Verisim: Formal Analysis of Network Simulations

Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo Kim, Insup Lee,
Davor Obradovic, Oleg Sokolsky, and Mahesh Viswanathan
Department of Computer and Information Science
University of Pennsylvania

{bkarthik ,gunter ,moonjoo,lee,davor,sokolsky ,maheshv}@saul .cis.upenn.edu

ABSTRACT

Network protocols are often analyzed using simulations. We
demonstrate how to extend such simulations to check propo-
sitions expressing safety properties of network event traces
in an extended form of linear temporal logic. Our technique
uses the NS simulator together with a component of the Java
MaC system to provide a uniform framework. We demon-
strate its effectiveness by analyzing simulations of the Ad
Hoc On-Demand Distance Vector (AODV) routing protocol
for packet radio networks. Our analysis finds violations of
significant properties, and we discuss the faults that cause
them. Novel aspects of our approach include modest inte-
gration costs with other simulation objectives such as perfor-
mance evaluation, greatly increased flexibility in specifying
properties to be checked, and techniques for analyzing com-
plex traces of alarms raised by the monitoring software.

Keywords

Verisim, Formal Analysis, Network, Simulation, Testing,
Routing, NS, MEDL, AODV, Temporal Logic, Ad Hoc Net-
works, Packet Radio, Meta-trace, Tuning, Population Ab-
straction, Packet-Type Abstraction

1. INTRODUCTION

Network protocols such as routing protocols are difficult to
test because meaningful experiments may involve dozens or
even thousands of hosts and routers. Developing an ade-
quate testbed would be prohibitively expensive while exper-
iments involving operational systems may be too risky or
inconvenient. Thus simulations are widely used as a testing
technique for both performance and correctness properties.
In this paper we describe a tool suite called Verisim which
facilitates the analysis of correctness properties in network
simulations. The advantage of Verisim comes from its com-
bination of a popular network simulator tool, NS, with the
flexible trace-checking component of the Java MaC system.
Traces are generated using NS (version 2) and analyzed to
determine whether they satisfy desired properties. These

properties are expressed using the Meta-Event Definition
Language (MEDL) from Java MaC. MEDL is an expressive
language extending Linear Temporal Logic; it is able to ex-
press a variety of important safety properties of the kind
network software is expected to satisfy. With this combina-
tion, it is possible to seamlessly integrate flexible testing of
such properties into the processes generally used to design
and analyze network systems.

In this paper, we provide an overview of the MaC framework
for system analysis, describe its instantiation in Verisim,
and illustrate the application of Verisim on existing simula-
tion code for Ad Hoc On-Demand Distance Vector routing
(AODYV), a protocol for routing in ad hoc packet radio net-
works. Our case study has two parts, based on code we
obtained from the Monarch Group at Carnegie-Mellon. The
first part illustrates a basic approach for using Verisim to
find and correct bugs in the simulation code; the second part
shows how the flexibility of Verisim can reduce turn-around
time in debugging.

In the first part of our case study we run an NS simula-
tion and create a trace T which is analyzed for properties
AODV is expected to satisfy. The properties are expressed
by a MEDL formula ¢ and the checker produces as its out-
put a metatrace T? of alarms indicating violations of ¢ by
the given trace. Our study revealed several bugs in the sim-
ulation code, and we use Verisim to locate each of these and
carry out regression testing until they are all removed. The
technique is what we call Repair First Bug (RFB). RFB
proceeds by taking the trace and analyzing the first alarm
to determine what may have caused it. Assuming that the
formula ¢ is properly expressed, this represents a bug in
the simulation code. This bug is repaired and the newly
modified program P is again run through the simulation
to produce an output trace T, which is again examined to
find a second bug. Assuming that three bugs are found, this
process generates a program P; which satisfies the property
¢. In all, this debugging session required three runs of the
simulation.

In the second part of our case study we illustrate how
the flexibility of Verisim can be exploited to improve turn-
around time for debugging. In this study we attempt to
avoid some of steps where the simulation was rerun to gen-
erate a new trace for continued debugging. The situation
is similar to what one sees for compilers, where an effort is
made to produce error messages that are as independent as

possible in hope that the several faults in the program can be
removed before the compilation needs to be repeated. This
is especially useful for simulations, which may run for long
periods of time (even days), and where analysis may gen-
erate vast, incomprehensible metatraces of alarms. Alarms
represent bugs that must be repaired, and it is necessary to
repair as many as possible before rerunning the simulation.
The automated techniques used by compilers are largely in-
applicable since errors generated by routing protocols are
quite different in nature. We focus on mixture of manual
and automated techniques we call tuning. The metatrace
T? is manually inspected to find bug classes and then the
MEDL property ¢ is modified or ‘tuned’ to produce a for-
mula 1) that ignores one or more bugs recognized in this
first manual analysis. Verisim then re-analyzes the original
T to produce a new metatrace TY, which is inspected for
new bugs. Note that the second step can proceed without
rerunning the simulation, since it precedes from the original
trace. This strategy is repeatedly applied until it becomes
desirable to fix a collection of bugs and rerun the trace.

The paper is divided into eight sections. After this intro-
duction we describe in three sections the MaC framework,
the NS system, and Verisim. Then, in the fifth section we
describe the AODV protocol. Simulator code for this proto-
col is then analyzed in two case studies in the sixth section.
The seventh section discusses some of the related work, and
the eighth section concludes.

2. MAC MONITORING AND CHECKING

Monitoring and Checking (MaC) is a framework for dynamic
analysis of safety properties of systems with a trace-based
semantics. The overall framework is depicted in Figure 1.
The first component of the MaC framework is the Monitor,
which extracts a Trace; this trace is input to the second
component, the Checker, which uses it to produce a Meta-
trace. The metatrace is examined by a human or another
program to determine system status, including deviations
from expected behavior. Inputs to the monitor include the
Program and its Data (that is, inputs from its environment)
and possibly a Monitoring Script which aids the trace ex-
traction. The goal of the checker is to find deviations of
the trace from a set of Properties that are also input to the
checker.

The MaC framework provides an architecture for analyz-
ing systems formally and flexibly using runtime informa-
tion. This is illustrated by a prototype implementation of
the framework for Java programs described in [16, 17, 18]
and illustrated in Figure 2. This system, which we will call
Java MaC provides a general approach to the analysis of
Java programs based on trace information obtained from
instrumented Java programs. A distinguishing feature of
the system is the ability of its monitor component to aid
the instrumentation of Java programs in order to produce
traces. Very briefly, a Primitive Event Definition Language
(PEDL) defines low-level events and is used to generate an
instrumented Java byte code program. This program pro-
duces a Partial State Sequence (PSS), which is supplied to
an Event Recognizer to produce the desired trace.

Our focus in this paper is on the use of the checker compo-
nent of Java MaC. The monitor component of Java MaC will

Table 1: MEDL Grammar

<C> ::= [<E> ::= e

| [<E>, <E>) | start(<C>)

| 1 <C> | end(<C>)

| <C> && <C> | <E> && <E>

| <C> || <C> | <E> || <E>

| <C> => <C> | <E> when <C>
<G> ::= <E> -> <Statements>

be replaced by NS to obtain the Verisim system, which is the
main focus of the paper. To understand Verisim it is there-
fore necessary to have some familiarity with the checker com-
ponent of Java MaC, so we provide a brief explanation here
and refer the reader to other sources for details. The checker
is based on a Meta Ewvent Definition Language (MEDL),
which is used to express properties of traces. Violations of
these properties are obtained by running the checker with
MEDL properties and an input trace to produce a meta-
trace. We now overview MEDL.

MEDL is based on an extension of linear temporal logic
(LTL) with auxiliary variables. Auxiliary variables are ad-
ditional variables that may be used to record certain aspects
of the trace. These variables represent the checker’s state
when trying to check if the trace conforms to the property.
The presence of auxiliary variables in MEDL allows users
to overcome certain well known limitations in the expressive
power of LTL. For example, within MEDL one can ‘count’
and so it is possible to express things like ‘RREP should hap-
pen before the 5th occurrence of RREQ’. As in SCR [13], we
distinguish between two kinds of data that make up the trace
of an execution: things that are true at some instant during
the execution (which we call events), and facts that hold
for a longer duration of time (which are called conditions).
For example, the return from the method SendRequest oc-
curs only at the instant when the control returns from the
method, while a boolean condition like (next_hop, == 2)
holds for as long as next_hop, does not change its value
from 2. The distinction between events and conditions is
important in terms of what the checker can infer about the
execution based on the information extracted by the moni-
tor. The checker assumes that truth values of all conditions
remains unchanged between updates from the monitor. For
events, the checker makes the dual assumption, namely, that
no events (of interest) happen between updates.

Based on this distinction between events and conditions, we
have a simple two-sorted logic that constitutes MEDL. The
syntax of conditions (C) and events (E) is given in Table 1.
Here e refers to primitive events that are reported in the
trace by the monitor; c is either a primitive condition re-
ported in the trace or it is a boolean condition defined on
the auxiliary variables. Guards (G) are used to update aux-
iliary variables that may record something about the history
of the execution.

The models for this logic are similar to those for linear tem-
poral logic, in that they are sequences of worlds. The worlds
correspond to instants in time at which we have information

Monitoring
Script

Program

Properties

Trace

Metatrace

Program: Monitoring

Java Bytecode Script: PEDL

N/
PEDL

Instrumented program:
Java Bytecode

Properties:
MEDL

Trace Metatrace

Figure 2: Overview of the MaC Prototype for Java

about the truth values of primitive conditions and events.
Each world is, therefore, labeled by the time instant it cor-
responds to and the set of primitive conditions and events
that are true at that instant. Intuitively, these worlds cor-
respond to the times when the monitor adds something to
the trace.

The intuition in describing the semantics of events and
conditions based on such models, is that conditions retain
their truth values in the duration between two worlds, while
events are present only at the instants corresponding to cer-
tain worlds. The labels on the worlds give the truth values
of primitive conditions and events. The semantics for nega-
tion (!c), conjunction (cl && c2), disjunction (c1 || c2)
and implication (c1 => c2) of conditions is defined natu-
rally; so !c is true when c is false, c1 && c2 is true only
when both c1 and c2 are true, c1 || c¢2 is true when either
cl or c2 is true, and c1 => c2 is true if c¢2 is true whenever
cl is true. Conjunction (el && e2) and disjunction (el ||
e2) on events is defined similarly. Now, since conditions
are true from some time until just before the instant when
they become false, two events can naturally be associated
with a condition, namely the instant when the condition be-
comes true (start(c)) and the instant when the condition
becomes false (end(c)). Any pair of events define an in-
terval of time, and forms a condition [el, e2) that is true
from event el until e2. The event e when c is true if e oc-
curs and condition c is true at that time instant. Finally, a
guard e -> stmt, is executed when event e is true; the ef-
fect of the execution is to update the values of the auxiliary

variables according to the assignments given in stmt. The
formal semantics for the logic is given in [16, 18].

The checker, which is generated automatically from the
MEDL script, evaluates the events and conditions described
in the script, whenever it reads an element from the trace.
The evaluation of individual events and conditions is fairly
standard based on the semantics of the logic. However,
there are dependencies between different events and con-
ditions. For example, an event el that is defined in terms
of an auxiliary variable that is updated by event e2, must
be evaluated after e2 and the variable have been updated.
Hence, the checker must evaluate the events and conditions
in a consistent order. In our implementation we use a DAG
data structure that implicitly encodes this dependency and
has additional information that allows for fast evaluation of
the events and conditions. Details of this algorithm can be
found in [16].

3. NS NETWORK SIMULATIONS

Simulator implementations of protocols under development
can provide an idea of how the protocols behave in a wide
variety of network environments. Typically, a protocol and
a suite of scenarios can be generated quickly and the sim-
ulation results can inform the protocol design. As such,
simulator traces often reveal design flaws and potential im-
provements in the protocol before a laboratory testbed is
even considered. Moreover, the simulator code often serves
as a reference implementation for the protocol.

The development of a custom simulation framework for
a single protocol allows the designer to investigate small
topologies and basic characteristics of a new protocol. How-
ever, such simulations are limited in their ability to provide
data about how a protocol interacts in the larger, multi-
protocol environments where it must eventually operate.
An extensible, multi-protocol simulation framework allows
protocol designers to layer their protocol implementation at
the node level and analyze its performance and interaction
with other protocols. NS [12] is a discrete event network
simulator developed by the VINT Project (http://netweb.
usc.edu/vint), a collaboration between UC Berkeley, LBL,
USC/ISI, and Xerox PARC, that provides such a framework.
The system we study in this paper is based on NS, and our
case studies use an extension of it by the CMU Monarch
group (http://monarch.cs.cmu.edu) that adds link-layer
and physical layer support for wireless networks.

A block diagram showing the steps in an NS simulation is
shown in Figure 3. In order to carry out simulations us-
ing NS, one first implements the protocol in C++ using a
collection of simulator constructs. A number of well-known
protocols have been implemented for NS and can be used
in simulations of newer protocols. For instance, the NS re-
lease provides TCP, UDP, IP, and various routing protocols.
These protocols are typically implemented as vertical layers
on a node. New protocols may be implemented on top of
or in between such pre-existing layers. Next one needs to
generate a simulation scenario written as an OTcl script. A
typical NS scenario consists of a dynamic topology descrip-
tion, a traffic model, and various protocol configuration pa-
rameters. The simulator is then compiled with the protocol
code and the scenario to produce a protocol-specific simu-
lator. When the simulator is executed, a network model is
constructed from the scenario topology, while data sources
and sinks are added according to the traffic model. Proto-
col agents are attached to nodes in the network and their
behavior is simulated. The result is a trace of all the pack-
ets produced, transported, dropped in the network, and any
other diagnostic information directly instrumented into the
protocol simulator code. This trace is typically used to an-
alyze the performance of the protocol in terms of metrics
like end-to-end delay, queue lengths, bandwidth, network
throughput and goodput. It can also be fed into a visu-
alization tool to help understand the network scenario and
protocol response.

The need for validating protocol implementations in simula-
tors has been well-recognized. Not only could an improper
implementation of the given protocol lead to incorrect sim-
ulation results, but if it becomes a part of the simulation
suite, it could lead to incorrect results for other protocols
simulated with it. NS comes with a validation test suite
for most of the core protocols, so that modified versions of
these protocols can be validated to have the same proper-
ties. These tests compare the performance of a modified
protocol with a pre-computed expected performance chart
for the scenario.

There are at least three ways in which testing based only on
performance measures is less than one would like for careful
analysis of a protocol: such an analysis may not be able
to detect certain kinds of bugs in the simulator code, it

is desirable to have more support for finding flaws in the
protocol itself, and there are flaws of interest that are not
immediately manifested as performance problems. Let us
consider each of these briefly.

Simulator code can be buggy. An inherent assumption in
the validation tests is that any significant bug will show up
as a performance degradation, but this need not be true. In
particular, a bug may simply alter the overall performance
profile. If the aim of the simulation is to find the right pa-
rameters to include in the standard specification of the pro-
tocol, these parameters may be incorrect because they were
learned from a simulation that was incorrectly coded. In
particular, there may be poorer-than-expected performance
from a deployed system if it implements the protocol prop-
erly. Assuming this is even discovered, it may be very painful
to reconcile the differences and find the proper parameters,
especially if they have been set in stone by the standard.

Suppose the protocol has a design flaw that causes bad per-
formance figures during simulation. The performance figures
alone may give only limited information about the nature of
the flaw. For a complex protocol that interacts with many
other protocols fuller diagnostic information would be in-
valuable. Current practice involves searching for the flaw
by repeated runs of the simulation as informed by man-
ual inspection of the packet trace or processing by ad hoc
shell scripts. A structured, logical framework for discovering
these flaws can facilitate such interactive discovery.

There are some properties of protocols that do not relate di-
rectly to performance. Suppose that a routing protocol also
has a security requirement that a packet at a node ni; meant
for a neighboring node n, will never be seen by a third node
ng. If this property is violated, the hit on performance is
likely to be very small but one would still like to know if the
property is violated in any of the simulated scenarios. Even
if one is only concerned with performance, there are correct-
ness properties that will impact performance in important
circumstances. It may be easier to find these flaws by search-
ing for non-performance-affecting violations rather than by
creating scenarios in which these flaws actually cause per-
formance problems. For instance, routing loops can degrade
performance, but may also occur without significant impact
on performance. If they are not expected to happen, then
their occurrence in a simulation would be of interest, even if
they did not impact performance in that particular scenario.

4. VERISIM

Verisim is the integrated system obtained by using NS and
the checker of Java MaC to provide the instantiation of the
MaC framework depicted in Figure 4. The resulting inte-
grated system enables flexible formal analysis of network
simulations where properties are expressed in MEDL and
checked on traces produced by NS.

The remainder of this paper is focused on the validation of
Verisim as a test harness for network simulations. To carry
out this validation, we perform a case study based on a new
protocol currently being standardized by IETF in the Manet
Working Group. This protocol is described in the next sec-
tion, along with some of the properties it is expected to
satisty. For this study, we selected simulation code written

NS simulator

Instrumented
Protocol Code Trace:
] P P P
P: C++ Protocol NS Trace
Agents
Scenario
Configuration . . .
Parameters:
OTcl
Topology:
Ot ; -) Traffic
src/sink sre/sink sre/sink Agents
Traffic Model:
OTcl
Figure 3: Simulations Using NSv2
Properties:
MEDL
Instrumented

Protocol: C++ \

Metatrace

Scenario: /

OTdl

Figure 4: The Architecture of Verisim

by the Monarch group at CMU, one of the research groups
working on Manet protocols. As with any complex software,
the version of the Monarch code we study has some bugs.
We show how to find several of these using Verisim in a sim-
ulation of modest complexity.! Our first analysis focuses on
the use of Verisim as a debugging aid, demonstrating the
kinds of bugs that can be found. Our second study focuses
on the strategy for using Verisim for debugging, focusing on
efficient means for analyzing metatraces to find collections
of independent bugs. The aim of the first study is to deter-
mine whether Verisim is useful while the aim of the second is
to determine whether refinements in methodology can make
it more useful.

5. AODV ROUTING

This section describes the AODV routing protocol [21, 22]
which we used in our case study. The first part provides
a short protocol description of the protocol. The second
part discusses some of its requirements properties that are
expected to hold in AODV implementations.

5.1 AODV Protocol

The Ad Hoc On-Demand Distance Vector (AODV) routing
protocol is used in packet radio networks. A packet radio
network consists of a collection of mobile nodes whose link

'We reported these bugs when we found them so they could
be removed from subsequent versions of the Monarch simu-
lator code.

connectivity frequently changes due to the node movement.
Because of dynamic connectivity and a typically low link
bandwidth, AODV establishes routes ‘on-demand’ (that is,
only when they are needed).

A route to a destination d contains the following fields:

next_hop,: Next node on a path to d.

hop_cnt,: Distance from d, measured in the number of nodes
(hops) that need to be traversed to reach d.

seq-no,: Last recorded sequence number for d.

lifetimeys: Remaining time before route expiration.

The purpose of sequence numbers is to track changes in
topology. Each node maintains its own sequence number.
It is incremented whenever the set of neighbors of the node
changes. When a route is established, it is stamped with the
current sequence number of its destination. As the topology
changes, more recent routes will have larger sequence num-
bers. That way, nodes can distinguish between recent and
obsolete routes.

When a node s wants to communicate with a destination d,
it broadcasts a route request (RREQ) message to all of its
neighbors. The message has the following format:

RREQ(d, hops_to_src, seq-no, s, src_seq-no).

Argument hops_to_src determines the current distance from
the node which initiated the route request. The initial RREQ
has this field set to 0, and every subsequent node increments
it by 1. Argument seq_no specifies the least sequence number
for a route to d that s is willing to accept (s usually uses its
own seq_no, for this purpose). Argument src_seq_no is the
sequence number of the initiating node.

When a node t receives a RREQ, it first checks whether it
has a route to d stamped with a sequence number at least
as big as seq_no. If it does not, it rebroadcasts the RREQ
with incremented hops_to_src field. At the same time, ¢ can
use the received RREQ to set up a reverse route to s. This
route would eventually be used to forward replies back to s.
If ¢ has a fresh enough route to d, it replies to s (unicast via
the reverse route) with a route reply (RREP) message which
has the following format:

RREP(hop_cnt,, d, seq-no,, lifetimeg).

Arguments hop_cnt,,seq_no,, and lifetime; are the corre-
sponding attributes of ¢’s route to d. Similarly, if ¢ is the
destination itself (¢ = d), it replies with

RREP(0, d, big_seq_no, MY_ROUTE_TIMEOUT).

The value of big_seq_no needs to be at least as big as d’s
own sequence number and at least as big as seq_no from the
request. Parameter MY_ROUTE_TIMEOUT is the default
lifetime, locally configured at d. Every node that receives a
RREP increments the value of the hop_cnt packet field and
forwards the packet along the reverse route to s. When a
node receives a RREP for some destination d, it uses infor-
mation from the packet to update its own route for d. If
it already has a route to d, preference is given to the route
with the bigger sequence number. If sequence numbers are
the same, the shorter route is chosen. This rule is used both
by s and by all of the intermediate forwarding nodes.

The above preference rule is important for propagating er-
ror messages. In addition to the routing table, each node
s keeps track of the active neighbors for each destination
d. This is the set of neighboring nodes that use s as their
next_hop, on the way to d. If s detects that its route to d
is broken, it sends an unsolicited RREP message to all of its
active neighbors for d. This message contains hop_cnt = 255
(infinity), and its seq-no is one more than the previous se-
quence number for that route. Such artificially incremented
sequence number forces the recipients to accept this ‘route’
and propagate it further upstream, all the way to the origin
of the route.

5.2 AODV Properties

Routing protocols are often compared based on performance
statistics like speed of convergence, amount of bandwidth
and memory needed for control data, and so on. However,
the quality of the results produced by different protocols
may vary. For instance, it is hard to compare a slow routing
protocol that always finds shortest routes with a really fast
protocol that sometimes creates routing loops. This is why
it is important to know what kind of correctness attributes
a given protocol provides when comparing its performance
to other protocols. These attributes are sometimes high-
level requirements that can be asked about any protocol.

A common requirement for a routing protocol is Loop Free-
dom: Computed routes never contain loops. Other exam-
ples include optimality of the routes, convergence proper-
ties, maximum route length, and so on. Other attributes
are protocol-specific. These test whether a given implemen-
tation has expected behavior, usually with respect to the
standard. For instance, the standard may prescribe that af-
ter some event, certain fields in the routing table must have
positive values. In some cases we may want to test even
a stronger hypothesis, stating that the standard is satisfied
in a particular way (e.g. the value of the field is not only
positive, but also an even number).

Here are examples of some AODV-specific properties:

Monotone Sequence Numbers: A node’s own sequence
number never decreases.

Destination Stops: When a packet (RREQ, RREP or
data) reaches its destination, it should not be for-
warded.

Correct Route: If a packet addressed to d (RREP or data)
is forwarded, it is forwarded along the best unexpired
route to d seen so far.

Destination Reply: When the destination replies to a
route request, the value of the hop_cnt field of the reply
should be 0.

Node Reply: When a node sends a route, it sends the best
unexpired route seen so far.

RREQ Sequence Number: When a node initiates a route
request for a destination d, the requested sequence
number should either be 0 or the last sequence number
recorded for d (seq_no,).

Loop Invariant: Along every AODV route to a destina-
tion d, pair (—seq_no,, hop_cnt,) strictly decreases in
the lexicographic ordering.?

Detect Route Error: If a node detects a broken route,
it should use seq-no = 1 + (its own) seq-no, in the
unsolicited RREP.

Forward Route Error: When a node forwards an unso-
licited RREP, it should forward the same sequence
number that it received.

6. CHECKING AODV SIMULATIONS

In this section, we analyze AODV simulations using Verisim.
Verisim generates a large metatrace of property violations.
We use bug-repairing and tuning to discover errors in the
protocol implementation.

6.1 AODV properties in MEDL

Our first task is to translate properties given in section 5.2 in
MEDL. Generally, all properties are constructed to capture
deviations of the observed behavior from the ideal (correct)
behavior. In our framework, observable behavior of a rout-
ing protocol is the sequence of packets exchanged between

2This property is an important invariant that is sufficient
(but not necessary) for loop freedom, as shown in [4].

the nodes. Based on the packet sequence, our MEDL prop-
erty constructs the ideal system state and compares it to
the observed system state. For instance, if a RREP packet
heading towards a node u is forwarded from node v to node
w, the observed routing table at v has next_hop, = w. How-
ever, by monitoring the history of RREP messages received
at v, we can see whether v was indeed expected to have such
a route to u.

To give an example, recall the Loop Invariant property from
the previous section. Consider some three different nodes:
at, nrt and dst. Assume that the node at has a route to dst
through its neighbor nzt:

next_hop,, (at) = nat.

Let (s(at),h(at)) be the sequence number and the hop
count that node at has for the destination dst (similarly
(s(nzt), h(nat)) for the node nzt). The Loop Invariant prop-
erty says:

(s(at) < s(nzt)) A (s(at) = s(nzt) = h(at) > h(nat)).

Therefore, the property is violated exactly when the follow-
ing holds:

(s(at) > s(nzt)) V (s(at) = s(nzt) A h(at) < h(nzt)).

Table 2 shows a MEDL alarm that detects this violation in
the observed state.

Table 2: Loop Invariant in MEDL

alarm LoopInv[at] [nxt][dst] = sendroute[at][dst] when
((at!=nxt) && (at!=dst) && (nxt!=dst) &&
(obs_nexthop[at] [dst] == nxt) &&
((obs_seqno[at] [dst] > obs_seqnolnxt][dst]) ||
((obs_seqno[at] [dst] == obs_seqno[nxt] [dst]) &&
(obs_hopcnt[at] [dst] <= obs_hopcnt[at] [dst]))))

Event sendroute[at] [dst] is generated whenever the node
at sends a control packet containing the route information
for dst (either a RREP carrying route information for dst,
or a RREQ originated at dst). By inspecting the contents
of the packet, we observe the route that at uses for dst. At
this point the checker will re-evaluate the Loop Invariant
condition to check for violations.

This will be our general strategy for translation we con-
vert the desired properties into alarms by negation. Ta-
ble 3 shows properties and their corresponding MEDL alarm
names.

6.2 AODV Simulation Case Study

We consider an implementation of AODV written by the
CMU Monarch Project(http://monarch.cs.cmu.edu) for
the network simulator NS. This code was used primarily for
performance analysis of AODV in comparison with other
routing protocols for mobile, ad hoc networks [8]. In or-
der to carry out this comparison, a number of large random
scenarios were constructed as well.

The Monarch implementation is based on the first version
of AODV [21], and is known to have bugs—because of in-
complete specification in the standard, and due to program-
mer errors. The code is already instrumented to produce

Table 3: MEDL Alarms

Property MEDL alarm
Monotone Sequence Numbers | MonSeqNo
Destination Stops DestStops
Correct Forwarding CorrectFwd
Destination Reply DestRep
Node Reply NodeRep
RREQ Sequence Number ReqSegNo
Loop Invariant Looplnv
Detect Route Error DetectRErr
Forward Route Error FwdRErr

a packet trace for every packet generated, forwarded and
dropped by the protocol. We use Verisim to analyze NS
simulations of this code on a small network scenario S with
5 nodes, as shown in Figure 5.

Phase | Phase Il

Phase Ill Phase IV

Figure 5: Scenario S

Topology: There are 5 nodes initially arranged as in Fig-
ure 5 (Phase I). Then node 5 starts moving away from
the network, causing the wireless links to break after
2.5s (Phase II). 30s into the simulation, node 5 heads
back towards node 1. At 55s it is within the range of
node 4 (Phase III), at 70s it is in the range of nodes
2,3, and 4 and finally it is in the range of 1,2, and
3 (Phase IV).

Traffic Model: Nodes 1,2 and 3 are constant bit rate (CBR)
sources for node 5. They send a total of 1000 packets
of size 512 bytes each, one packet every 0.1s.

AODYV parameters: We use the optimal AODV configura-
tion computed by the Monarch group. The configu-
ration involves parameters like route timeout intervals
and the number of times a request should be re-tried.

When the AODV protocol is simulated on scenario S, NS
generates a trace T. The initial fragment of a typical trace
is shown in Table 4. When a packet send or receive event
happens at a node N, there is a line in the trace with the
format:

<send/recv> <time> _N_ RTR -- <Link Layer info> -=\
<IP info> --- <AODV info>

Table 4: Typical Trace T

s 0.000000000 _1_ RTR --- O AODV 52 [0 0 0 0 0] —--—----— \
[1:255 -1:255 32 0] [0x2 0 1 [6 0] [1 1]1] (REQUEST)
s 0.000000000 _2_ RTR --- 0 AODV 52 [0 0 0 0 O] —-—---- \
[2:2565 -1:2565 32 0] [0x2 0 1 [5 0] [2 111 (REQUEST)
.000000000 _3_ RTR --- 0 AODV 52 [0 0 0 0 0] —------- \
[3:255 -1:255 32 0] [0x2 0 1 [56 0] [3 1]1] (REQUEST)
.000519784 _2_ RTR --- O AODV 52 [20 O ffffffff 1 800] ----\
[1:255 -1:255 32 0] [0x2 0 1 [56 0] [1 1]1] (REQUEST)
.000535386 _3_ RTR --- O AODV 52 [20 O ffffffff 1 8001 ----\
[1:2565 -1:2565 32 0] [0x2 0 1 [56 0] [1 111 (REQUEST)
.002002991 _1_ RTR --- O AODV 52 [20 O ffffffff 3 800] ----\
[3:255 -1:255 32 0] [0x2 0 1 [56 0] [3 1]1] (REQUEST)
.002006118 _2_ RTR --- O AODV 52 [20 O ffffffff 3 8001 ----\
[3:2565 -1:255 32 0] [0x2 0 1 [5 0] [3 111 (REQUEST)
.002014489 _4_ RTR --- O AODV 52 [20 O ffffffff 3 8001 ----\
[3:255 -1:255 32 0] [0x2 0 1 [56 0] [3 1]1] (REQUEST)
.002360210 _4_ RTR --- O AODV 52 [20 O ffffffff 3 800] ----\
[4:2565 -1:255 31 0] [0x2 1 1 [5 0] [3 111 (REQUEST)
.002689325 _1_ RTR --- O AODV 52 [20 O ffffffff 2 8001 ----\
[2:2565 -1:255 32 0] [0x2 0 1 [56 0] [2 111 (REQUEST)
.002700822 _4_ RTR --- O AODV 52 [20 O ffffffff 2 800] ----\
[2:255 -1:255 32 0] [0x2 0 1 [6 0] [2 1]1] (REQUEST)
.002708053 _3_ RTR --- O AODV 52 [20 O ffffffff 2 8001 ----\
[2:2565 -1:255 32 0] [0x2 0 1 [56 0] [2 111 (REQUEST)
.002777804 _4_ RTR --- O AODV 52 [20 O ffffffff 2 800] ----\
[4:255 -1:255 31 0] [0x2 1 1 [6 0] [2 1]] (REQUEST)
.003439172 _2_ RTR --- O AODV 52 [20 O ffffffff 4 800] ----\
[4:2565 -1:255 31 0] [0x2 1 1 [5 0] [3 111 (REQUEST)
r 0.003449342 _5_ RTR --- O AODV 52 [20 O ffffffff 4 800] ----\
[4:255 -1:255 31 0] [0x2 1 1 [6 0] [3 1]] (REQUEST)
s 0.003449342 _5_ RTR --- 0 AODV 44 [0 0 0 0 0] —-—---- \
[5:255 3:255 32 4] [0x4 1 [5 2] 600] (REPLY)

7]
o

2]
o

H
o

2]
o

H
o

H
o

7]
o

H
o

2]
o

H
o

]
o

2]
o

6.3 Repair First Bug

We start with Monarch code for AODV (P), and simulate it
using NS for the scenario S to produce the trace T' (Table 4).
Verisim then checks whether T satisfies the AODV proper-
ties ¢, and produces a meta-trace T of property violations
(alarms). This meta-trace generation is then repeated, on
succeeding versions of P. Statistics on the alarms found in
these meta-traces are shown in Table 5.

Sepl

The first meta-trace T contains 220 alarms, and the initial
fragment is as shown in Table 6. This alarm trace has 4
DestRep alarms; 43 instances of Looplnv, 54 DetectRErr
alarms, and 38 instances of NodeRep. Incidentally, the first
alarm in T'® is raised at the last event of T' shown in Table 4.
The first alarm is a DestRep at destination 5, which means
that the implementation is not setting the initial hop-count

Table 6: Typical Meta-trace T

Time: 0.003449342s, Alarm DestRep raised at 5 for dest 5
best route at 5 for 5: <segno: -1,hc: -1,next: -1>
observed route at 5 for 5: <segno: 2,hc: 1>

Time: 0.004823314s, Alarm DestRep raised at 5 for dest 5
best route at 5 for 5: <segno: 2,hc: -1,next: -1>
observed route at 5 for 5: <segno: 3,hc: 1>

Time: 2.567054284s, Alarm DetectRErr raised at 4 for dest 5
best route at 4 for 5: <segno: 3,hc: 1,next: 5>
observed route at 4 for 5: <seqno: 3,hc: 255>

Time: 2.567054284s, Alarm DetectRErr raised at 4 for dest 5
best route at 4 for 5: <segqno: 3,hc: 1,next: 5>
observed route at 4 for 5: <seqno: 3,hc: 255>

value in an RREP correctly. All four instances of the alarm
in T? indicate that the initial value has been set to 1. So
we go into the code and correct this simple off-by-one error,
changing the initial hop-count from 1 to 0. This produces
a new implementation P;, which we use to produce a new
trace T, by running the simulation again.

Sep i

We run Verisim on 77 and ¢ to produce the second meta-
trace T1¢. Tld” has 216 alarms, and is the same as T except
that the DestRep alarms have been eliminated. The first
alarm in the trace is a DetectRErr at node 4, where the
node 4 is sending an unsolicited RREP, saying that the des-
tination 5 is unreachable. However, the sequence number
in the RREP is not 1 more than the best sequence number
at 4. This leads us to suspect that the implementation fails
to increment the sequence number at 4 before sending the
unsolicited RREP. Looking at other DetectRErr alarms in
the trace confirms this bug. We repair P, to eliminate this
bug and produce the third version of our code, P».

Sep 111
As before we analyze P, through Verisim to produce T» and
TY. TY has 206 alarms, of which 44 alarms are due Loop-
Inv, 48 are DetectRErr alarms, and 39 are NodeRep alarms.
Some of the DetectRErr alarms we detected before are gone,
but a number of alarms remain. Interestingly, the NodeRep
alarms and the Looplnv alarms increase by 1. This is be-
cause in the old trace, when the incorrect route errors are
received by nodes, the MEDL formula assumes they are ig-
nored. However, in the new trace, the generated route errors
have the correct hop-count, so ¢ recognizes that they will be
acknowledged by the recipients. This leads to more errors
being recognized.

The first alarm is a NodeRep at node 3, which advertises a
route with hop-count 2 for the destination 5 even though it
no longer has a route to the destination. It is in effect ad-
vertising outdated routes. We conclude that the conditions
that check whether an RREP should be sent are buggy and
that routes are not deleted properly in the code. Indeed
we find, when we look at the code, that the RREP gener-
ation code has multiple errors in it. We need to change 3
conditional expressions in the code, to make it conform to
our properties. Finally, we again run Verisim on this new

Table 5: RFB Alarms

Meta-trace | DestRep | DetectRErr | NodeRep | Looplnv | Total alarms
T° 4 54 38 43 220

Ty 0 54 38 43 216

TS 0 48 39 44 206

Ty 0 0 0 0 1

implementation P; to produce a trace T3 and meta-trace
T,

Sep IV

The fourth meta-trace just contains one alarm, which is
raised because of an unexpected buffering at a lower layer
protocol in the simulation. Essentially, a packet p, received
at node 3 is buffered at a lower layer while the protocol re-
sponds to an older packet p,. However, our MEDL formula,
which does not model lower layer protocols, assumes that p,
has already been seen and processed by the protocol, caus-
ing the alarm. As such, T3 is ‘correct’ with respect to the
AODV properties that we modeled in MEDL.

6.4 Tuning

The previous section demonstrated the repair first bug tech-
nique for bug-hunting, involving new simulations every time
a bug was discovered. In this section, we demonstrate tun-
ing for MEDL, which allows us to discover multiple bugs in
every simulation run. We first simulate P with S to get T',
which is analyzed with the MEDL formula ¢ to get the meta-
trace T?. As before, we start our analysis by looking at 7°¢.
However, when we find a bug, we tune our MEDL formula ¢
instead of repairing the protocol code P. After this tuning,
we re-run the checking part of Verisim on 7" along with the
new MEDL formula to generate the next meta-trace. The
alarm statistics for tuning are as shown in Table 7.

Sepl

As before the first alarm in T? is a DestRep at destination
5, which initializes the hop-count in the RREP to 1. This
probably means that the code is initializing a node’s self-
hop-count to 1 instead of 0. So we go into the MEDL formula
and modify the alarm DestRep to check whether a node
ever emits a hop-count other than 1 (instead of 0). Then
we run Verisim on 7' and this new MEDL formula ¢; to
get the meta-trace T?'. All the DestRep alarms disappear
in the new meta-trace which validates our assumption and
identifies the first bug in the code.

Sep i

The second meta-trace T%! has 216 alarms and is the same
as T except that the DestRep alarms no longer appear. We
see that the first alarm, DetectRErr, is again due to the in-
accurate incrementing of sequence numbers at nodes. Hav-
ing identified the error, we can modify the alarm to ignore
this case. However, if a node fails to increment its sequence
number on sending an unsolicited RREP, all future alarms
are also affected because the node has an incorrect state. So
we need to modify the MEDL formula not to increment its
sequence number as well. Note that by making this modi-
fication, we are making the MEDL formula ‘incorrect’ we

are changing the ideal state so that it becomes the same as
the observed state. This change generates the third version,
$2, which is used to produce the meta-trace T%2. Indeed,
T%2 seems to not have the kinds of DetectRErr alarms and
follow-up alarms as noticed before.

Sep il
T%2 has 166 alarms, of which 50 are Looplnv alarms and 38
are NodeRep alarms. Both DestRep and DetectRErr have
been eliminated. Observe that the LoopInv alarms have
increased because the modified MEDL state allows more
alarms to be identified. As before, we conclude that the
ways replies are generated in the protocol code must be in-
correct. In particular, even when a node has lost a route, it
keeps its hop-count around and when an RREQ is received,
it incorrectly replies as if it has a route. We imitate this be-
havior by changing the MEDL formula to assume the same
by changing the conditions under which a RREP can be sent
and allowing hop counts to stay even after the route has
been lost. We run Verisim on this formula ¢3 and generate
the fourth meta-trace 793,

Sep IV

The new meta-trace T%% still has 30 alarms, with 21
NodeRep alarms that are difficult to interpret. Essentially,
at this point, too much information has been filtered out
of the trace to make any firm conclusions about the ori-
gin of the errors. So we go back to the code to repair the
three bugs detected above. When we look at the code for
the RREP generation, we realize that the implementation
has multiple bugs causing it to behave highly unexpectedly.
These bugs explain the alarms remaining in 793, We repair
P to produce a new implementation Py., which is analyzed
through Verisim to produce TJ?. Tj? has a total of 1 alarm
due to packet buffering at a node.

6.5 Analysis

We discovered 3 errors in the AODV implementation, which
altogether required rewriting 18 lines of the Monarch code.
Of these, the RREP generation problem is particularly in-
teresting. This error causes the AODV implementation to
actually form loops, which we detected in our simulation.
The loop formation itself is not a very easy property to de-
tect. Indeed, our previous manual analyses of AODV sim-
ulations failed to detect the existence of loop or the RREP
generation bugs that cause it. The automation provided by
Verisim was crucial to detect and wade through property
violations in the simulation.

7. ‘OFF-THE-SHELF' SIMULATIONS

In order to see how well our techniques scale up to simu-
lations usually analyzed to measure the performance of a

Table 7: Tuning Alarms

Meta-trace | DestRep | DetectRErr | NodeRep | Looplnv | Total alarms
T° 4 54 38 43 220
T 0 54 38 43 216
T2 0 0 38 50 166
T3 0 0 21 0 30
Table 8: Results of MonSeqNo Property on Trace

Exp Trace Property Time Rate

[# of events] [size in bytes] | (in secs) | (time/events/prop)
A T [6,446,316] u [1,476,638] > 4 days N/A
B T [6,446, 316] Fr(u) [14,543] 51, 045 0.54pus
C E.(T) [706,753] n [1,476,638] > 4 days N/A
D E.(T) [706,753] Fr(u) [14,543] 5,440 0.53us
E P, (T) [631,253] | Fy(p) [145,178] 85,012 0.93us
F P.(T) [69,411] Fr(u) [14,543] 556 0.55us
G E.(P:(T)) [6,812] Fr(u) [14,543] 51 0.55pus

network protocol, we applied our techniques to the largest
trace made available by the CMU Monarch group [8]. This
‘Off-The-Shelf’ (OTS) trace was generated by AODV sim-
ulation on a site of size 1500 x 300 meters with 50 nodes
constantly moving at 20 meters per second. There were
150 data connections transmitting four 64 byte packets ev-
ery second. The simulation and our Verisim analyses of the
trace were carried out on a dual Pentium-IIT 550Mhz Xeon
processors machine with one gigabyte of memory. The OS
was Red Hat Linux 6.1 with the 2.2.12-20 SMP Kernel. We
used NS version 2.1b1 and MACSware 0.99 implemented in
IBM JDK 1.1.8 for Linux and running on the JVM. The
NS simulation itself required about 5220 seconds to com-
plete and generated 6,446,316 events. This is much larger
than the traces analyzed by Verisim in the previous section,
which all had less than 10,000 events. A naive effort to use
Verisim to analyze MonSeqNo, a relatively simple property,
on this trace was prohibitively time-consuming. We estimate
that the time required to check the desired relationship after
each of 6,446,316 events between each pair of nodes (2500
relations) to be more than 100 days based on extrapolating
a four-day run of the analysis. On the bright side, errors
with MonSeqNo were detected in the first 4 days of analy-
sis. More significantly, there are a number of optimizations
that will find an error with considerably less effort. The
results of analyzing the OTS simulation with various opti-
mizations for the MonSeqNo (called u) property are given
in Table 8. Two additional optimizations were tested on the
LoopInv (called) property, and these results are provided
in Table 9. The OTS trace is called T in the tables. The
naive analysis is Experiment A, recorded in the first line of
Table 8.

The experiments measure the effects of various abstractions
that one may perform on either the trace or the property to
make the analysis feasible, while also finding errors in the
code. There were two abstractions that we chose to apply:
population abstraction and packet-type abstraction. Popula-
tion abstraction is when we choose to focus only on a small
set of nodes. We could apply this abstraction to either the

property being tested or to the trace. For example, when
applied to the property MonSeqNo, it would mean that we
check that only certain nodes satisfy the MonSeqNo prop-
erty. When we apply this to the trace, we prune the trace
to consist of only events sent or received by these nodes. In
our case study, we looked at two population abstractions.
In one we focused on packets where both the sender and
the receiver were among nodes 6 through 10 (25 relations).
We call this 7. In the other population abstraction, called
7', we looked at all packets where the sender or the receiver
was among nodes 6 through 10 (250 relations). The result of
applying the population abstraction 7 to a formula ¢ is de-
noted by F;(¢). When the population abstraction is applied
to a trace T', we denote it by P, (7"). Population abstraction
is applied to either the property or the trace in Experiments
B, D, E, F, G, H, I of Tables 8 and 9.

In packet-type abstraction, we prune the trace to include
only events that directly affect the property we are interested
in. For example, for the MonSeqNo property, this abstrac-
tion (denoted by E,) when applied to the trace, removes all
events except for the sendroute[at] [dst] event. The cor-
responding abstraction for the LoopInv property (denoted
by E..), removes a different set of events from the trace.
In experiments C,D,G, and I a packet type abstraction was
applied.

Our case study revealed two things: linear growth in com-
plexity and significant benefits from abstractions. First, the
time taken to process the trace depends only linearly on
the length of the trace and the size of the formula; this can
be seen from the fact that the last column of our tables is
nearly constant. The reason why the rates in Table 9 are
three times more than those in Table 8 is because the prop-
erty of LoopInv is more complicated and has a 3 alternations
between && and ||. Second, abstractions can significantly
improve the time taken in performing the analysis. For ex-
ample, after applying both population and packet type ab-
stractions, the time for the analysis went from more than 4
days (Experiment A) to 51 seconds (Experiment G). More-

Table 9: Results of LoopInv Property on Trace

Exp Trace Property Time Rate

[# of events] [size in bytes] | (in secs) | (time/events/prop)
H P.(T) [69,411] | F.(\) [75,508] | 8064 1.54us
I E..(Po(T)) [48,735] | Fx(\) [75,508] | 5912 1.61pus

over, this optimization did not excessively compromise our
ability to discover bugs in the trace: the alarms associated
with nodes 6 to 10 that would have been generated had we
analyzed the entire trace are still generated when we test the
much smaller trace we get after applying the abstractions.

8. RELATED WORK

While there has been a great deal of research on the formal
verification of communication systems, these efforts have
generally been limited in two respects. First, they gener-
ally prove properties of the protocol and therefore may not
be helpful in finding problems in protocol implementations.
Second, few efforts have focused on multi-party protocols
like routing, where proving a property of a fixed number
of routers limits the scope of the proof drastically. [14] de-
scribes a method for studying behavior of multi-party proto-
cols (such as PIM-SM) in ‘stressful’ conditions. (See [4] for a
general discussion of verifying routing protocols.) These two
problems are partially addressed by the Verisim strategy of
analyzing trace runs from simulations. First, the simulation
code is closer to the implementation code and therefore the
Verisim tests are more likely to reveal problems with the
deployed system. Second, the ease of creating simulations
makes it possible to test a large variety of configurations,
thus partially addressing the problem that all configurations
cannot be tested. In any event, Verisim analysis is comple-
mentary to both static and dynamic analysis, so it can be
useful as long as it is convenient. Integration with NS con-
tributes to this objective since simulations created for other
reasons like performance analysis can easily be subjected to
Verisim analysis as well.

A large body of related research work concentrates on au-
tomated generation of test oracles from the requirements.
A general methodology for doing this is discussed in [24],
together with examples in Real Time Interval Logic (RTIL)
and Z. Papers [6, 5, 7] describe a trace analysis tool for
LOTOS requirements, while [11] describes a similar tool for
Estelle requirements. Generating test oracles for Graphical
Interval Logic (GIL) is discussed in [10, 20]. An equiva-
lent problem for a safe fragment of Linear Temporal Logic
is discussed in [15]. This fragment is expressively similar
to the requirements language of Verisim. However, an im-
portant feature that distinguishes Verisim from most of the
above work is its focus on integration of simulation and test-
ing. Another toolset that follows this idea is the simulation
and monitoring platform MTSim [9], based on the graphical
real-time specification language Modechart. An advantage
of Verisim is that instead of using formal models, it uses
off-the-shelf network simulators already designed for proto-
typing, performance evaluation and other purposes.

There is similarity between Verisim formal analysis of pro-
tocol simulations and network Intrusion Detection Systems

(IDS’s). IDS’s aim to detect anomalies in network traffic to
enable operators to discover problems or trigger automated
responses. Examples include Next-generation Intrusion De-
tection Expert System (NIDES) [1], which performs both
statistical analysis and rule-based signature analysis on au-
dit records and Event Monitoring Enabling Responses to
Anomalous Live Disturbances (EMERALD) [23], which de-
tects malicious activity through and across large networks.
Although IDS’s often focus on detecting statistical anoma-
lies like unusual volumes of certain kinds of traffic, at least
some are able to check properties of the kind we describe
in MEDL. Although we are not aware of any efforts to do
so, such systems could perhaps be used in the way we have
used Verisim to produce metatraces as a debugging aid for
analyzing simulations. For instance, the rule-based analy-
sis language (P-BEST language) [19] used in [1, 23] is as
expressive as MEDL.

Additional information about related work can be obtained
from [3], which describes a taxonomy for logical analysis of
networks and uses this to classify some of the literature.
A survey of tools used in the Verinet project (including
Verisim) can be found in [2].

9. CONCLUSION

We have demonstrated an integrated system called Verisim
consisting of a network simulator and a logic-based checker
for traces of events. This combination provides a flexi-
ble approach to studying correctness properties of network
simulations. We have shown the usefulness of the tool by
demonstrating how it can find flaws in non-trivial simulator
code. We have also shown how its flexibility can be ex-
ploited through the concept of tuning to improve debugging
turn-around time. We believe that the approach is practi-
cal and scalable and can be used as a productive adjunct to
standard network protocol engineering practices.

Acknowledgments

We would like to express thanks to Mike Berry and Sam-
path Kannan for their early involvement in this project. We
are also grateful to the Monarch group at CMU for making
their code available to us; clearly this open code generos-
ity was important to our study. This research was partially
supported by: ARO DAAG55-98-1-0393, ARO DAAG5H5-
98-1-0466, DARPA Contract F30602-98-2-0198, NSF CCR-
9619910, and ONR N00014-97-1-0505 (MURI).

10. REFERENCES
[1] Debra Anderson, Thane Frivold, and Alfonso Valdes.
Next-generation intrusion detection expert system
(NIDES) : A summary. Technical report, SRI, May
1995. SRI-CSL-95-07.

[2] Karthikeyan Bhargavan, Carl A. Gunter, and Davor

[4]

(8]

[10]

[11]

[12]

[13]

[14]

Obradovic. An assessment of tools used in the verinet
project. Technical Report MS-CIS-00-15, University of
Pennsylvania, 2000. http://www.cis.upenn.edu/
verinet/papers/tool-assessment.ps.

Karthikeyan Bhargavan, Carl A. Gunter, and Davor
Obradovic. A taxonomy of logical network analysis
techniques. Technical Report MS-CIS-00-14,
University of Pennsylvania, 2000. http:
//wwu.cis.upenn.edu/verinet/papers/taxonomy.ps.

Karthikeyan Bhargavan, Davor Obradovic, and
Carl A. Gunter. Formal verification of standards for
distance vector routing protocols, February 2000.
http://www.cis.upenn.edu/"hol/papers/rip.ps.

G.v. Bochmann and O. Bellal. Test result analysis
with respect to formal specifications. In Proc. 2-nd
Int. Workshop on Protocol Test Systems, Berlin,
pages 272-294, October 1989.

G.v. Bochmann, D. Desbiens, M. Dubuc, D. Quimet,
and F. Saba. Test result analysis and validation of test
verdicts. In Proc. Workshop on Protocol Test Systems
(IFIP), 1990.

G.v. Bochmann, R. Dssouli, and J.R. Zhao. Trace
analysis for conformance and arbitration testing. IEEE
Tr. on Soft. Eng., 15(11):1347 1356, November 1989.

Josh Broch, David A. Maltz, David B. Johnson,
Yih-Chun Hu, and Jorjeta Jetcheva. A performance
comparison of multi-hop wireless ad hoc network
routing protocols. In Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile
Computing and Networking, October 1998.

Monica Brockmeyer, Farnam Jahanian, Constance

Heitmeyer, and Bruce Labaw. A flexible, extensible
environment for testing real-time specifications. In

Proceedings of the IEEE Real-Time Technology and
Applications Symposium (RTAS), 1997.

Laura K. Dillon and Q. Yu. Oracles for Checking
Temporal Properties of Concurrent Systems. In
Proceedings of the 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering (SIGSOFT’94),
volume 19, pages 140 153, December 1994.
Proceedings published as Software Engineering Notes.

S.A. Ezust and G.v. Bochmann. An Automatic Trace
Analysis Tool Generator for Estelle Specifications.
Computer Communication Review, 25(4):175-184,
October 1995. Proceedings of ACM SIGCOMM 95
Conference.

Kevin Fall and Kannan Varadhan. ns Notes and
Documentation. The VINT Project, February 2000.

Constance Heitmeyer, Alan Bull, Carolyn Gasarch,
and Bruce Labaw. Scr*: A toolset for specifying and
analyzing requirements. In Proc. of COMPASS, 1995.

Ahmed Helmy and Deborah Estrin. Simulation-based
‘STRESS’ Testing Case Study. In Sizth International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems

(MASCOTS), July 1998.

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

24]

L. J. Jagadeesan, A. Porter, C. Puchol, J. C.
Ramming, and L.G.Votta. Specification-based testing
of reactive software: Tools and experiments. In
Proceedings of the International Conference on
Software Engineering, May 1997.

Moonjoo Kim, Mahesh Viswanathan, Hanéne
Ben-Abdallah, Sampath Kannan, Insup Lee, and Oleg
Sokolsky. A framework for run-time correctness
assurance of real-time systems. Technical Report
MS-CIS-98-37, University of Pennsylvania, 1998.

Moonjoo Kim, Mahesh Viswanathan, Hanéne
Ben-Abdallah, Sampath Kannan, Insup Lee, and Oleg
Sokolsky. Formally specified monitoring of temporal
properties. In Proceedings European Conference on
Real-Time Systems, 1999.

I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M.Viswanathan. Runtime assurance based on formal
specifications. In Proceedings International Conference
on Parallel and Distributed Processing Techniques and
Applications, 1999.

Ulf Lindqvist and Phillip A. Porras. Detecting
computer and network misuse through the
production-based expert system toolset (P-BEST). In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy, Oakland, California, May 1999.

T.O. O’Malley, D.J. Richardson, and L.K. Dillon.
Efficient Specification-Based Test Oracles. In Second
California Software Symposium (CSS’96), April 1996.

Charles Perkins. Ad hoc on-demand distance vector
(AODV) routing. Internet-Draft Version 00, IETF,
November 1997.

Charles E. Perkins and Elizabeth M. Royer. Ad hoc
on-demand distance vector routing. In Proceedings of
the 2nd IEEE Workshop on Mobile Computer Systems
and Applications, pages 90 100, February 1999.

Phillip A. Porras and Peter G. Neumann. EMERALD:
Event monitoring enabling responses to anomalous
live disturbances. In National Information Systems
Security Conference, 1997.

D.J. Richardson, S. Leif Aha, and T.O. O’Malley.
Specification-Based Oracles for Reactive Systems. In
14th International Conference on Software
Engineering, May 1992.

