the

bug reporting system. However, we do agree that bug should be systematically

managed.

3.3 Classificaion According to Five Aspects

We construct the classification of concurrency bugs in order to assist systematic

understanding of concurrency bus. The classification is developed based on

based on the observations from the survey result. We analyze the bugs from the

survey result by observing the descriptions in the bug reports and code changes.

We found that the bugs have the following five aspects: Symptom, Fault,

Resolution, Synchronization primitives, and Synchronization granularity.

• Symptom

The symptom of a bug is a candidate state of an error execution casued

by the bug. There are 4 attributes in this aspect: Data race result-

ing machine exception, Data race resulting faulty states, Deadlock, and

Livelock. Data race results invalid state in an execution so that it is

observed in either machine exception or faulty states of the internal data

structure. As explianed in the chapter 2, deadlock result threads not

to be progressed due to the blocking. Livelock results that the related

threads are not progressed or delayed due to the infinite loop or schedul-

ing problem.

• Fault

This aspect aims to represent the cause of a bug. There are 3 attributes

33

in this aspect: Design decision violation, Incorrect use of programming

idiom, and Program logic error. Three attributes are corresponding to

three level of programming. Design decision violation refers to a bug

where programmers do not follow high-level programming criteria. Incor-

rect use of programming idiom refers to the situation that programmsers

mistakenly adopt programming idioms. Program logic error indicates a

situtation where the low-level program logic is incorrectly implemented.

• Resolution

This apsect reprsent that by what program changes a bug is alleivated in

the bug patch. There are 2 orthogonal elements which consist of an at-

tribute. First attribute represents the actions : Insert, Remove, Change,

and Reorder. Second attribut represents the type of target operations:

Synchronization operation, Normal operations, Both. A bug’s patch may

consist of several code changes. Then the resolution of the bug represent

the most significant code change.

• Synchronization primitives

This aspect of a bug represent the synchronization primitives which con-

tribute to the bug. This aspect has 6 attributes: Instruction, Barrier,

Thread operation, Binary Lock, Complex Lock, Semaphore. Instruction

refers that a shared variable is used as flag or counter to control concur-

rency in a bug. Complex lock refers to the lock with derived semantics.

This attribute include releasing-on-block semantics, nested locking, try-

lock, etc.

• Synchronization granularity

The synchronization granularity of a bug is decide by the related shared

data structure. This aspect has 4 attributes: Kernel-level, File system-

level, File-level, and Inode-level. Kernel-level refers that the data struc-

ture exists in a kernel level so that the bug may effect to all kernel area.

34

Figure 3.1: Classification with respect to symptom and fault

According to the five aspects, we derived the attributes for each aspect and

then classify 27 Linux file systems bugs from the survey respectively. Figure

3.1 and Figure 3.2 depicts the distribution of the bugs with respect to the

aspects. The description of the 27 bugs and their classification results are

summarized in the Appendix.

35

Chapter 4

Concurrency Bug Pattern

Bugs are usually caused by programmers’ misunderstandings in programming

language, library usages, or design decisions. One mistunderstanding can be

shared by various programmers, so that various parts written by the program-

mers may contain similar bugs. If we find a bug in a program, there is high

change to other unrevealed bugs caused by the same reason exist as the found

bug in the other part or other version (later modification) of the program.

Therefore, bug patterns which capture characteristics of bugs can be utilized

for bug detection in large and legacy program development.

In this research we characterize 10 concurrency bugs patterns from the

previously reported concurrency bugs of Linux. And then we build the bug

pattern detectors of 10 patterns for automatic bug detection. Using the bug

detection techniques, we found 8 unreported concurrency bugs from recent

Linux kernel. This bug detection technique do guarantee neither soundness nor

completeness of analysis result. However, the approach to find bugs using bug

patterns is valuable since the bug pattern matching can enable fast, intuitive

and convenient bug findings. This technique is cost-effective since it can be

applied in early stage of program development and also it do not require any

manual effort from end-users.

The following subsections introduce 10 concurrency bug patterns. And then

we report the bug detection result by applying the bug patterns in recent Linux

kernel. We expect that the bug patterns can be useful for both developing

automatic bug detection by computer and code inspection process by human.

36

Figure 4.1: Canonical form of Misused Test and Test-and-Set

4.1 Studied Bug Patterns

4.1.1 Misused Test and Test-and-Set

Test and Test-and-Set is a well-known locking idiom. This idiom aims to

reduce runtime cost by avoiding the executions of locking operations by dirty

reading shared variables. In code optimizations, test and test-and-set pattern

would be applied for simple locking codes. However, programmers may make

mistake when they apply the pattern. Programmers mistakenly forget to write

the second test after lock acquiring. This mistake results a data race bug. In

Linux 2.6.11.1, a bug of this pattern is reported from ext3 file system. The

programmer misused test and test-and-set for optimization purpose. The code

is as follow.

37

Figure 4.2: Canonical form of Unlock before I/O operation bug pattern

4.1.2 Unlock before I/O operations

I/O operations are incomparably slower than memory operations. If a thread

which holds a lock executes I/O operations, other threads which acquire the

same lock cannot be executed until the thread releases the lock after all I/O

operations. In order to increase utilization, a function intentionally releases its

holding lock before I/O operations and then acquires the locks again to finish

its work. However, in many cases, programmers may assume that a code block

originally guarded by a pair of lock acquiring and releasing would be executed

as if no context-switching happens while its execution.

We found that the original programmer of sync single inode() consid-

ered the possibility of data race and write additional code to handle this situa-

tion in sync single inode(). The one who modified the sync single inode()

at Linux kernel 2.6.6, did not consider the case. However, this bug was recog-

nized and fixed in Linux kernel 2.6.7.

38

4.1.3 Unintended Big Kernel Lock releasing

Big kernel lock is one lock shared in whole Linux kernel for synchroniza-

tion. Big kernel lock is unordinary semantics called Releasing-on-block. With

releasing-on-block semantics, big kernel lock is preempted when a thread which

holds big kernel lock gets into waiting state. And when the thread is awaken-

ing, it first acquires big kernel lock again and then goes on the execution. This

semantics is to avoid situations where a thread with holding big kernel lock

becomes waiting. This situation may cause deadlock or severe performance

degradation since every system calls had relied on synchronization by big ker-

nel lock in earlier Linux kernel. However, this semantics may cause data race

since the atomic execution of a code block guarded by big kernel lock is not

guaranteed. Programmers would assume that no other code block guarded by

big kernel lock can be scheduled while a code block guarded by big kernel lock

is executing. But this assumption is not true if a code block guarded by big

kernel lock executes a possibility waiting operation which can make the current

thread waiting. Most memory management operations such as kmalloc() and

kmem cache alloc() can result waiting state. Linux kernel 2.6.24 includes a

patch which correct a data race bug caused by this reason.

4.1.4 Unsynchronized data passing to child thread

A parent thread can transfer data to its child thread by passing a reference to

a shared variable. In most case, parent threads write data on shared variables.

But, parent thread may write data after thread creation. In such case, proper

synchronization is necessary to avoid a scheduling which executes the child

thread right after the thread creation. However, programmers do not consider

this possible scheduling scenario and do not program proper synchronization.

A bug of this type was located at GFS2 file system in Linux kernel 2.6.23.

39

Figure 4.3: Canonical form of Unintended Big Kernel Lock releasing

Figure 4.4: Canonical form of Unsynchronized data passing to child thread

40

Figure 4.5: Canonical form of Use atomic instruction in non-atomic ways

4.1.5 Use atomic instructions in non-atomic ways

Linux supports atomic type variables and atomic operations which manipulate

atomic type variables. Test-and-set instructions are supported as atomic oper-

ations such as atomic test and dec() and atomic dec and lock(). Atomic

type variables are widely used for the purpose of counters. Use of atomic in-

structions are desirable since the time-cost of atomic instruction operation is

much less than other synchronization mechanisms. However, the program may

result unintended behavior unless atomic variables are manipulated consis-

tently. Programmers mistakenly use two seperate atomic instructions to code

test-and-set whereas atomic dec and test(x) or atomic inc and test(x) is

used in other parts of the program, it may result atomicity violations.

4.1.6 Waiting already finished thread

Linux kernel supports thread operations as library functions. kthread stop()

function is to signal a thread to stop, and then wait until the signaled thread is

41

Figure 4.6: Canonical form of Waiting already finished thread

finished. Therefore, whenever one thread invokes kthread stop() to stop the

other thread, the other thread must not be finished. A thread which invokes

kthread stop() will indefinitely wait if the target thread already finish its

execution. In order to avoid this situation, a thread designed to be signaled

by kthread stop() must not finish its execution until kthread shoud stop()

returns true. However, if there is an execution path where a thread execution

is finished without checking kthread shoud stop().

The correct code in the canonical form is a conventional programming

pattern for parent and child threads. However, the child thread of incorrect

code can be be finished without checking kthread should stop() if err is

satisfied.

42

Figure 4.7: Canonical form of Busy-waiting on atomic variable without mem-

ory barrier

4.1.7 Busy-waiting on atomic variable without memory

barrier

Handshaking between two thread can be implemented via busy-waiting: One

thread busy-waits on a shared variable until the other thread assigns a spe-

cific value to the shared variable. In symmetric Multi-processor circumstances,

these two thread might be executed on two different processors with two differ-

ent memory caches. Busy-waiting thread should contain at least one memory

barrier to enforce cache update for considering this circumstance. Unless,

it may iterate unnecessary for reading out-of-date value in a CPU cache, so

that it may decrease the performance. This pattern recognizes memory bar-

riers for memory barrier library functions(e.g. smp mb()), yield functions(e.g.

sched()), and lock operations.

43

Figure 4.8: Canonical form of No memory barrier after object initialization

4.1.8 No memory barrier after object initialization

The execution order of two instructions without dependency might be changed

by CPU and compiler optimization. However, the execution order of a dynam-

ically allocated variable initialization and its linking to a shared data structure

(in this case linked list) must be strict although there is no visible dependency.

The absence of any memory barrier between the initialization and the link-

ing to the linked list may result re-ordered execution. And it may cause race

condition where other concurrent threads can read uninitialized value. This

bug pattern captures the specific situation where the object is a dynamically

allocated list element.

44

Figure 4.9: Canonical form of Waiting with lock held

4.1.9 Waiting with lock held

Linux supports conditional variable synchronization mechanism as complete

type variable and complete() and wait for complete() functions. The exe-

cution of a thread which invokes wait for complete() on a complete variable

is blocked until the corresponding thread invokes complete(). There is dead-

lock possibility if a thread waits on a complete variable while it holds a lock.

If the thread to wake-up waiting thread acquires the lock before complet()

invocation, these two threads reach deadlock situation.

4.1.10 Releasing and re-taking outer lock

A function releases and re-takes a lock which is acquired by its caller for

improving performance. This function may result deadlock where the releasing

lock is not the most recently acquired lock. For this situation, the lock ordering

might be violated for the lock re-taking operation.

45

Figure 4.10: Canonical form of Releasing and re-taking outer lock

46

4.2 Automatic Bug Pattern Detection

We build the automatic bug pattern detectors for ten bug patterns. The bug

pattern detectors are implemented upon EDG C/C++ parser to identify spe-

cific abstract syntac tree structure of a target program. The tools demonstrate

that bug patterns can be effectively used for finding bugs with simple program-

ming. Using these bug detectors, we found unreported concurrency bugs from

a recent Linux kernel source code.

4.2.1 Code analysis using EDG C/C++ parser

In this research, we pattern match target Linux code using EDG C/C++ front

end parser [46]. This parser returns the intermediate language of a target code

so that we can traverse the target program code as graph like data structure.

In this section, we briefly mention how we implement the pattern matching

and code analysis algorithm based on EDG C/C++ front end parser.

We employ EDG C/C++ front end parser for program code analysis frame-

work. For the following two reasons, we estimate that EDG C/C++ front end

parser has advantage over other tools such as CIL. The one reason we select

EDG C/C++ front end parser in the bug pattern matching technique is that it

supports various dialect C grammars. Linux program code is written in GNU

C grammar. The parser successfully constructs the intermediate language from

any Linux code. The other reason for using EDG C/C++ front end is that we

can write the algorithms in C/C++ language which is much familiar to many

programmers than functional languages like ML.

In abstract syntax tree of target programs, we can access each function,

statement, expression, and variable as one data object. Each data object has

a set of fields which indicate the type and syntactic characteristic of the data

object defined in a target code. And each data object has a set of links to the

other data object so that the data objects in a program construct a hierarchical

47

Figure 4.11: Example of the intermediate language generated by EDG C/C++

front end parser

structure.

The data structure for a function has the members to record its scope, its

type of return value, its type of parameters, etc. And also it has the members to

indicate a statement object at the entry point of the function. The statement

object has information of the first statement of the function, and construct a

linked list with other statement objects in the function body using next field.

And it also points to a set of expression objects. Figure ? depicts the data

structures constructed from the example code.

4.2.2 Bug detection to Linux file systems

We apply the constrcuted bug pattern detectors to find concurrency bugs in

Linux kernel 2.6.30.4. The tools also can be applied to other parts of Linux. As

a primarily step, we first target 9 Linux file systems including both traditional

one and recently developed one: Ext-2, Ext-3, Ext-4, NFS, ReiserFS, SysFS,

ProcFS, UDF, and BtrFS. The source codes of a file system implementation

and virtual file system source codes are merged into one source code. And

48

Pattern Ext2 Ext3 Ext4 NFS Reiser

FS

SysFS Proc

FS

UDF BtrFS Total

Use Atomic Instructions in

Non-Atomic Ways

0 0 0 1 1 0 0 0 3 5

No Memory Barrier After

Object Initialization

0 0 0 0 0 0 0 0 7 7

Waiting Already Finished

Thread

0 0 0 0 0 0 0 0 12 12

Unsynchronized Data

Passing to Child Thread

0 0 0 0 0 0 0 0 3 3

Misused Test and Test-

and-Set

13 19 18 15 18 12 18 15 17 145

Busy-waiting on Atomic

Variable without Memory

Barrier

0 0 0 0 2 0 0 0 6 8

Unlock Before I/O Opera-

tions

0 0 0 1 0 0 0 0 0 1

Unintended Big Kernel

Lock Releasing

1 0 0 1 4 0 0 2 1 9

Releasing and Re-taking

Outer Locks

0 0 1 0 1 0 0 0 0 2

Waiting with Lock Held 0 0 2 0 0 1 0 0 0 3

Table 4.1: Suspected bug reports by the bug pattern matching

then GCC preprocess the source code with a given kernel compile option.

We validate the suspected bug reports from the bug detectors by manual

code inspection on the related codes. If a bug report is highly suspected to

be real one, we report the issue to the Linux maintainers. BtrFS maintainers

confirmed one bug detected by unsynchronized data passing to child thread

four bugs detected by joining already finished thread. The later four bugs are

caused by the same programming mistakes and then appeared in four different

lines. The patch for fixing the bugs was reported to the Linux maintainers.

49

4.2.3 Bug detection to other parts of Linux

As a furher work, we currently apply the bug dectors to other parts of Linux

kernel including device drivers and network stacks. In preliminary experiments

to these modules, we report suspected bugs to correpsonding Linux maintain-

ers. And six bugs are confirmed as a realistic by the maintainers. Figure 4.13

summarizes these bugs.

Id. Location Module Related bug patterns

1 Device driver mtd/ubi Unsynchronized data passing to child thread

2 Network stack atm Misused test and test-and-set

3 Network stack ax25 Misused test and test-and-set

4 Network stack rds Use atomic instructions in non-atomic ways

5 Network stack netfilteripvs Use atomic instructions in non-atomic ways

6 Device driver scsi/qla4xxx Misused test and test-and-set

Table 4.2: Confirmed bugs from device drivers and network stacks of Linux

50

Chapter 5

Improved bug pattern matching

using semantic information

A syntactic bug pattern matching can find the codes which may results the

corresponding bug in executions. However, the detected code may not gener-

ate the error in any executions of the program. The possibility of a detected

code to actually occur the error depends on the possible contexts where the

code would be executed. In syntactic bug pattern matching, the techniques

pattern matches a code without considering whole program structure. How-

ever, in order to understand possible contexts, the global (whole) programming

understanding is unavoidable.

Reducing false alarm is important issue in static analysis. Generally man-

ual bug validation requires as much human labor as manual bug detection.

Especially, for concurrency bugs, whole programming understanding is neces-

sary for bug validation which is extremely hard for human code inspection.

For a syntactic bug pattern match, the improved bug pattern matching

technique additionally consider (1) a code which can be scheduled in other

thread to occur concurrency errors, (2) a set of locks which may be held when

the pattern match is executed, (3) a possible shared variables in the pattern

match in any executions. And we propose an idea of considering path condition

as context.

We developed an improved bug pattern matching for automatic validation

of concurrency bugs detected from syntactic bug pattern matching. In this

51

research, the technique is bound to the bug pattern matching. But this tech-

nique can be also applied to other static analysis techniques for concurrency

bug detection.

The improved bug pattern matching technique does not guarantee any

soundness or completeness of bug detection. But, the bug pattern matching

results would give users better understanding of bug report and will be helpful

for their manual bug validation process. A bug pattern matching result sug-

gests a possible scheduling error scenario with important context information.

5.1 Multiple Code Pattern Matching

In general, concurrency errors do not happen in single thread execution. At

least two concurrently executing threads are involved in concurrency bugs.

Syntactic bug pattern match only finds a code which may be executed by one

thread in a concurrency error execution. A syntactic bug pattern match is

false alarm unless there is corresponding code which can be executed by other

thread concurrent at a time.

We extend the syntactic bug patterns into the corresponding multithreaded

bug patterns. For a syntactic bug pattern, we additionally specify the corre-

sponding code patterns. Syntactic bug pattern is pattern-matched for each

function. A multithreaded bug patterns has (1) a set of code patterns, and (2)

code pattern sets which may result the corresponding errors in their concurrent

executions.

In order to track whether a program location can be reached in a thread

execution or not, users should specify the function names which can be started

for a thread starting routine. In a closed C program, threads starting routines

include main function and interrupt handlers. In an open program such as a

Linux file system implementation, users can specify the system call handlers

and Linux APIs as threads starting routines.

52

The detector traverse inter-procedural control-flow graph starting from ev-

ery function in a given thread starting routine names. First, the detector

pattern-matches the major code pattern for each reachable function. If a

match is found, the detector traverses the inter-procedural control-flow graph

to find the minor code pattern match. If the detector finds a match for the

minor code pattern, it reports the pair of the major match and the minor

match as a candidate bug.

In inter-procedural control-flow graph, it is necessary to consider dynamic

thread creations. In our analysis, the tool recognizes the thread creation func-

tion (such as pthread create(), kthread start()) to apply the traversal.

However, the following two scenarios are impossible: A major (minor) code

pattern match is detected from function a, and then in further traversal from

function A, there exists function B which creates a thread with function C.

And then a minor (major) code pattern is detected at a function D which is

reachable from function C.

These two matches will be never executed concurrently since the synchro-

nization by thread creation. In this research, we do not consider thread join

operation which is necessary for much accurate analysis.

5.2 Lock Analysis

Two code pattern matches of a bug pattern cannot be executed concurrently

if two code pattern matches are always guarded by a lock. To remove this type

of false alarm, the detector traverses the inter-procedural control-flow graph

starting from one of thread starting routines while it maintains the lockset. The

lock analysis technique computes the set of locks held when a thread starts

to execute a code at a particular program location. If there exists one lock

which is always held at one program location and also at the other program

location, the statements at these two program locations cannot be executed

53

concurrently by the lock synchronization.

Eraser [26] proposes an approach to consider lockset at a program location

to understand the concurrent behavior of a program. This approach has been

widely adopted by many concurrency bug detection techniques in both static

analysis and dynamic analysis. Our lockset analysis technique is similar to the

lock analysis of RacerX [16]. RacerX aims to check lock disciplines of shared

variables using lockset. But our approach computes the locksets at the starting

point of each detected bug for checking whether two codes in a bug pattern

can be executed concurrently or not.

The lockset analysis technique traverses the inter-procedural control-flow

graph to maintain the lockset at each program locations. The algorithm in-

cludes a lock to the set of currently held lock when it reaches a statement known

as the lock acquiring statement. In similar manner, the algorithm excludes a

lock from the currently held lock set when it reaches a statement known as the

lock releasing statement. In general concurrent programs, many distinguish-

able locks are used through various acquiring and releasing operations. Users

should specify which statement is recognized as acquiring (or releasing) oper-

ation of which lock. In the lock analysis technique, we investigate reasonable

assumption to alleviate lock alias problem.

The detector reports a pair of matches as a bug if there exists two inter-

procedural paths starting from thread starting routines to the matching func-

tions and the locksets at the points of matches started are exclusive. The

detector reports two paths and the lockset information to users for supporting

user understanding.

The lockset analysis has two sources of inaccurate results. One is the

inaccurate lock alias analysis, and the other is inaccurate lockset analysis. In

our approach, we do not distinguish two dynamically allocated locks of a type.

In general, computing accurate lockset for a program location is difficult. In

our approach, we take a conservative analysis. Inaccurate intra-procedural

54

Figure 5.1: The lock analysis algorithm for functions

Figure 5.2: The lock analysis algorithm for statements

55

Figure 5.3: The lock analysis algorithm for expressions

analysis may result inaccurate inter-procedural analysis. RacerX do not allow

up-propagation of lockset to avoid this propagation. In our approach, users can

additionally specify the effects to lockset as a function summary if necessary.

Unless, the detector also ignores up-propagation effects.

5.3 Points-to Analysis

In this research, we apply a simple point-to analysis for reducing false positives

by non-shared variables. The enhanced syntactic bug pattern matching find

pairs of code fragments expected to result concurrency errors in concurrent

executions. Among the code fragments in a detected bug pattern match, there

must exist at least one variable (or memory location) shared. In the syntactic

bug pattern matching, we assume that all pointers of the same type may point

to the same memory location. This assumption is the most conservative may

alias analysis criteria. For Linux file system programs, it is difficult to get

accurate points-to analysis result for the high complexity of data structures

and the limitation of partial code analysis.

By applying simple points-to analysis, we can eliminate false positives

56

Figure 5.4: False positive caused by dynamic memory allocation

where a bug involving variable in a code fragment definitely cannot be accessed

by the other code fragments. One trivial non shared variable is a dynamically

allocated variable whose address is not assigned to any shared variable. We

apply a points-to analysis technique to code fragment of a pattern match.

In Linux kernel, dynamic memory address spaces are allocated by calling

several library functions such as kmalloc(), zmalloc(), etc. Using simple

points-to analysis, it is possible to check whether a dynamically allocated vari-

able is not shared or may be shared. The statements which access a dynam-

ically allocated non shared variable will not involve any concurrency errors.

Many Linux functions allocate a dynamic memory space and access it without

any locking until it is registered into a shared data structure. This is cor-

rect program, but the initialization access would be detected as a data race

candidate since its absence of locking. From Linux kernel 2.6.26, we found a

code pattern match of the misused test-test-and-set bug pattern. It seems that

proc alloc inode() function accesses a proc inode object’s pid field with-

out any locking so that it might be harmful. However, it is not harmful since

ei in the interesting access is not shared variable. A similar idea is employed

to static data race detection tool RELAY for filtering out false positives by

initializations.

We assume that the names of functions used for allocating dynamic memory

57

address space are known at the beginning of analysis. The algorithm notices a

pointer variable which is assigned as the return value of the memory allocation

function calls. We recognize that a newly allocated memory address is non-

shared until it might become shared. The following operations are regard to

make the related memory address as shared. The address of the memory space

is assigned to a shared variable. We regard global variables, heap variables,

and their members as shared variables. We apply the points-to analysis inter-

procedural manner so that we do not consider the effect of function invocations.

The syntactic pattern matching indicates the interesting accesses in a code

fragment. This technique is to assure that the variable in the interesting

accesses is not non-shared variable. This technique may result false positive

since the lacks of context-sensitivity. However, this technique can effectively

eliminate obvious false positives from the static bug pattern matching. This

technique inputs a target function, an interesting statement, and a type of

interesting variable. For a given function, the technique tracks non-shared

variables in path-insensitive manner. The algorithm is described in Figure 5.5.

5.4 Experiment

We apply the improved pattern matching techniques to the ten bug pattern

detectors. The improvement was done in two steps. For first step, the ten

bug patterns are conceptually extended to include multithreaded features and

constraints on semantic information. For second step, We newly generate

the ten bug pattern detectors considering semantic information. In order to

synthesize the improved bug pattern detector, we build a set of templates

upon EDG parser. This template supports inter-procedural control-flow graph

traversal while it maintains semantic information.

We apply the improved bug pattern detectors to the previously targed 9

Linux file systems. Firgure 5.4 show the number of suspected bug reported

58

Figure 5.5: The points-to analysis algorithm

by the improved bug pattern detectors. The number is a paraenthesis is the

corresponding result by the previous bug pattern detector. It shows that the

semantic information reduces the number of bugs reports from 195 to 80 (41%).

This result indicate that the improved pattern matching techniques using se-

mantic information effectively reduce the false alarm ratio in concurrency bug

detection.

We had experiments to show the effectiveness of each semantic information

in false alarm reducing. For misused test and test-and-set pattern dection, we

selectively applied three different types of semantic information. The result on

Figure 5.5 show that the multiple pattern matching reduces almost halve of

false alarms. The lock analysis upon the multiple pattern matching contributes

to reduce additional 20% of false alarms.

59

Pattern Ext2 Ext3 Ext4 NFS Reiser

FS

SysFS Proc

FS

UDF BtrFS Total

Use Atomic Instructions in

Non-Atomic Ways

0 0 0 1 1 0 0 0 1 3

No Memory Barrier After

Object Initialization

0 0 0 0 0 0 0 0 0 0

Waiting Already Finished

Thread

0 0 0 0 0 0 0 0 6 6

Unsynchronized Data

Passing to Child Thread

0 0 0 0 0 0 0 0 1 1

Misused Test and Test-

and-Set

6 11 11 6 10 7 4 7 9 65

Busy-waiting on Atomic

Variable without Memory

Barrier

0 0 0 0 0 0 0 0 0 0

Unlock Before I/O Opera-

tions

0 0 0 0 0 0 0 0 0 0

Unintended Big Kernel

Lock Releasing

0 0 0 1 3 0 0 1 1 5

Releasing and Re-taking

Outer Locks

0 0 0 0 0 0 0 0 0 0

Waiting with Lock Held 0 0 0 0 0 0 0 0 0 0

Table 5.1: Suspected bug reported by the improved bug detection techniques

60

Ext2 Ext3 Ext4 NFS Reiser

FS

SysFS Proc

FS

UDF BtrFS Total

Syntactic 13 19 18 15 18 18 12 15 17 145

+ Multiple 9 14 14 9 13 11 7 10 14 101

+ Multiple

+ Lockset

9 11 11 9 13 11 7 10 13 94

+ Multiple

+ Points-to

6 11 11 6 10 8 4 7 11 74

+ Multiple

+ Lockset

+ Points-to

6 8 8 6 10 7 4 7 9 65

Table 5.2: Effect of different combinations of semantic information considera-

tion to misused test and test-and-set bug pattern matching

61

Chapter 6

Conclusion

In this research, we propose the pattern-driven concurrency bug detection tech-

niques primilary targeting for Linux kernel. The bug pattern dectection tech-

nique aims to supplement the lock-based concurrency bug detection techniques

by covering the bugs with various synchronization primitives. We develop the

bug detection techniques in two steps: First step is defining the bug patterns

to detect concurrency bugs, and second step is improving pattern matching

techniques.

We study the nature of real world concurrency bugs by surveying previously

reported bugs from Linux File System. The study includes the analysis to

symptom, fault, and resolution of each bug. As a result of the study, we

construct the classification with five attributes to diagnose concurrency bugs.

Based on previously reported bugs, we define ten concurrency bug pat-

terns. These bug patterns are mainly proposed to specify concurrency bugs

which are not appropriate to be detected by the conventional lock-based bug

detection techniques. And then we compose the bug pattern detectors for the

ten concurrency bug patterns. We show that the result of applying these bug

pattern detectors to Linux kernel 2.6.30.4.

We improve the bug pattern detection by supplementing semantic infor-

mation specification in bug pattern definition. The improved bug pattern

matching techniques significanlly reduce the false positive ratio with respect

to syntactic pattern matching. Based on C parser, we implement the improved

bug pattern detectors. The analysis result indicates that the correlating se-

62

mantic information to pattern matching enhance the correctness of analysis

result.

63

요 약 문

시맨틱 정보를 이용한 패턴 매칭을 통한 동시성 결함

검출

멀티코어프로세서가널리보급됨에따라오늘날많은소프트웨어시스템은

동시성 프로그램으로 작성된다. 하지만, 기존의 테스팅 기법과 모델 체킹

기법으로는운영체제와같은상용프로그램수준크기의동시성프로그램의

동작정확성 검증이 어려운 실정이다. 이 연구에서는 리눅스 운영체제 커널

소스코드를주대상으로개발한결함패턴매칭기법을통한동시성결함검출

기법을 소개한다. 데이터 레이스, 교착상태와 같은 동시성결함을 이해하기

위하여, 리눅스 파일 시스템에서 실제 발견되었던 결함들을 조사하였으며,

각 결함을 증상, 원인, 해결방법, 관련 동기화 기법, 동기화 범위에 따라 분

류하는 분류체계를 개발하였다. 이를 바탕으로 10개의 동시성결함 패턴을

만들었으며, 패턴 매칭을 통해 결함을 검출하는 프로그램을 작성하여 리눅

스 파일 시스템 코드에 적용하였다. 마지막으로, 패턴매칭에 시맨틱 정보를

추가로 고려함으로써 동시성결함 검출의 정확도를 향상 시켰으며, 개발된

기술을 리눅스 파일 시스템 코드에 적용하여 유용성을 확인하였다.

64

References

[1] E.G.Coffman, M.J.Elphick, and A.Shoshani. System deadlocks. ACM

Computing Surveys, 3:67–78, 1971.

[2] IEEE. Ieee standard glossary for software engineering technology. IEEE,

1900.

[3] Alex Ho, Steven Smith, and Steven Hand. On deadlock, livelock, and

forward progress. Technical Report, UCAM-CL-TR-633, 2005.

[4] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA

’04: Companion to the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications, pages 132–

136, New York, NY, USA, 2004. ACM.

[5] David Hovemeyer and William Pugh. Finding concurrency bugs in java.

In In Proceedings of the PODC Workshop on Concurrency and Synchro-

nization in Java Programs, 2004.

[6] Andy Chou, Junefeng Yang, Benjamin Chelf, Seth Hallem, and Daw-

son Engler. An empirical study of operating systems errors. In SOSP

’01: Proceedings of the eighteenth ACM symposium on Operating systems

principles, pages 73–88, New York, NY, USA, 2001. ACM.

[7] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking

system rules using system-specific, programmer-written compiler exten-

sions. In OSDI’00: Proceedings of the 4th conference on Symposium on

Operating System Design & Implementation, Berkeley, CA, USA, 2000.

USENIX Association.

65

[8] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and

how to test them. Parallel and Distributed Processing Symposium, Inter-

national, 0:286b, 2003.

[9] Eitan Farchi and Bradley R. Harrington. Assisting the code review process

using simple pattern recognition. In Haifa Verification Conference, pages

103–115, 2005.

[10] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from

mistakes: a comprehensive study on real world concurrency bug charac-

teristics. SIGPLAN Not., 43(3):329–339, 2008.

[11] Cormac Flanagan and Stephen N. Freund. Type-based race detection for

java. In ACM SIGPLAN Notices, vol. 35, issues 5 (May 2000), pages

219–232, 2000.

[12] Cormac Flanagan and Shaz Qadeer. Types for atomicity. In ACM SIG-

PLAN International Workshop on Types in Language Design and Imple-

mentation (TLDI03), 2003.

[13] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership

types for safe programming: Preventing data races and deadlocks. In

ACM Conference on Object-Oriented Programming, Systems, Languages

and Applications (OOPSLA), 2002.

[14] Dan Grossman. Type-safe multithreading in cyclone. In ACM SIGPLAN

International Workshop on Types in Language Design and Implementa-

tion (TLDI03), 2003.

[15] David Gay, Matt Welsh, Philip Levis, Eric Brewer, Robert von Behren,

and David Culler. The nesc language: A holistic approach to networked

embedded systems. In Programming Language Design and Implementa-

tion (PLDI), 2003.

66

[16] Dawson Engelr and Ken Ashcraft. Racerx: Effective, static detection

of race conditions and deadlocks. In Symposium on Operating Systems

Principles, 2003.

[17] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of con-

current programs. In In Computer-Aided Verification (CAV), LNCS 3576,

pages 82–97. Springer, 2005.

[18] Shaz Qadeer and Dinghao Wu. Kiss: Keep it simple and sequential. In

PLDI, 2004.

[19] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer.

Thread-modular abstraction refinement. In In: CAV, pages 262–274.

Springer, 2003.

[20] Zdenek Letko, Tomas Vojnar, and Bohuslav Krena. Atomrace: Data race

and atomicity violation detector and healer. In 6th workshop on Parallel

and distributed systems (PADTAD), 2008.

[21] Patrice Godefroid Bell. Model checking for programming languages using

verisoft. In In Proceedings of the 24th ACM Symposium on Principles of

Programming Languages, pages 174–186. ACM Press, 1997.

[22] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby.

Efficient stateful dynamic partial order reduction. In SPIN, pages 288–

305, 2008.

[23] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for

systematic testing of multithreaded programs. SIGPLAN Not., 42(6):446–

455, 2007.

[24] Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. Calfuzzer:

An extensible active testing framework for concurrent programs. In Com-

puter Aided Verification, 2009.

67

[25] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: A

sound and complete dynamic atomicity checker for multithreaded pro-

grams. In ACM SIGPLAN Conference on Programming Language Design

and Implementation, 2008.

[26] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. Eraser: A dynamic data race detector for multi-

threaded programs. ACM Transaction on Computer Systems, 15(4):391–

411, 1997.

[27] A. Srivastava and A. Eustace. Atom: A system for building customized

program analysis tools. In ACM SIGPLAN Conference on Program Lan-

guage Design and Implementation, pages 196–205, 1994.

[28] Markus Dahm. Byte code engineering with the bcel api. Technical Report,

B-17-98, 2005.

[29] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,

Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace de-

tection for multithreaded object-oriented programs. SIGPLAN Not.,

37(5):258–269, 2002.

[30] S.D.Stoller. Run-time detection of potential deadlocks for programs with

locks, semaphores, and condition variables. In Workshop on Parallel and

Distributed Systems: Testing, Analysis, and Debugging, 2006.

[31] Eli Pozniansky and Assaf Schuster. Multirace: efficient on-the-fly data

race detection in multithreaded c++ programs. Concurrency Computa-

tion: Practice and Experience, 19(3):327–340, 2007.

[32] Cormac Flanagan and Martin Abadi. Types for safe locking. In European

Symposium on Programming, 1999.

68

[33] Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Detecting potential

deadlocks with static analysis and run-time monitoring. In Workshop on

Parallel and Distributed Systems: Testing, Analysis, and Debugging, 2005.

[34] Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of

multithreaded programs. In Haifa Verification Conference, volume 3875

of LNCS, pages 208–223. Springer, 2005.

[35] Saddek Bensalem, Jean-Claude Fernandez, Klaus Havelund, and Laurent

Mounier. Confirmation of deadlock potentials detected by runtime anal-

ysis. In Parallel and Distributed Systems: Testing and Debugging, 2006.

[36] Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic atomic-

ity checker for multithreaded programs. In ACM SIGPLAN Symposium

on Principle of Programming Languages, 2004.

[37] Liqiang Wang and Scott D. Stoller. Runtime analysis for atomicity for

multithreaded programs. IEEE Transactions on Software Engineering,

32(2), 2006.

[38] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races.

In The First International Workshop on Verification and Validation of

Enterprise Information Systems (VVEIS), 2003.

[39] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime de-

tection of atomicity errors in concurrent programs. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2006.

[40] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchroniza-

tion constraints with data in an object-oriented language. In 33rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, 2006.

69

[41] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, and Weihang Jiang.

Muvi: Automatically inferring multi-variable access correlations and de-

tecting related semantic and concurrency bugs. In ACM Symposium on

Operating Systems Principles, 2007.

[42] Cyrille Artho, Klaus Havelund, and Armin Biere. Using block-local atom-

icity to detect stale-value concurrency errors. In Second International

Symposium on Automated Technology for Verification and Analysis, 2004.

[43] Eric Bodden and Klaus Havelund. Racer: Effective race detection using

aspectj. In International Symposium on Software Testing and Analysis

(ISSTA), 2008.

[44] Aoun Raza and Gunther Vogel. Rcanalyzer: A flexible framework for the

detection of data races in parallel programs. In Ada-Europe, 2008.

[45] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detec-

tion for java. In ACM Conference on Programming Language Design and

Implementation (PLDI), 2006.

[46] Edison Design Group. The c++ front end. http://www.edg.com/index.

php.

70

Appendix

Classification of Concurrency Bugs

71

72

Figure 6.1: Classification with respect to symptom and fault

Figure 6.2: Classification with respect to symptom and synchronization prim-

itive

73

Figure 6.3: Classification with respect to symptom and granularity

Figure 6.4: Classification with respect to fault and synchronization primitive

74

Figure 6.5: Classification with respect to fault and granularity

Figure 6.6: Classification with respect to synchronization granularity and syn-

chronization primitive

75

감 사 의 글

내 힘이요 반석이요 상급이 되시는 하나님께 감사를 드립니다. 하나님께서

함께 하신 시간들, 그 속에서 자라나게 하신 믿음, 그리고 석사 과정 동안

만나게 하신 여러분과 베푸신 모든 은혜를 기억하고 기억하며 살겠습니다.

연구실로불러주시고가르쳐주시고도와주신김문주교수님께감사드립

니다. 성실하고 정직하게 공부하시는 모습으로 참 연구자의 모습에서 많은

것을배울수있었습니다. 교수님께서기다려주시고믿어주시고격려해주신

것정말깊이감사드립니다. 동기김윤호박사과정에게도고맙다는말을전

합니다. 항상 도움과 웃음이 큰 위로였습니다. Liu Yuyang 박사과정에게도

감사를드립니다. 함께생활하며보여준폐기와열심이제게큰귀감이되었

습니다. 연구실에서 만난 최창범, 홍창기, 이준희 학생에게 감사 드립니다.

교수님과 여러 학생 덕분에 행복한 대학원 생활이었습니다.

좋은연구주제주시고지원해주신삼성전자김호태책임연구원님, ETRI

의김태호박사님께감사를드립니다. 함께연구하였던 Prof. Bow-Yah Wang

께도 감사를 드립니다. 수많은 질문에 성실하게 응답해준 Linux Maintainer

들께 감사를 드립니다. KAIST와 전산과 여러분께 깊은 감사를 드립니다.

사랑하는 아버지, 어머니, 할아버지, 할머니, 모든 가족에게 감사를 드립

니다. 멀리있고바쁘다는핑계로아들노릇못해도용서하시고항상응원해

주시고 도와주셔서 감사합니다. 지난 3년간 함께 나누지 못한 많은 것들이

아쉽습니다. 앞으로는 더 많은 것들 함께 하며 은혜에 보답하겠습니다.

항상 믿음을 단단히 붙잡을 수 있도록 기도해주시고 격려해주신 이중기

장로님, 김명옥 권사님, 그리고 이은정 자매님께 깊은 감사를 드립니다.

주님 안에서 한 가족이 된 대덕 한빛 교회에 감사 드립니다. 아들처럼

아껴주시고섬겨주신김세진목사님, 윤영식전도사님, 민병우전도사님, 김

진현 전도사님과 형제와 자매 된 주의빛목장, 초등부 선생님들, 새벽이슬

여러분께 감사 드립니다.

Curriculum Vitae

Name : Hong, Shin

Date of Birth : June 18, 1985

Address : Department of Computer Science, 335 Gwahak-ro, Yuseong-

gu, Daejeon 305-701 Republic of Korea

E-mail : hongshin@gmail.com

Educations

2007. 3. – 2010. 2. M.S. Computer Science, KAIST

2003. 3. – 2007. 2. B.S. Computer Science, KAIST

2001, 1. – 2003. 2. Pusan Science High School (Currently, Korea Science Academy)

Publications

International Conferences

1. M.Kim, S.Hong, C.Hong, and T.Kim. Model-based Kernel Testing for

Concurrency Bugs through Counter Example Replay. Model-based Test-

ing (ENTCS vol 253, Issue 2), York, UK, Mar 2009.

Domestic Journals

1. Moonzoo Kim, Shin Hong. 모델기반의커널테스팅프레임워크. Jour-

nal of KIISE:Software and Applications, 36(7), July 2009.

Domestic Conferences

1. Moonzoo Kim, Changki Hong, and Shin Hong. 검증반례재연을통한모

델기반커널테스팅. Korea Conference on Software Engineering (KCSE),

February 2009.

Thesis

1. Concurrency Bug Detection through Improved Pattern Matching Using

Semantic Information. Master Thesis, Department of Computer Science,

KAIST, 2010.

