CIS department
University of Pennsylvania

Information Extraction for
Run-time Formal Analysis

Moonjoo Kim
Advisors: Prof. Kannan and Prof. Lee
CIS Department
University of Pennsylvania

9/25/2010 1

CIS department
University of Pennsylvania

Outline
*WHY? Motivation: Weaknesses of
—Motivation Formal Methods and Testing
WHAT? 1
—Run-time Formal Analysis Run-time Formal Analysis
-HOW? l

—High-level: the Monitoring and _
Checking (MaC) Architecture |
—Low-level: a MaC Prototype for

Java programs (Java-MaC)

9/25/2010 2

CIS department
University of Pennsylvania

Motivation

e Weaknesses of formal verification and
testing

—formal verification:

e gap between an abstract model and the
Implementation

o lack of scalability
—testing:
 lack of complete guarantee

9/25/2010 3

CIS department
University of Pennsylvania

Outline
. WHY? Motivation: Weaknesses of
L Formal Methods and Testing
— Motivation

e WHAT? 4

—Run-time Formal |Run-time Formal Analysis
Analysis

e HOW?

— High-level: The Monitoring and Checking
(MaC) Architecture

— Low-level: a MaC Prototype for Java
programs

e Summary

9/25/2010 4

CIS department
University of Pennsylvania

Run-time Formal Analysis

« Motivation:
— Run-time correctness is not guaranteed
The goal of run-time formal analysis

— to give confidence in the run-time compliance
of an execution of a system w.r.t formal
requirements

The analysis validates properties on the current
execution of application.

Run-time formal analysis helps user to detect
errors and prevent system crash.

9/25/2010 5

CIS department
University of Pennsylvania

Relation Between Execution and Requirements

Program

)

L

L

Instrumented

) 3

-

trai'nTpos -20.5 InCrossing =
crossing_pos:50 train_pos > crossing_pos;
gate _angle:15 GateDown =

9/25/2010

gate_angle == 0; 6

CIS department
University of Pennsylvania

Program Execution

« A program execution o is a
sequence of states s;s; ...

— A state s consists of
e an environment p.:V-> R
c atimestamp t;s.t. t, < i,
 We may abstract out state
Information unnecessary to

detect requirements.

oD
p rope rty p —

9/25/2010 3<yé&&y<l1l 7

CIS department
University of Pennsylvania

Outline

Motivation: Weaknesses of
WHY? Formal Methods and Testing
— Motivation 1
WHAT?
— Run-time Formal Analysis : :
HOW? Run-time Formal Analysis
—High-level: |

 the Monitoring and
Checking (MaC)
Architecture

— Low-level: a MaC Prototype for Java
programs

Summary

9/25/2010 8

CIS department
University of Pennsylvania

Overview of the MaC Architecture

Program

Automatic |
nstrumentatio

Automatic Automatic
anslation anslation

Static Phase

low-level high-level

) behavior behavior _ti
Program)Filter)— Evenjt Run-time
Recognizer Checker

Run-time Phase

9/25/2010 9

CIS department
University of Pennsylvania

Design of the MaC Languages

reqLock, acglLock, relLock,
[INCritSec, ‘
l InCritSec, Time
reqLockg acqlLockg relLockg

 Must be able to reason about both time instants
and information that holds for a duration of time In
a program execution.

 Need temporal operators combining events and
conditions in order to reason about traces.

9/25/2010 10

CIS department
University of Pennsylvania

Logical Foundation

C := c|defined(C) | [E,,E,) | =C | C,vC, | C, AC,
E:=¢e|start(C) | end(C) | E;,vE, | EfAE, |
E whenC
e conditions interpreted over 3 values
— true, false and undefined.
 [,}) pairs a couple of events to define an interval.

« start and end define the events corresponding to
the instant when conditions change their value.

9/25/2010 11

CIS department
University of Pennsylvania

The MaC Languages

 Meta Event Definition Language(MEDL)

— Describes the safety requirements of the system, in terms of
conditions that must always be true, and alarms (events) that must
never be raised.

— Target program implementation independent.
* Primitive Event Definition Language (PEDL)

— Defines primitive events/conditions in terms of program
entities

* Provides primitives to refer to values of variables and to certain points
in the execution of the program.

— Depends on target program implementation

9/25/2010 12

CIS department
University of Pennsylvania

Meta Event Definition Language (MEDL)

Expresses requirements using the
events and conditions

Expresses the subset of safety
languages.
Describes the safety requirements of
the system

— property safeRRC = 1C -> GD;

— alarm violation = start (!safeRRC);
Auxiliary variables may be used to

store history.

— endIC-> { num_train_pass’ =
num_train_pass + 1; }

9/25/2010

ReqSpec <spec name>

/* Import section */
Import event <e>;
import condition <c>;

/*Auxiliary variable */
var Int <aux_ v>;

/*Event and condition */
event <e> = ___;
condition <c>= ...;

/*Property and violation */
property <c> = ...;
alarm <e> = _._;

/*Auxiliary variable update*/
<e> -> { <aux v"> = ... ; }

End

13

CIS department
University of Pennsylvania

Outline
Motivation: Weaknesses of
WHY? Formal Methods and Testing
— Motivation l
WHAT?
— Run-time Formal Analysis Run-time Formal Analysis

HOW? !
— High-level: The Monitoring and Checking _
(MaC) Architecture
—Low-level: a MaC

Prototype for Java
programs

Summary

9/25/2010 14

CIS department
University of Pennsylvania

Java-MaC

* Overview of Java-MaC
« Monitoring Java programs
— Monitoring objects
— PEDL for Java
e Static components
— Instrumentor, PEDL/MEDL compilers
* Run-time components
— Filter, event recognizer, run-time checker
e QOverhead reduction
o Case study

9/25/2010 15

CIS department
University of Pennsylvania

The MaC Prototype for Java Programs

target progam
(*.class)

instrurmentation
information
{

instrumentation.out))

[PEDL specification J

PEDL compilcr:

Static Phase

[MEDL specification]

MEDL compilcr

instoumented
target prog@m
(*.class)

filtec >

9/25/2010

compiled PEDL
{pedl .out)

Event Recognizer

(intecpreter of pedl. out

Run-time Phase

-

compiled MEDL
{medl .out)

Run-ume Checker

| (intecpreter of medl.out J

16

Monitoring Objects

CIS department
University of Pennsylvania

« Specifying monitored objects

— There can be several instances (objects) of the same class.

« Monitoring objects

— A monitored object can be updated by several references.

e To test references, we need a globally accessible table
(address table) containing pairs of addresses of monitored

objects and monitored object names

— Assumption: no primary reference to a monitored object is changed

Legend

D obgn

O Reference var

® Puruoitive vat

9/25/2010

Address Table

17

PEDL for Java

CIS department
University of Pennsylvania

Provides primitives to refer to
— primitive variables
— beginnings/endings of methods

Primitive conditions are constructed
from

— boolean-valued expressions over
the monitored variables

e ex> condition IC =
(position == 100);
Primitive events are constructed from
— update(Xx)
— startM(f)/endM(f)

e« ex>event raiseGate=
startM(Gate.gu());

9/25/2010

MonScr <spec name>

/* Export section */
export event <e>;
export condition <c>;

/> Monitored entities */
monobj <var>;
monmeth <meth>;

/* Event and condition*/
event <e> = __._;
condition <c>= ...;

End

18

CIS department
University of Pennsylvania

PEDL for Java (cont.)

e Events can have two attributes - time and value

e time(e) gives the time of the last occurrence of event e
— used for expressing temporal properties

« value(e,i) gives the i th value in the tuple of values of e

— value of update(var) : a tuple containing a current value
of var

— value of startM(f) : a tuple containing parameters of the
method f

— value of endM(f) : a tuple containing parameters and a
return value of the method f

9/25/2010 19

CIS department
University of Pennsylvania

Instrumentation

« Java-MaC instruments Java executable code
e Java-MaC instrumentor detects instructions
— variable updates
o putstatic/putfield for field variable updates
e <T>store and iinc for local variable updates
— execution points
* instruction located at the beginning of method
definition
 return of method definition

At the each detected instruction, Java-MaC instrumentor
Inserts a probe

9/25/2010 20

CIS department
University of Pennsylvania

Sample Probe

 Monitoring a field variable Var.val

: >> METHOD 8 << : >> METHOD 8 <<
.method public run()V .method public run()V
dimit stack 4 dimit stack 7
dimit locals 2 dimit locals 2

getfield DigitalVar.v | getfield DigitalVar.v |

putfield Var.val | getstatic mac.filter.Filter.lock Ljava.lang.Object;
monitorenter
.end Method dup?2
ldc “val”

invokestatic mac.filter.SendMethods.sendObjMethod(
Ljava/lang/Object;ljaval/lang/String;)V

putfield Var.val |

getstatic mac.filter.Filter.lock Ljava.lang.Object;

monitorexit

9/25/2010 .end Method 21

CIS department
University of Pennsylvania

PEDL/MEDL Compilers

« Compiles PEDL/MEDL scripts into pedl.out/medl.out
respectively

« EXx> condition cl = A.x > 3;
event el = start(cl && A.y < 10);

pedl.out

[Varkable/Method Table Event/Condltion Trees

ns
var |type |value lpduted al @ _p-
p|A . X | int |undafl false |
G D™

A.y|int |undafi falsa 5
Legends "
n3 n4d
ar 7
Q Condition Node Event/Condlition (Ax) - and ’

Table

O Eem ods Nume |[Exported [Ptr o n§ o
N

O Reference Node ol
— Cax D
- Expremion Node nlo

nll

n%

9/25/2010 27

Filter

CIS department
University of Pennsylvania

A filter consists of
— a communication channel to the event recognizer
— probes inserted into the target system

— a filter thread which flushes the content of

communication buffers to the event recognizer

 Filter uses global lock for consistent snapshot ordering in
spite of arbitrary preemption

Instrumented Target Program
Thread1 Thresd2 Fitter Thresd
N =
request_lock """"l‘"'---------p-lmk
1de 10 segquest_lock " """
seadObsMethoa (" x”, 10} A" N1 ATT x
putfield = varvalue [4]
selease_lock -
1dc 20
=ead0biMethod ("y”, 20)7T]
potfield vy
release_lock
A ¢ .

—
Send to

Event Recogmizer

CIS department
University of Pennsylvania

Event Recognizer/Run-time Checker

« Event recognizer
— evaluates pedl .out whenever it receives snapshots
from the filter.

— If an event or a condition changing its value is detected,
the event recognizer sends the event or the condition to
the run-time checker

e Run-time checker

— evaluates med|l . out whenever it receives events and
conditions from the event recognizer.

— detects a violation defined as alarm or property and
raises a signal.

9/25/2010 24

CIS department
University of Pennsylvania

Reduce Overheads

e Less snapshot, less overhead
* Not every snapshot affects requirement properties

— Evaluates simple expressions to check whether
current snapshot may affect requirements

tme

EXx> P
condition c1 = P

(3<x&&x<5)|ly>10; *§ T
condition c2 =w > z; / 5
property req = cl -> c2; '

3 5 value

9/25/2010 25

CIS department
University of Pennsylvania

Probe Overhead

 Measure overhead over ®
various frequency of =l
updating a monitored : “
integer variable by the "’

target program

e Value abstraction with
1,50,150,200 simple

e

eXprESS|OnS 1{0) CheCk 1400 11000 140000 1/100000

Frequency of taking snapshots

9/25/2010 26

CIS department
University of Pennsylvania

Overall Overhead

701

e Evaluating expressions of
4 different lengths (1, 50,
100, 150) 501

» Value abstraction .\\

h-)
8 401

significantly reduces the \\r-
overhead

 The overhead is mainly
due to the object-oriented | W-
Implementation of

pedl.out

9/25/2010 27

CIS department
University of Pennsylvania

Case Study: Routing Protocol Validation

 Ad-hoc On Demand Vector Q. a
(AODV) routing protocol used 3 -
in packet radio networks
consisting of mobile nodes 'L

e Detect violations of properties 5 b

such as loop invariant in
AODYV routing protocol
Implemented using NS2
simulator [Bhargavan,etc]

| Phase IV

9/25/2010 28

CIS department
University of Pennsylvania

Case Study: Routing Protocol Validation (cont.)

 NS2 simulator Is used instead of target Java
program

e EXxecution trace containing packets delivered
among nodes Is analyzed repeatedly with different
property descriptions without running the
simulation again

MEDL 5

- ————— -y

: Lhstrooented |
: Protocol: C++ ™= : . .
: NS _:_!_ Trace -] Tlace
| : Y 1o ER o CHK
: N !

|

Feedbiuck

9/25/2010 29

CIS department
University of Pennsylvania

Contributions

 Main contribution

— Confirming the idea that run-time formal analysis
can assure a user of the correctness of program
execution in a practical manner through the
Implementation of the MaC architecture.

e Technical contributions
— Rigorous analysis
— Flexibility
— Automation
— Easy of use

9/25/2010 30

CIS department
University of Pennsylvania

Future Works

e Loosen the restriction on monitoring objects

— Combined approach of instrumenting classfiles
and modified Java virtual machine

* Apply value abstraction in more general way to
gain the benefit of abstraction broadly

 Real-time extension of Java-MaC
e Application areas

9/25/2010 31

