
A Comparative Study of Software Model
Checkers as Unit Testing Tools:

An Industrial Case Study
Moonzoo Kim, Member, IEEE, Yunho Kim, and Hotae Kim

Abstract—Conventional testing methods often fail to detect hidden flaws in complex embedded software such as device drivers or file

systems. This deficiency incurs significant development and support/maintenance cost for the manufacturers. Model checking

techniques have been proposed to compensate for the weaknesses of conventional testing methods through exhaustive analyses.

Whereas conventional model checkers require manual effort to create an abstract target model, modern software model checkers

remove this overhead by directly analyzing a target C program, and can be utilized as unit testing tools. However, since software model

checkers are not fully mature yet, they have limitations according to the underlying technologies and tool implementations, potentially

critical issues when applied in industrial projects. This paper reports our experience in applying Blast and CBMC to testing the

components of a storage platform software for flash memory. Through this project, we analyzed the strong and weak points of two

different software model checking technologies in the viewpoint of real-world industrial application—counterexample-guided

abstraction refinement with predicate abstraction and SAT-based bounded analysis.

Index Terms—Embedded software verification, software model checking, bounded model checking, CEGAR-based model checking,

flash file systems.

Ç

1 INTRODUCTION

AMONG the various storage platforms available, flash
memory has become the most popular choice for

mobile devices. Thus, in order for mobile devices to
successfully provide services to users, it is essential that
the storage platform software of the flash memory operate
correctly. However, as is typical of embedded software,
conventional testing methods often fail to detect bugs
hidden in the complex storage platform software. This
deficiency incurs significant cost to the manufacturers.

Conventional testing has limitations in verifying whether
a target software satisfies given requirement specifications
since testing does not provide complete coverage. Further-
more, significant human effort is required to generate
effective test cases that provide a certain degree of coverage.
As a result, subtle bugs are difficult to detect by testing and
can cause significant overhead after the target software is
deployed. In addition, even after detecting a violation,
debugging requires much human effort to step-by-step
replay and analyze the factors leading up to the scenario
where the violation occurred. These limitations were man-
ifest in many industrial projects, including the unified storage
platform (USP) software for Samsung’s OneNAND flash

memory [3]. For example, a multisector read (MSR) function
was added to USP to optimize the reading speed (see
Section 8). This function, however, caused errors, despite
extensive testing and debugging efforts, to the extent that
the developers seriously considered removing the feature.

Model checking techniques [26] have been proposed to
alleviate the aforementioned weaknesses of the conven-
tional testing methods by automatically exploring the entire
state space of an abstract target model. If a violation is
detected, the model checker generates a concrete counter-
example through which the bug can be conveniently
identified. However, model checking techniques are not
widely applied in industry since discrepancies exist
between the target software and its abstract model.
Furthermore, significant additional efforts are required to
create an abstract target model, which is not affordable for
most industrial projects. Modern software model checkers
[34], [25] remove this overhead by directly analyzing a
target C program through either automated abstraction
(e.g., counterexample-guided abstraction refinement
(CEGAR) [18] with predicate abstraction [31]) [6], [21], [8],
[14] or limiting the range of analysis (e.g., bounded analysis
[10]) [19]. However, since software model checkers are not
fully mature yet, they have limitations according to the
underlying technologies and tool implementations, which
can constitute critical issues when applied to real industrial
projects. Therefore, developing strategies for effective use of
software model checkers through concrete case studies is
very important for successful industrial application. In
addition, it is challenging to verify a flash storage platform
since it makes heavy use of complex data structures to
manage linked lists of physical units and corresponding
sector allocation maps (see Section 3.2 and Section 8), while

146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

. M. Kim and Y. Kim are with the Computer Science Department, KAIST,
373-1 Guseong-dong, Yuseong-gu, Daejon 305-701, South Korea.
E-mail: moonzoo@cs.kaist.ac.kr, kimyunho@kaist.ac.kr.

. H. Kim is with Samsung Electronics, Linux Lab., 18th floor, R3, Maetan 3
dong 416, Suwon, Kyungki-do, South Korea.
E-mail: hotae.kim@samsung.com.

Manuscript received 30 Sept. 2009; revised 5 Feb. 2010; accepted 8 Feb. 2010;
published online 9 July 2010.
Recommended for acceptance by R. Cleaveland.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-09-0239.
Digital Object Identifier no. 10.1109/TSE.2010.68.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

most embedded systems are control-oriented without
complex data structures.

In this project, we applied two software model checkers
to find hidden bugs in the USP for Samsung’s OneNAND
flash memory, namely, Blast [8] and CBMC [19], which
utilize CEGAR with predicate abstraction and SAT-based
bounded analysis, respectively. We performed an in-depth
comparative study of these two different software model
checking techniques and summarized the lessons learned
regarding the advantages and weaknesses of software
model checking for industrial projects.

We selected these two software model checkers for the
following reasons. First, Blast and CBMC are relatively
stable compared to other tools. The development of both
tools has progressed for almost a decade, and both have
user communities. Thus, it is likely that many of the bugs
and limitations in the original versions have been fixed and
USP can therefore be verified using these tools without
much difficulty. Second, the source code of CBMC and that
of Blast are publicly available. Although model checking
technique claims to be a “push-button” technique, a user
can improve the verification performance or bypass the
underlying limitations of the tool through knowledge of the
internal behaviors of the model checking tools, which is
difficult to obtain without the tool source code. In addition,
it is occasionally necessary to customize the tool depending
on the needs of the projects in an industrial setting. Finally,
we have expertise in the area of both Blast and CBMC
through several years of experience. Hence, we can conduct
comparative experiments in a fair and technically sound
manner. Therefore, given that the goal here is to determine
practical strengths and weaknesses of software model
checking techniques on actual industrial software (i.e., flash
storage platform software), Blast and CBMC can adequately
serve this purpose.

This paper is organized as follows: Section 2 discusses
related work. Section 3 describes background of the
OneNAND flash memory and USP. Section 4 provides an
overview of CEGAR with predicate abstraction and SAT-
based bounded analysis techniques. Section 5 explains the
scope and methodology used in the project. Sections 6-8
present the experiments of analyzing the USP using Blast
and CBMC. Section 9 summarizes the lessons learned from
this project, and Section 10 concludes with future work. In
addition, for the convenience of the readers, Table 4 at the
end of the paper explains the list of acronyms in the domain
of flash storage platforms.

2 RELATED WORK

This section discusses related case studies in which
software model checkers (SMCs) are applied to achieve
high reliability of the target systems. Although SMC was
originally proposed nearly a decade ago, this promising
technique has not been widely adopted by industries. One
main reason is that it is difficult for field engineers to
estimate how successfully an SMC will detect bugs in their
target programs and how much effort is required to apply
an SMC to the projects. As many SMC research papers only
demonstrate the strengths of an SMC and do not describe
their limitations or efforts related to actual projects, detailed
industrial case studies can persuade practitioners to adopt
an SMC with an understanding of the pros and cons of the
application of the SMC to their projects.

There have been several studies in which an SMC was
applied to various target systems such as automotive
software [47], microcontroller programs [48], Linux device
drivers [45], [46], file systems [52], network filters [13], a
protocol stack [40], and server applications [41]. For a flash
storage platform, which is our main target domain, one
recent study [32] analyzes flash file systems as an effort of
the mini-challenge [35]. However, the majority of verifica-
tion research [36], [28], [11] on flash file systems focus on
the specifications of the file system design and not on an
actual instance of implementation.

We focus on the related case studies (as shown in Table 1)
which report the application of off-the-shelf SMCs to
various target systems,1 as the goal here is to determine
the applicability of an SMC to industrial projects in which
the development of custom tools optimized for a project is
often not feasible due to tight time-to-market restrictions.

Groce et al. [32] applied various verification techniques to
their flash file systems. In particular, they applied Blast,
CBMC, and MAGIC [14] to the pathname canonizer of the
file systems. It was reported that Blast and MAGIC failed to
extract a model from the pathname canonizer and it failed as
well to find a proof or a counterexample. In contrast, CBMC
was able to analyze the pathname canonizer with pathnames
containing up to six characters. The authors in [32] suspected

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 147

TABLE 1
Related Case Studies Applying Off-the-Shelf SMCs

1. “N/A” in the third column of Table 1 indicates no available
information on the size of the target module. For a more extensive list of
case studies using Blast and CBMC, see http://mtc.epfl.ch/software-tools/
blast/index-epfl.php and http://www.cprover.org/cbmc/applications.
shtml, respectively.

that heavy use of complex data structure in the file system
might cause failures to SMCs, which was similarly observed
in our case study. Kolb et al. [40] used Blast to verify the
components of the Object linking and embedding for Process
Control Unified Architecture (OPC UA) [42] protocol stack
with regard to lock policy, message context management,
and encoder management. They reported that several bugs
were detected in a few seconds to a few minutes, but tool
failures and false alarms were observed as well. Ku et al. [41]
applied SATABS [21] to detect buffer overflows on the
300 sample codes of server applications such as apache and
sendmail. Although 90 percent of the sample codes are less
than 100 lines long, they could analyze the sample codes
with only minimal buffer sizes (1 and 2) to avoid explosion of
analysis time. They reported that SATABS found buffer
overflows in 71.4 percent of the sample codes in 600 seconds.
Mühlberg and Luttgen [45] and Post and Küchlin [46]
verified the same Linux device drivers with Blast and CBMC,
respectively. They analyzed eight device drivers with regard
to use-after-free (UAF) bugs and other eight device drivers
with regard to the lock policies. An interesting observation
was made that neither Blast nor CBMC outperformed in
these two case studies. For example, both tools detected the
UAF bugs in five out of eight device drivers. However, Blast
and CBMC failed on different targets. Mühlberg and Luttgen
[45] failed to detect the UAF bug in dpt-i2p.c but found
the bug in pciehp_ctrl.c. In contrast, Post and Küchlin
[46] failed to detect the UAF bug in pciehp_ctrl.c but
found the bug in dpt-i2p.c. Mühlberg and Luttgen [45]
reported that the lock policy bugs were detected in a few
seconds to minutes, but no performance information was
available on the experiments of [46].

There are several important issues in the related case
studies. First, the related case studies often fail to describe
real effort required in the application of an SMC to a target
system. For example, most case studies (implicitly) assume
that requirement properties can be easily identified and
written in assertion statements; this is not true in actual
industrial projects in which a user has to understand and
capture the requirement as assertions. For example, Post and
Küchlin [46] mentioned that they extracted API conformance
rules from the Linux documentation, but no additional
explanation was given in the paper. In contrast, we describe
the effort required to apply an SMC to the flash storage
platform software in an industrial setting (see Section 5).

Second, apart from Groce et al. [32], few case studies
compare different SMCs on target systems. The selection of
the SMC has a crucial impact on the verification project.
However, it is difficult to decide which SMC to use in a
project as different SMCs have their own strengths and
weaknesses (see [45] and [46]). This paper compares Blast
and CBMC on the flash storage platform in a fair and
technical manner.

Finally, although success stories exist regarding the
application of SMCs in industrial projects, the limitations
of SMCs should be considered as well. For example, in spite
of the well-known success of the CEGAR-based SMC on
Windows device drivers [5], there are case studies that
report the limitations of a CEGAR-based SMC in which the
inaccurate handling of arrays [41] and pointers [40], [45] is
outlined (see Section 8.2 and Section 9.2).

3 THE UNIFIED STORAGE PLATFORM FOR

ONENAND FLASH MEMORY

3.1 Overview of the Unified Storage Platform

There are two types of flash memories: NAND and NOR.
NAND flash has a higher density, and thus is typically used
as a storage medium. NOR flash is typically used to store
software binaries because it supports byte-addressing and
executes software in place (XIP) without loading the binary
into the main memory, whereas NAND cannot (see
Section 3.2).2 OneNAND is a single chip comprised of a
NOR flash interface, a NAND flash controller logic, a NAND
flash array, and a small internal RAM. OneNAND provides a
NOR interface through its internal RAM. When a process
executes a program in OneNAND, the corresponding page
of the program is loaded into the internal RAM in OneNAND
using the demand paging manager (DPM) for XIP.

The USP is a software solution for OneNAND-based
embedded systems. Fig. 1 presents an overview of the USP:
It manages both code storage and data storage. USP allows
processes to store and retrieve data on OneNAND through
a file system. USP contains a flash translation layer (FTL)
through which data and programs in the OneNAND device
are accessed. FTL is a core part of the storage platform for
flash memory since logical data can be mapped to separated
physical sectors due to the physical characteristics of flash
memory (see Section 3.2 and Section 8). FTL consists of the
three layers: a sector translation layer (STL), a block
management layer (BML), and a low-level device driver
layer (LLD).

Generic I/O requests from processes are fulfilled
through the file system, STL, BML, and LLD, in that order.
Although the USP allows concurrent I/O requests from

148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

2. The NAND and NOR technologies are explained in more detail in [2].

Fig. 1. Overview of the USP.

multiple processes through the STL, the BML operations
must be executed sequentially, not concurrently. For this
purpose, the BML uses a binary semaphore to coordinate
concurrent I/O requests from the STL (see Section 7).

In addition to generic I/O requests, a process can make a
prioritized read request for executing a program through the
DPM and this request goes directly to the BML. A
prioritized read request from the DPM can preempt generic
I/O operations requested by STL. After the prioritized read
request is completed, the preempted generic I/O operations
should be resumed again (see Section 6).

In this project, we analyzed the FTL and the DPM
components of the USP.

3.2 Logical-to-Physical Sector Translation

A NAND flash device consists of a set of pages that are
grouped into blocks. A unit can be equal to a block or
multiple blocks. Each page contains a set of sectors.
Operations are either read/write operations on a page or
erase operations on a block.3 NAND can write data only on
an empty page and the page can be emptied by erasing the
block containing the page. Therefore, when new data are
written to the flash memory, rather than directly over-
writing old data, the data are written on empty physical
sectors and the physical sectors that contain the old data are
marked as invalid. Since the empty physical sectors may
reside in separate physical units, one logical unit (LU)
containing data is mapped to a linked list of physical units
(PUs). STL manages the mapping from the logical sectors
(LSs) to the physical sectors (PSs). This mapping informa-
tion is stored in a sector allocation map (SAM) which
returns the corresponding PS offset from a given LS offset.
Each PU has its own SAM.4

Fig. 2 illustrates the mapping from logical sectors to
physical sectors where one unit contains one block and a
block consists of four pages, each of which has one sector.
Suppose that a user writes LS0 of LU7. An empty physical
unit PU1 is then assigned to LU7, and LS0 is written into the
PS0 of PU1 (SAM1½0� ¼ 0). The user continues to write the
LS1 of LU7, and the LS1 is subsequently stored into the PS1
of PU1 (SAM1½1� ¼ 1) (see Fig. 2a). The user then overwrites
LS1 and LS0 in order, which results in SAM1½1� ¼ 2 and
SAM1½0� ¼ 3 (see Fig. 2b). Finally, the user adds the LS2 of
LU7, which adds a new empty physical unit PU4 to LU7
and yields SAM4½2� ¼ 0 (see Fig. 2c).

4 CEGAR WITH PREDICATE ABSTRACTION AND

SAT-BASED BOUNDED ANALYSIS

This section gives a brief overview of CEGAR with
predicate abstraction as well as SAT-based bounded model
checking, as used by Blast and CBMC, respectively.

4.1 Counterexample-Guided Abstraction
Refinement with Predicate Abstraction

In general, software programs are infinite-state systems due
to variables of infinite domains and recursion. Thus, it is not

possible to apply model checking to programs without

abstraction. In addition, to alleviate the state explosion

problem, many abstraction techniques [23] have been

studied to simplify the target program under analysis.

One successful abstraction technique in software model

checking is predicate abstraction [31]. Predicate abstraction

is an abstraction technique whose abstract domain is

constructed using a given set of predicates over program

variables, which are generated from the program text.

However, a model checker may generate a spurious

counterexample from the abstract target system due to a

coarse abstraction function. In such a case, the current

abstraction function should be refined to avoid this type of

spurious counterexample. The CEGAR technique [18] can

automatically and iteratively refine the abstraction function

using the spurious counterexample generated due to the

coarse abstraction.

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 149

Fig. 2. Mapping from logical sectors to physical sectors. (a) Mapping

after LS0 and LS1 is written fresh in order. (b) Mapping after LS1 and

LS0 is updated in order. (c) Mapping after LS2 is written fresh.

3. Flash may support writing a page partially, which is equivalent to
sector-based writing.

4. Gal and Toledo [29] describe the algorithms and data structures for
flash storage platforms in detail.

Software model checkers utilizing CEGAR with predi-
cate abstraction [6], [8], [21], [14] automatically abstract a
concrete program P into a Boolean program PB through an
iterative process. The goal of the combined technique is to
develop an automated procedure to transform P conserva-
tively into the Boolean program PB so that PB is smaller
than P and the model checking of PB is sound in terms of
the given requirement �. The overall process of CEGAR
with predicate abstraction is given below (see Fig. 3):

1. Initially, a given program P is abstracted into a
Boolean program PB0

whose set of predicates is
either an empty set or a set of predicates specified by
a user.

2. Subsequently, PB0
is model checked; if PB0

satisfies
�, the entire model checking process terminates as
the abstraction is conservative.

3. If not, a counterexample is generated and checked as
to whether or not it is spurious. If the counter-
example is not spurious, the model checking process
terminates.

4. If the counterexample is spurious, new predicates
are obtained from the counterexample to rule it out.
A refined version of the Boolean program PB1

is then
constructed at 1 and the entire model checking
process reiterates with PB1

.

Blast [8] is a software model checker for C programs
based on CEGAR with predicate abstraction. In addition,
Blast exploits the lazy abstraction technique to enhance
analysis performance so that a large program can be
analyzed efficiently. Blast receives a C program as its input
and checks whether or not the target C program satisfies a
requirement � written in monitoring automata and/or
assert statements. For computing the next abstract reach-
able states, Blast uses Simplify [24] as an internal decision
procedure which solves linear arithmetic and uninterpreted
functions. In addition, to obtain new predicates, Blast uses a
decision procedure such as FOCI [44] or CSIsat [9] to
calculate interpolants from infeasible paths. Consequently,
Blast models complex C operations (i.e., bitwise operators)
that cannot be handled by these decision procedures as
uninterpreted functions, which may cause false alarms.

4.2 SAT-Based Bounded Model Checking

Bounded model checking [10] unwinds the control flow
graph of a target program P for a fixed number of times n,
and then checks if an error can be reached within these
n steps. SAT-based bounded model checking [17] unrolls

the target program Pn times, transforms this unrolled
program into the SAT formula �P , and then checks whether
P can reach an error within this bound n by checking the
satisfiability of �P [33]. In spite of the NP-complete
complexity, structured Boolean satisfiability (SAT) formulas
generated from real-world problems are successfully solved
by SAT solvers in many cases. Modern SAT solvers exploit
various heuristics [53] and can solve some large SAT
formulas containing millions of variables and clauses in
modest time [4]. To use a SAT solver as a bounded model
checker to verify whether a given C program P satisfies a
requirement property R, it is necessary to translate both P
and R into Boolean formulas �P and �R, respectively. A
SAT solver then determines whether �P ^ :�R is satisfiable:
If the formula is satisfiable, it means that P violates R; if not,
P satisfies R (note that each satisfying assignment to �P
represents a possible execution trace in P).

A brief sketch of the translation process follows [19]. We
assume that a given C program is already preprocessed.
First, the C program is transformed into a canonical form,
containing only if, goto, and while statements without
side effect statements such as ++. Then, the loop statements
are unwound. The while loops are unwound using the
following transformation n times:

whileðeÞ stm) ifðeÞ fstm; whileðeÞ stmg

After unwinding the loop n times, the remaining while

loop is replaced by an unwinding assertion assert(!e)

that guarantees that the program does not execute more
iterations. A similar procedure is applied to loops contain-
ing the backward goto statements. If the unwinding
assertion is violated, n is increased until the unwinding
bound is sufficiently large. Note that this bound n is only an
upper bound of the loop iteration and does not need to be
the exact number of iterations.

Finally, the transformed C program consists of only
nested if, assignments, assertions, labels, and forward
goto statements. This C program is transformed into static
single assignment (SSA) form. Fig. 4b illustrates the SSA
form of the C program in Fig. 4a. This SSA program is
converted into corresponding bit-vector equations through
combinatorial circuit encoding and the final Boolean

150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 3. Overview of CEGAR with predicate abstraction.

(a) (b)

(c)

Fig. 4. Example of translating a C program into a Boolean formula. (a) A

target C program. (b) The corresponding SSA statements. (c) The

corresponding Boolean formulas �P and �R.

formula is a conjunction of all of these bit-vector equations.
For example, Fig. 4c illustrates a Boolean conjunction of the
SSA statements �P ; however, they are not converted into
bit-vector equations yet.

Note that bounded model checking is incomplete on
infinite-state systems. Thus, several approaches based on
k-induction [50] or interpolation [43] have been studied
to make SAT-based bounded model checking complete.
Although bounded model checking may be inefficient in
the presence of deep loops, it can be used as an
effective debugging method up to small loop bounds
(see Section 7.2.2).

CBMC [19] is a bounded model checker for ANSI-C
programs. CBMC receives a C program as its input and
analyzes all C statements (e.g., pointer arithmetic, arrays,
structs, function calls, etc.) with bit-level accuracy and
translates the C program into an SAT formula automatically.
A requirement property is written as an assert statement in a
target C program. The loop unwinding bound nl for loop l
can be given as a command line parameter; for simple loops
with constant upper bounds, CBMC automatically calcu-
lates nl. If �P ^ :�R is satisfiable, CBMC generates a
counterexample that shows a step-by-step execution leading
to the violation of the requirement property.

5 PROJECT OVERVIEW

5.1 Project Scope

Our team consisted of two professors, one graduate student,
and one senior engineer from Samsung Electronics. We
worked on this verification project for six months and spent
the first three months reviewing the USP design documents
and code to become familiar with the USP and OneNAND
flash. However, we estimate that the net total effort for this
project was five man-months (three man-months were spent
working to understand the USP and OneNAND flash
because most of us were new to the flash storage platform)
as we did not fully dedicate our time to this project. It took an
additional one man-month to apply Blast to the project after
we had initially applied CBMC. Most parts of the USP were
written in C and a small portion of the USP was written in the
ARM assembly language. The source codes of the FTL and
the DPM are roughly 30,000 lines long.

The goal of this project was to increase the reliability of the
USP by finding hidden bugs that had not yet been detected.
For this purpose, it was not enough to check the predefined
API interface rules as found in other research work [7], [15].
Instead, we needed to verify the functional correctness which
can assure conformance to the given high-level requirements.
Thus, we needed to identify the properties to verify first, and
the identification of such code-level properties demanded
significant effort since it required knowledge of the target
system requirements, the high-level design, low-level im-
plementation, and mapping between the design and the
implementation. Although most formal verification research
assumes that these code-level properties are given from
somewhere, in real industrial projects we must define these
properties ourselves.

To this end, we applied a top-down approach to identify
the code-level properties from the high-level requirements

(see Fig. 5). First, we selected the target requirements from

the USP documents. The USP has a set of elaborated

documents as follows:

. software requirement specifications (SRSs),

. architecture design specifications (ADSs),

. detailed design specifications (DDSs):

- DPM, STL, BML, and LLD DDSs.

The SRS contains both functional and nonfunctional

requirement specifications with priorities. We selected three

functional requirements with very high priorities (see

Section 5.2). Then, from the selected functional require-

ments, we investigated the relevant ADS, DDS, and

corresponding C code fragments to specify concrete code-

level properties (see Section 5.3). We inserted these code-

level properties into the target C files as assert statements

and analyzed those C files to verify whether the inserted

assert statements are violated or not.

5.2 High-Level Requirements

The SRS document specifies 13 functional requirements and

18 nonfunctional requirements for the USP. Each require-

ment specifies its own priority. There were three functional

requirements that have “very high” priorities:

. Support prioritized read operation. In order to execute a
program, the DPM loads a code page into the
internal RAM when a page fault exception occurs.
Since the fault latency should be minimized, the FTL
should serve a read request from the DPM prior to
generic requests from a file system. This prioritized
read request can preempt a generic I/O operation
and the preempted operation can be resumed later.

. Concurrency handling. There are two types of con-
current behaviors in the USP. The first behavior is
concurrency among multiple generic I/O operations;
the second is concurrency between generic I/O
operations and a prioritized read operation. The
USP should handle these two types of concurrent

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 151

Concurrency
handling

Prioritized
read

Multi-sector
readSRS

Page fault
handling while a
device is being
programmed

Page fault
handling while a
device is being

read

ADS
programmed

Check “Step
18. store the

status”

Check “Step 14.
wait until the

device is ready ”

read

DDS device is ready

C

Is the status
really stored?

At line 494 of P iR d() in LLDC
Code

At line 494 of PriRead() in LLD.c
assert(bNeedToSave->saved)

Legend
Spec. in the
d i d

User defined
t t h kdesign docs property to check

Fig. 5. Top-down approach used to identify the code-level properties to

verify.

behaviors correctly, i.e., it should avoid a race
condition or deadlock through synchronization
mechanisms such as semaphores and locks.

. Manage sectors. A file system assumes that the flash
memory is composed of contiguous logical sectors.
Thus, the FTL provides logical-to-physical mapping,
i.e., multiple logical sectors are written over the
distributed physical sectors and these distributed
physical sectors should be read back correctly.

We concentrated on verifying the three requirements
above and analyzing the relevant structures described in
the ADS. For example, as depicted in Fig. 5, a functional
requirement on a prioritized read operation is related to the
page fault handling mechanisms, which are described in the
ADS. Again, such page fault handling mechanisms (e.g.,
page fault handling while a device is being programmed)
are elaborated in the related DDS documents. Sections 6-8
describe experiments for verifying these three require-
ments, respectively.

5.3 Low-Level Properties

From the ADS document, we determined which DDS
documents were related to the ADS description relevant
to the three high-level requirements. The DDS documents
contain elaborated sequence diagrams of various execution
scenarios for the structures described in ADS. For example,
as depicted in Fig. 5, we reviewed the details of the DPM
DDS and LLD DDS that are relevant to the page fault
handling mechanism while a device is being programmed.
In the LLD DDS, for example, concrete sequence diagrams
for fault handling while a device is being programmed are
provided (see Fig. 6).

The USP allows a prioritized read operation to preempt
the generic operations currently being executed. Thus, the
status of a preempted operation should be saved and, when
the preempting prioritized read operation is completed, the

status should be restored in order to resume the preempted
operation. These saving and restoring operations are im-
plemented in PriRead, which handles the prioritized read
operations. For example, Step 18 in Fig. 6 highlights the
saving operation. To check the correctness of Step 18, i.e.,
whether or not the current status of a preempted generic
operation was actually saved, we inserted an assert

statement at the corresponding location of PriRead.

5.4 Environment Models

In addition, we built an environment model for the unit under
analysis which was similar to a test harness for unit testing.
For example, MSR assumes that SAMs and PUs satisfy
several constraint rules (see Section 8.1) and does not check
whether a given input (i.e., a configuration of SAMs and
PUs) actually satisfies those constraints. Thus, if an invalid
input which does not satisfy those constraints is given to
MSR during model checking, the result is unreliable. In
other words, given an invalid input, MSR may violate the
given properties, even when MSR is correct, or vice versa.
Therefore, it is necessary to build an environment model to
feed only valid cases to MSR.

For a more concrete example, a function parameter nDev
of STL_Read which indicates a physical device number can
be 0-7 according to the OneNAND hardware specification.
Thus, the following constraint statement was added to the
head of STL_Read:

CPROVER assumeð0 <¼ nDev && nDev <¼ 7Þ;

which restricts the possible range of nDev to between 0 and
7 in the analysis performed by CBMC. In addition, another
function parameter nPbn, which indicates a physical block
number, obtains its maximal value according to the type of
NAND device. This constraint is given as follows:

ð!ðNAND½nDev�:type ¼¼ SMALLÞ jj nPbn < 256Þ &&
ð!ðNAND½nDev�:type ¼¼ LARGEÞ jj nPbn < 2048Þ

An environment model specifies not only possible values
of function parameters, but also the global data being used
by STL_Read. For example, a global object CTX contains a
shared context for each OneNAND device and it is
retrieved by STL_Read. Based on the STL design docu-
ment, several constraints can be specified. The following
constraint is one such example, indicating that the number
of physical sectors per single unit should be equal to the
multiplication of the number of blocks per unit, the number
of pages per block, and the number of sectors per page.

CTX:phySctsPerUnit ¼¼ CTX:blksPerUnit

� CTX:pgsPerBlk � CTX:sctsPerPg

For the analysis using Blast, we used if(!constraint)

goto out to describe an environment model/constraints in
a similar manner. With such an explicit environment model,
we can improve the accuracy of the analysis and reduce
false alarms generated from invalid scenarios.

6 PRIORITIZED READ OPERATION

A prioritized read operation is implemented in the
PriRead function in LLD.c of the LLD layer. This

152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

MMU
Page Fault
Handler

Page Cache
Management BML LLD : OneNAND

DeviceDevice

If there is a free frame,
go to Step6.

1: issue page fault exception

2: request a free frame in page cache
3: find a free frame

4: find a victim page

5: page out the victim page

7: find a location where the page is stored in OneNAND device

8: request read operation

9: request read operation

5: page out the victim page

6: return the free fram

13: check if the device is ready

11: request the ready/busy status

12: return the ready/busy status

10: Set the Preempted flag

In case of busy status
because of program

ti

15: check the NeedToSave flag

16: request the operation status

17: return the operation status

operation
14: wait until the device is ready

17: return the operation status

18: store the status

Fig. 6. Sequence diagram of page fault handling while a device is being

programmed.

function is 234 lines long. It has two simple loops whose
upper bound are constants, but does not have a subfunc-
tion call. PriRead has 21 independent paths in its control
flow graph. Thus, to achieve full path coverage, a user
must generate at least 21 different test cases. Instead, we
used Blast and CBMC to automatically test all valid value
combinations of the function parameters and global data to
check whether the status of a preempted operation is
correctly saved, so as to resume the preempted operation
later. This property is written as the following assert

statement at line 494 of PriRead:

assertð!ðpstInfo� > bNeedToSaveÞ jj savedÞ

All experiments presented in this paper were performed
on a workstation equipped with 3 Ghz Xeon and 32 gigabytes
memory running 64 bit Fedora Linux 7. We used Blast
version 2.5 and CBMC version 2.6 with MiniSAT 1.1.4 [27].

6.1 Analysis by Blast

With -foci -cref options (i.e., using the FOCI inter-
polant solver and pointer aliasing information for counter-
example analysis), Blast iterated the CEGAR process three
times and added two new predicates, bEraseCmd==0 and
pstInfo->bNeedToSave==1. Blast took 0.18 seconds
and consumed 6.6 megabytes of memory to detect a
violation of the property. We confirmed that the counter-
example generated by Blast (see Fig. 7) was real through
manual analysis, since Blast might generate a false alarm
(see Section 4.1).

The counterexample generated by Blast is a sequence of
blocks (e.g., lines 2-5 in Fig. 7) and predicates (e.g., lines 6-7)
in the reachability tree [8] generated from the target
program. The partial abstract reachability tree generated
from PriRead has 51 nodes and its depth is 18. The
counterexample consists of 18 steps in total and illustrates
that PriRead does not save the current status of an erase
operation (see lines 9-12), when the erase operation is
preempted by a prioritized read operation. Note that line 5
indicates that the current operation is an erase operation
because bEraseCmd is assigned as 1. After fixing the bug,
Blast did not find a violation anymore and the verification
consumed 6.3 megabytes of memory in 0.13 seconds.

6.2 Analysis by CBMC

CBMC translated PriRead with the assert statement into an
SAT formula containing one million Boolean variables and
1,340 clauses. We applied - -slice - -no-bounds-check

- -no-pointer-check - -no-div-by-zero-check

options to make a fair comparison between the Blast
experiments and the CBMC experiments.5 Note that we
did not provide loop upper bounds as options, which were
obtained automatically by CBMC. CBMC analyzed Pri-

Read and found a violation in 8 seconds (including both
SAT-translation time and SAT-solving time) after consum-
ing 325 megabytes of memory. The counterexample gener-
ated by CBMC (see Fig. 8) is a sequence of assignment
statements, not including predicates. The counterexample
consists of 12 steps in total.

Note that no manual analysis is necessary to check
whether the counterexample is real or not since CBMC
does not generate false alarms, unlike Blast. Line 3 in
Fig. 8 indicates that the current operation is an erase
operation and lines 7-10 show a violation of the property.
After fixing the bug, CBMC did not find a violation
anymore and the verification consumed 259 megabytes of
memory in 4.86 seconds.

7 CONCURRENCY HANDLING

7.1 BML Semaphore Usage

Although the USP allows concurrent I/O requests through
the STL, the BML does not execute a new BML generic
operation while another BML generic operation is running
(i.e., the BML operations must be executed sequentially, not
concurrently). For this purpose, the BML uses a binary
semaphore to coordinate concurrent I/O requests from the
STL. The standard requirements for a binary semaphore are
as follows:

. Every semaphore acquire operation (OAM_Acquir-
eSM) should be followed by a semaphore release
operation (OAM_ReleaseSM).

. A semaphore should be released before a function
returns unless the semaphore operation creates an
error.

Fourteen BML functions that use the BML semaphore
exist. Each function is 150 lines long (excluding comments)
on average. We inserted an integer variable smp to indicate
the status of the semaphore (1 when the semaphore is
released, 0 otherwise) and simple codes to decrease/increase
smp at the corresponding semaphore operations in these
14 BML functions. We verified the following two properties:

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 153

Fig. 8. Counterexample generated by CBMC.

Fig. 7. Counterexample generated by Blast.

5. We applied the same options to all CBMC experiments in this paper.
Note that Blast does not check pointers, arrays, nor divide-by-zero, unless a
user adds supplementary checking codes for these properties. Also, Blast
can be considered as performing slicing through CEGAR with predicate
refinement.

. 0 � smp � 1 at every semaphore operation.

. smp==1 when a function using the semaphore
returns unless a semaphore error occurs.

The target BML function is analyzed without its subfunc-
tions through overapproximation for the sake of the analysis
performance. Both Blast and CBMC found no violations of the
above two properties in the 14 BML functions. The reach-
ability trees generated from the 14 BML functions had 177
nodes on average. The SAT formulas translated from the BML
functions (with loop upper bound 10) have 6,300 Boolean
variables and 10,400 clauses on average. The performance
of the analysis is shown in Table 2. Blast analyzed the BML
functions five times faster and consumed only one-sixth of
memory compared to CBMC. Note that the performance of
CBMC varied much according to the loop structure of the
target BML functions. The loop characteristics of the
14 BML functions are as follows and Table 2 reflects those
characteristics:

. No loop inside (four functions):
_Close, BML_GetVolInfo, BML_ReplaceBlk,
and BML_StorePIExt

. Loops whose upper bound are constants less than 10
(five functions):
BML_EraseBlk, BML_FlushOp, BML_IOCtl,
BML_Read, and BML_Write

. Loops bounded by a user given value (i.e., an
amount of data to read) (five functions):
BML_Copy, BML_CopyBack, BML_MEraseBlk,
BML_MRead, and BML_MWrite

Therefore, by setting the unwinding upper bound to 10, 9
out of the 14 BML functions were analyzed completely. For
the remaining five functions which receive an unbounded
user parameter, we set loop upper bounds as 10 and could
obtain only limited results from CBMC (the CBMC results
for those five functions are written in parentheses in Table 2).

7.2 Handling Semaphore Exception

The BML semaphore operation might cause an exception
depending on the hardware status. Once such a BML
semaphore exception occurs, USP cannot operate correctly
unless a reinitialization is forced by a file system. All BML

functions that use the BML semaphore immediately return

BML_ACQUIRE_SM_ERR or BML_RELEASE_SM_ERR to their

caller when a semaphore operation raised an exception.

This error flag should be propagated through a call-chain to

a topmost STL function, which should return STL_CRITI-

CAL_ERR to the file system. Fig. 9 presents a partial call

graph of the topmost STL functions (depicted in the leftmost

area of Fig. 9) that eventually call OAM_AcquireSM.
We verified whether the topmost STL functions, such as

STL_Write, always returned STL_CRITICAL_ERR if
OAM_AcquireSM called by the STL functions raises an
exception. For example, to verify whether STL_Write

always returns STL_CRITICAL_ERR in the event of a BML
semaphore exception, an interprocedural analysis of func-
tions in nine levels should be performed (i.e., STL_Write
to OAM_AcquireSM).6

We added a global variable SMerr to indicate when a
semaphore exception is raised. Then, we were able to verify
whether the semaphore exception had been correctly
propagated to the file system by checking the return value
nErr of the topmost STL functions. This property was
checked by the following assert statement inserted before
the return statement of the topmost STL functions:

assertð!ðSMerr ¼¼ 1ÞknErr ¼¼ STL CRITICAL ERRÞ

We set 1 hour as a timeout threshold for the experiments.

7.2.1 Analysis by Blast

At the first attempt, a false alarm was generated due to
bitwise operations which were handled as uninterpreted
functions by Blast. Return flags of the STL functions and its
subfunctions were defined through bitwise operations, and
Blast could not distinguish different return flags and raised
a false alarm. Even after modifying the return flags as
constants without bitwise operations, however, Blast with
FOCI continued to raise other false alarms and some false
alarms could not even be suppressed by modifying the
target code nor by adding predicates.

For example, in the counterexample below, after
nNumOfScts=1 and nSctIdx=0 in the block starting from
line 3,649 in _GetSInfo, Blast considers that nSctIdx >=

nNumOfScts in the block starting from line 3,655, which is
clearly not true as there is no statement between these two
blocks. Therefore, there is no simple remedy to suppress a
false alarm caused by this erroneous step.

...

Location: id=28#4 src=“ALL_STL.c”;

line=3649

Block(...

nNumOfScts@_GetSInfo = 1;

nSctIdx@_GetSInfo = 0;)

Location: id=28#5 src=“ALL_STL.c”;

line=3655

Pred(nSctIdx@_GetSInfo>=nNumOfScts@_

GetSInfo)

...

154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

TABLE 2
Performance of Analyzing the BML Semaphore Operations

6. To reduce the analysis complexity, we excluded bad block manage-
ment functions and the LLD layer in the experiments through over-
approximation.

This erroneous behavior was caused by the limitation of
FOCI, which could not solve full linear arithmetic formulas,
but only difference logic formulas [16]. When CSIsat was
used instead of FOCI, Blast generated counterexamples for
STL_Read, STL_Delete, and STL_ADelete. After re-
viewing the counterexamples, it was found that the
subfunction _GetSInfo had a bug. When _GetSInfo

called BML_Read, _GetSInfo might not have checked the
return flag of BML_Read. As a result, _GetSInfo failed to
recognize the exception raised in BML_Read and did not
propagate the exception to _LoadSam and up to
STL_Read, STL_Delete, and STL_ADelete. However,
Blast spent more than 1 hour to perform pointer analysis for
STL_Open, STL_Write, and STL_AWrite, and could not
complete the analysis. The performance statistics on these
experiments are described in Table 3, where LOC counts all
subfunctions in the call graph.

After this bug was fixed, Blast spent more than 1 hour
and failed again to generate a verification result for
STL_Open, STL_Write, and STL_AWrite. Furthermore,
for the bug-fixed code, Blast raised false alarms for
STL_Read, STL_Delete, and STL_ADelete due to the
limitations of Blast for analyzing nested field accesses (e.g.,
Blast may analyze pA->pB->pC incorrectly and cause a
false alarm), which had no easy remedy.

7.2.2 Analysis by CBMC

To reduce the analysis complexity, we began the analysis by
setting the loop unwinding bound to 2 and ignoring the
unwinding assertions, which meant that CBMC analyzed
only the scenarios where all loop bodies were executed once
or passed. In this setting, CBMC generated counterexamples

for all six STL functions. After reviewing the counter-
example, it was found that a subfunction _GetSInfo had
a bug, as found in the Blast experiments. The generated SAT
formulas contain 4:4� 106 variables and 1:8� 107 clauses on
average. As shown in Table 3, the analysis time of CBMC was
five times longer and memory consumption was 15 times
larger than those of Blast. After fixing _GetSInfo, CBMC
did not find a violation anymore and completed the
verification task consuming 3,201 megabytes of memory in
120.5 seconds on average. This verification task was faster
than the previous bug-finding task since the bug-fixed code
executed only exception handling logic in the presence of a
BML semaphore exception, while the original code executed
most logic since a BML semaphore exception was lost.

8 MULTISECTOR READ (MSR) OPERATION

The USP uses a mechanism to simultaneously read as many
multiple sectors as possible in order to improve the reading
speed. Due to the nontrivial traversal of data structures for
the logical-to-physical sector mapping (see Section 3.2), the
function for the MSR is 157 lines long and highly complex,
having four-level nested loops. Fig. 10 describes simplified
pseudocode of these four-level nested loops. The outermost
loop iterates over LUs of data (line 2-18). The second
outermost loop iterates until the LSs of the current LU are
completely read (line 4-16). The third loop iterates over PUs
mapped from the current LU (line 6-15). The innermost loop

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 155

Fig. 9. Partial call graph of the topmost STL functions using the BML semaphore.

TABLE 3
Performance of Analyzing Propagation

of BML Semaphore Exception

TABLE 4
List of Acronyms in the Domain of Flash Storage Platform

identifies consecutive PSs that contain consecutive LSs in the
current PU (line 7-11). This loop calculates conScts and
offset, which indicate the number of such consecutive PSs
and the starting offset of these PSs, respectively. Once
conScts and offset are obtained, BML_READ reads these
consecutive PSs as a whole fast (line 12). When the MSR
finishes the reading operation, the content of the read buffer
should correspond to the original data in the flash memory.

Due to the complex nested loops, a bug of the MSR might
be detected only in specific SAM and PU configurations.
For example, a buggy MSR may correctly read the data in
Fig. 11a where the data are distributed over the PUs in
order, but not in Fig. 11b where the data are not distributed
in order. Thus, it is necessary to analyze the MSR with
various SAM and PU configurations.

Note that the total number of SAM and PU configura-
tions increases exponentially as the size of the logical
sectors or the number of PUs increases. For example, for
data that are six sectors long and distributed over 10 PUs,
2:7� 108 distinct test scenarios exist. Therefore, a large
number of randomized testings hardly provides enough
confidence; it is more desirable to exhaustively analyze all
valid distribution cases specified by the environment model
within a reasonable range (see Section 8.1).7

8.1 Environment Model for MSR

The MSR assumes randomly written logical data on PUs, and
a corresponding SAM records the actual location of each LS.
The writing of data to read is, however, not purely random.
This means that a test environment should be created so that
a logical relation is maintained between the SAMs and the
PUs, as shown in Fig. 11. In this analysis task, we created an
environment for the MSR by specifying the constraints
representing this relationship. For example, some of the rules
describing a valid environment are as follows:

1. For each logical sector, at least one physical sector
that has the same value exists.

2. If the ith LS is written in the kth sector of the jth PU,
then the ði mod mÞth offset of the jth SAM is valid

and indicates the PS number k, where m is the
number of sectors per unit.

3. The PS number of the ith LS must be written in only
one of the ði mod mÞth offsets of the SAM tables for
the PUs mapped to the b imcth LU.

For example, the last two rules can be specified by the
following constraints:8

8i; j; k ðlogical sectors½i� ¼ PU ½j�:sect½k�Þ !�
SAM½j�:valid½i mod m� ¼ true &

SAM½j�:offset½i mod m� ¼ k &

8p:ðSAM½p�:valid½i mod m� ¼ falseÞ where

p 6¼ j and PU ½p� is mapped to

�
i

m

�
th LU

�

8.2 Analysis by Blast

It turned out that Blast could not analyze the MSR accurately
due to the following limitations: First, manual modification
of the MSR was necessary to replace unsupported operations
(e.g., division, mod, etc.) which are treated as uninterpreted
functions and often cause false alarms. Second, Blast
assumes that an address of an array element can be NULL
for the following reason: Blast obtains the address of the
ith element of the array a through offset(a, i), which is
handled as an uninterpreted function. In addition, all pointer
operations are assumed safe, and thus the NULL pointer
does not have a special meaning. Thus, Blast reports a false
alarm in the following example:

void f() {

int array[1];

/* Blast considers that p can be NULL */

int *p= &array[0];

assert(p != NULL); /* Blast says “Error” */

}

As a consequence, a pointer to a valid physical unit might
have the NULL value in the analysis of Blast, which may
confuse a termination condition in the traversal of linked
list of physical units and logical units whose end is marked
as NULL (see line 2 and line 6 in Fig. 10).

Finally, the most serious limitation was that array
operations involving an index variable caused false alarms

156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

Fig. 10. Pseudoloop structure of the MSR.

7. The description of the MSR operation and its environment model are
taken from [37].

8. These constraints allow spurious value combinations in SAMs to
reduce the complexity of imposing the constraints. However, this
weakening does not produce false positives when verifying the require-
ments.

1 0
1 1
2

3

E
AB F

C
D

3 3
0 2

3
1

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4

B
D

F
AC E

PU0~PU4SAM0~SAM4 SAM0~SAM4

(a) (b)

Fig. 11. Two different distributions of data “ABCDEF” to physical

sectors. (a) A distribution of “ABCDEF.” (b) Another distribution of

“ABCDEF.”

as shown in the following example, due to the limitation of

the underlying decision procedures. Since the theory of

arrays is not supported by the underlying decision

procedures, BLAST models the memory axioms using

lvalue maps and instantiates the array axioms on demand,

which may produce imprecise results.

void g() {

int array[1],i,j;

i=0;array[i]=1;

j=0;assert(array[j]==1);/* Blast says

“Error”*/

}

Therefore, it was concluded that Blast was inadequate to

analyze the MSR since the MSR contained many statements

with array and pointer operations.

8.3 Analysis by CBMC

As CBMC performs bounded analysis through loop

unwinding, the characteristics of the nested loop structure

of the MSR (see Fig. 10) should be analyzed first. We found

that the second loop (line 4) and the fourth loop (line 7)

were bounded by the number of sectors per unit (SPU) since

readScts is less than or equal to SPU and decreased by at

least one in each iteration of the second loop, and the

maximal length of the consecutive physical sectors in one

physical unit is trivially less than or equal to SPU. The first

loop (line 2) and the third loop (line 6) were bounded by the

size of data and the number of physical units available.
We analyzed the MSR with the environment model (see

Section 8.1) for data that were five to eight sectors long and

distributed over 5-10 PUs. Through the CBMC experi-

ments, no violations were detected. Note that the test

environment generated all possible scenarios and CBMC

analyzes all generated scenarios. Therefore, this exhaustive

analysis capability can provide a high confidence of the

correctness of MSR, although this verification was per-

formed on the small flash memory only (i.e., 5-10 PUs). The

experimental results are illustrated in Fig. 12. For example,

it took 1,471 seconds to test all 2:7� 108 scenarios for data

that were six sectors long and distributed over 10 PUs. The

SAT formula for this experiment contains 8:0� 105 Boolean

variables and 2:7� 106 clauses. For each of the experi-

ments, 200-700 megabytes of memory were consumed.

9 LESSONS LEARNED

9.1 Effectiveness of Software Model Checkers for
Embedded Software

Through this project, we found that a software model
checker can be used as an effective software analysis tool for
embedded software since it can directly analyze a target
program without a manually created abstract model. Also,
the tools show reasonable performance for analyzing
components of the target program, although the entire
program cannot be analyzed as a whole and the binary
libraries used by the target program cannot be analyzed.
For embedded software, however, these limitations are less
critical and software model checkers offer several advan-
tages for the following reasons.

First, direct testing of embedded software is less effective
in an industrial setting. In order to reduce the development
period, embedded software and its hardware are usually
developed in parallel; embedded software is often devel-
oped with hardware specifications, not with physical
devices. Thus, direct testing is only possible at the later
stage of development, although early detection of design
faults can reduce development cost. Software model
checkers can be used to detect faults at an early stage of
development by analyzing a target component without an
execution platform or the entire program.

Second, embedded software operates on bare hardware
and dependency on external binary libraries is minimal.
Thus, the source code analysis capability of software model
checkers can be maximally utilized on embedded software
and precise analysis results can be obtained.

Finally, unit analysis by means of software model
checking can be more productive than actual testing.
Although active research on model-based testing has been
undertaken [51], the generation of test cases adequate for
various test criteria [54] still requires significant human
effort. In this project, we avoided this laborious task of
explicit test case generation. Instead, we mechanically
tested all possible execution scenarios that satisfied the
environmental constraints. In addition, even when a set of
explicitly generated test cases reaches a high degree of
statement/branch coverage, the absence of errors is still not
guaranteed; different input values generate different out-
puts, even in the same execution path (e.g., caused by
overflow/underflow error, divide-by-zero error, etc.).
Therefore, for unit testing, this exhaustive analysis with
constraints can produce a greater confidence in the
correctness of the target code while requiring a reduced
amount of human effort.

9.2 Limitations of Blast for Complex Embedded
Software

Section 6 and Section 7 reported that Blast showed superior
performance than CBMC in terms of speed and memory
usage on the relatively simple target codes. This is because
Blast analyzes an abstract Boolean model through CEGAR
with predicate abstraction, while CBMC analyzes a large
Boolean formula obtained through multiple unrolling of a
target program, SSA transformation, and combinatorial
circuit encoding. However, this project revealed several
limitations of Blast when applied to complex embedded

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 157

Fig. 12. Time complexity of the MSR analysis.

software (e.g., MSR) as opposed to simple device driver
interfaces. Therefore, we suggest that a user should check
the amount of complex operations in the target program, as
increased complexity could cause Blast to produce impre-
cise results.

The first limitation is that Blast may produce false alarms
due to the limitations of the underlying decision procedures
as well as its flow-insensitive may-alias analysis. For
example, a target program containing arrays or pointers
may cause Blast to generate false alarms (see Section 8.2).
Therefore, a manual analysis of counterexamples is required
to check the validity of the counterexamples, which is not
favorable in terms of productivity. Another problem is that
Blast might generate unsound results.9 For example, Blast
handles a scalar value as an unbounded number, as its
internal decision procedure does, and therefore it cannot
detect errors due to overflow or underflow. In addition, in
order to analyze pointer operations efficiently, Blast applies
several assumptions on pointers. For example, Blast assumes
that two pointers cannot be aliased if their types are different.
As a result, the may-alias analysis of Blast is incomplete and
Blast may miss a bug. These limitations can cause serious
problems in industrial application since the above issues can
be easily observed in complex embedded software.

9.3 Industrial Strength of an SAT-Based Bounded
Model Checker

CBMC analyzes a target C program with bit-level accuracy
since it transforms a target C program into an SAT formula
by unwinding loops without abstraction. A subsequent
drawback is the requirement of upper bounds for loops, as
these bounds are generally difficult to obtain. Also, analysis
performance varies in a large degree according to the loop
characteristics of a target program (see Section 7.1 and
Section 8.3). In practice, however, the user can obtain sound
approximate upper bounds by reviewing the target
program and its design documents. Even if upper bounds
are completely unknown, arbitrary upper bounds given by
the user can provide useful debugging information (see
Section 7.2.2). Although an entire C program cannot be
analyzed by CBMC, we believe that CBMC can be utilized
as an effective unit analysis tool for industrial software.

This relatively straightforward analysis technique relies
on the high applicability and performance of SAT solvers
which possess industrial strength. Several approaches to
using a SAT-solver instead of a decision procedure in
CEGAR [20], [21], [22] have been studied in efforts to
overcome the limitations of decision procedures. However,
they are still immature research prototypes and the source
codes are not publicly available. Thus, those techniques
were not applied in this project.

10 CONCLUSIONS

In this project, we successfully applied Blast and CBMC,
which utilize CEGAR with predicate abstraction and SAT-
based bounded analysis, respectively, to detect bugs in the
USP for Samsung’s OneNAND flash memory. These bugs

included incomplete handling of the semaphore exceptions
and a logical bug that did not store the current status of an
erase operation that was preempted by a prioritized read
operation; they had not been previously detected by
Samsung. In addition, we established confidence in the
correctness of the complex multisector read function
through CBMC. Although current software model checking
technologies are not yet scalable to verify an entire C
program, it is still beneficial to apply software model
checkers to analyze units of a target program, as demon-
strated in this project.

In future work, we will continue to apply software model
checking techniques to embedded software domains to
identify practical issues in which these techniques can be
applied in an industrial setting. We hope that we can apply
more recent techniques such as SATABS [20], [21] and
COGENT [22] to industrial projects in the future.

We also plan to compare software model checking
techniques to the concolic testing approach [49], [30], [12]
thoroughly; software model checking and concolic testing
have several goals in common but have different trade-offs
between their verification accuracy, verification time, and
applicability. A preliminary result of applying concolic
testing to MSR was reported in [38]. This study found that
CREST [1], which is an open-source concolic testing tool,
can be used as an effective bug-finding tool; however, its
analysis speed was much slower than that of CBMC since
CREST invoked a constraint solver a few million times to
generate test cases for all possible paths. Finally, we plan to
carry out a systematic construction of an environment
model for software model checking to automate the analysis
of embedded software further.

ACKNOWLEDGMENTS

The authors would like to thank Professor Dirk Beyer and
Professor Daniel Kroening for the valuable discussion on the
features of Blast and CBMC, respectively. In addition, they
thank Professor Yunja Choi at Kyungpook National Uni-
versity for the verification of MSR. This research was
supported by the Ministry of Knowledge Economy (MKE),
Korea, under the Information Technology Research Center
(ITRC) support program supervised by the National IT
Industry Promotion Agency (NIPA) (NIPA-2009-(C1090-
0902-0032)), the Engineering Research Center of Excellence
Program of Korea Ministry of Education, Science and
Technology (MEST)/National Research Foundation of Kor-
ea (NRF) (Grant 2009-0063252), and Basic Science Research
Program through the NRF funded by the Ministry of
Education, Science and Technology (2009-0064639). A
preliminary version appeared in ASE 2008 [39].

REFERENCES

[1] CREST—Automatic Test Generation Tool for C, http://code.
google.com/p/crest/, 2010.

[2] Flash Memory (from Wikipedia), http://en.wikipedia.org/wiki/
Flash_memory, 2010.

[3] Samsung OneNAND Fusion Memory, http://www.
samsung.com/global/business/semiconductor/products/
fusionmemory/Products_OneNAND.html, 2010.

[4] Proc. 12th Int’l Conf. Theory and Applications of Satisfiability Testing,
2009.

158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

9. The validity of the result produced by Blast in Section 7.1 was not
investigated further since CBMC produced the same result.

[5] T. Ball, B. Cook, V. Levin, and S.K. Rajamani, “Slam and Static
Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft,” Proc. Int’l Conf. Integrated Formal Methods, 2004.

[6] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani, “Automatic
Predicate Abstraction of c Programs,” Proc. Conf. Programming
Language Design and Implementation, 2001.

[7] T. Ball and S.K. Rajamani, “Automatically Validating Temporal
Safety Properties of Interfaces,” Proc. Spin Workshop, pp. 103-122,
2001.

[8] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar, “The Software
Model Checker Blast: Applications to Software Engineering,” Int’l
J. Software Tools for Technology Transfer, vol. 9, pp. 505-525, 2007.

[9] D. Beyer, D. Zufferey, and R. Majumdar, “CSIsat: Interpolation for
LA+EUF,” Proc. Int’l Conf. Computer Aided Verification, 2008.

[10] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu,
“Bounded Model Checking,” Advances in Computers, vol. 58,
pp. 117-148, 2003.

[11] A. Butterfield, L. Freitas, and J. Woodcock, “Mechanising a
Formal Model of Flash Memory,” Science of Computer Program-
ming, vol. 74, no. 4, pp. 219-237, 2009.

[12] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” Proc. Conf. Operating System Design and
Implementation, 2008.

[13] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler,
“EXE: Automatically Generating Inputs of Death,” Proc. ACM
Conf. Computer and Comm. Security, 2006.

[14] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
Verification of Software Components in C,” IEEE Trans. Software
Eng., vol. 30, no. 6, pp. 388-402, June 2004.

[15] A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdzı́nski, and F.
Mang, “Interface Compatibility Checking for Software Modules,”
Proc. Int’l Conf. Computer Aided Verification, 2001.

[16] A. Cimatti, A. Griggio, and R. Sebastiani, “Efficient Interpolant
Generation in Satisfiability Modulo Theories,” Proc. Int’l Conf.
Tools and Algorithms for the Construction and Analysis of Systems,
2008.

[17] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model
Checking Using Satisfiability Solving,” Formal Methods in System
Design, vol. 19, no. 1, pp. 7-34, 2001.

[18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counter
Example-Guided Abstraction Refinement for Symbolic Model
Checking,” J. ACM, vol. 50, no. 5, pp. 752-794, 2003.

[19] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-
C Programs,” Proc. Int’l Conf. Tools and Algorithms for the
Construction and Analysis of Systems, 2004.

[20] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate
Abstraction of ANSI-C Programs Using SAT,” Formal Methods in
System Design, vol. 25, nos. 2/3, pp. 105-127, 2004.

[21] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS:
SAT-Based Predicate Abstraction for ANSI-C,” Proc. Int’l Conf.
Tools and Algorithms for the Construction and Analysis of Systems,
2005.

[22] B. Cook, D. Kroening, and N. Sharygina, “Cogent: Accurate
Theorem Proving for Program Verification,” Proc. Int’l Conf.
Computer Aided Verification, 2005.

[23] P. Cousot, “Abstract Interpretation,” ACM Computing Surveys,
vol. 28, no. 2, pp. 324-328, 1996.

[24] D. Detlefs, G. Nelson, and J.B. Saxe, “Simplify: A Theorem Prover
for Program Checking,” J. ACM, vol. 52, no. 3, pp. 365-473, 2005.

[25] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of
Automated Techniques for Formal Software Verification,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 27, no. 7, pp. 1165-1178, July 2008.

[26] E. Clarke, O. Grumberg, and D.A. Peled, Model Checking. MIT
Press, Jan. 2000.

[27] N. Eén and N. Sörensson, “An Extensible SAT-Solver,” Proc. Int’l
Conf. Theory and Applications of Satisfiability Testing, 2003.

[28] M.A. Ferreira, S.S. Silva, and J.N. Oliveira, “Verifying Intel Flash
File System Core Specification,” Proc. Fourth VDM-Overture
Workshop, 2008.

[29] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash
Memories,” ACM Computing Surveys, vol. 37, no. 2, pp. 138-163,
2005.

[30] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” Proc. Conf. Programming Language
Design and Implementation, 2005.

[31] S. Graf and H. Saidi, “Construction of Abstract State Graphs with
PVS,” Proc. Int’l Conf. Computer Aided Verification, pp. 72-83, 1997.

[32] A. Groce, G. Holzmann, R. Joshi, and R.G. Xu, “Putting Flight
Software through the Paces with Testing, Model Checking, and
Constraint-Solving,” Proc. Workshop Constraints in Formal Verifica-
tion, 2008.

[33] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah, “Algorithms for the
Satisfiability (SAT) Problem: A Survey,” Satisfiability Problem:
Theory and Applications, Am. Math. Soc., 1996.

[34] R. Jhala and R. Majumdar, “Software Model Checking,” ACM
Computing Surveys, vol. 41, no. 4, pp. 21-74, 2009.

[35] R. Joshi and G. Holzmann, “A Mini-Challenge: Build a Verifiable
Filesystem,” Proc. Int’l Conf. Verified Software: Theories, Tools,
Experiments, 2005.

[36] E. Kang and D. Jackson, “Formal Modeling and Analysis of a
Flash File System in Alloy,” Abstract State Machines, B and Z,
Springer, 2008.

[37] M. Kim, Y. Choi, Y. Kim, and H. Kim, “Formal Verification of a
Flash Memory Device Driver—An Experience Report,” Proc. Spin
Workshop, 2008.

[38] M. Kim and Y. Kim, “Concolic Testing of the Multi-Sector Read
Operation for Flash Memory File System,” Proc. Brazilian Symp.
Formal Methods, 2009.

[39] M. Kim, Y. Kim, and H. Kim, “Unit Testing of Flash Memory
Device Driver through a SAT-Based Model Checker,” Proc. IEEE/
ACM Int’l Conf. Automated Software Eng., Sept. 2008.

[40] E. Kolb, O. Sery, and R. Weiss, “Applicability of the Blast Model
Checker: An Industrial Case Study,” Proc. Conf. Perspectives of
System Informatics, 2009.

[41] K. Ku, T.E. Hart, M. Chechik, and D. Lie, “A Buffer Overflow
Benchmark for Software Model Checkers,” Proc. Int’l Conf.
Automated Software Eng., 2007.

[42] W. Mahnke, S.H. Leitner, and M. Damm, OPC Unified Architecture.
Springer, 2009.

[43] K.L. McMillan, “Interpolation and SAT-Based Model Checking,”
Proc. Int’l Conf. Computer Aided Verification, 2003.

[44] K.L. McMillan, “An Interpolating Theorem Prover,” Theoretical
Computer Science, vol. 345, no. 1, pp. 101-121, 2005.

[45] J.T. Muhlberg and G. Luttgen, “BLASTing Linux Code,” Proc. Int’l
Workshop Formal Methods for Industrial Critical Systems, 2006.

[46] H. Post and W. Küchlin, “Integrated Static Analysis for Linux
Device Driver Verification,” Proc. Int’l Conf. Integrated Formal
Methods, 2007.

[47] H. Post, C. Sinz, A. Kaiser, and T. Gorges, “Reducing False
Positives by Combining Abstract Interpretation and Bounded
Model Checking,” Proc. Int’l Conf. Automated Software Eng., 2008.

[48] B. Schlich and S. Kowalewski, “Model Checking c Source Code for
Embedded Systems,” Software Tools for Technology Transfer, vol. 11,
no. 3, pp. 187-202, 2009.

[49] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing
Engine for C,” Proc. European Software Eng. Conf./Foundations of
Software Eng., 2005.

[50] M. Sheeran, S. Singh, and G. Stalmarck, “Checking Safety
Properties Using Induction and a SAT-Solver,” Proc. Int’l Conf.
Formal Methods in Computer Aided Design, 2000.

[51] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, 2007.

[52] J. Yang, P. Twohey, D. Engler, and M. Musuvathi, “Using Model
Checking to Find Serious File System Errors,” Proc. Symp.
Operating System Design and Implementation, 2004.

[53] L. Zhang and S. Malik, “The Quest for Efficient Boolean
Satisfiability Solvers,” Proc. Int’l Conf. Computer Aided Verification,
2002.

[54] H. Zhu, P.A.V. Hall, and J.H.R. May, “Software Unit Test
Coverage and Adequacy,” ACM Computing Surveys, vol. 29, no. 4,
pp. 366-427, 1997.

KIM ET AL.: A COMPARATIVE STUDY OF SOFTWARE MODEL CHECKERS AS UNIT TESTING TOOLS: AN INDUSTRIAL CASE STUDY 159

Moonzoo Kim received the PhD degree in
computer and information science from the
University of Pennsylvania in 2001. After working
as a researcher at Samsung SECUi.COM and
POSTECH, he joined the faculty of KAIST in
2006. He currently focuses on developing soft-
ware verification frameworks for embedded
systems through software model checking, run-
time verification, and concolic testing techniques.
His research interests include the specification

and analysis of embedded systems, automated software engineering
techniques, and formal methods. He is a member of the IEEE.

Yunho Kim received the BS degree in computer
science in 2007 from KAIST, where he is
currently working toward the PhD degree in the
Computer Science Department. His research
interests include embedded software, software
model checking, and test-case generation.

Hotae Kim received the BS degree in computer
science from KAIST and the MS degree in
computer science and engineering from POST-
ECH. He is currently a researcher at Samsung
Electronics and his recent project involvement
has focused on the LiMo software platform and
embedded software for flash memory devices
such as file systems and databases. His
research interests include software development
and evolution applying various software engi-

neering practices such as formal design and verification, model
checking, and software product line.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. 2, MARCH/APRIL 2011

