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ABSTRACTNetwork protocols are often analyzed using simulations. Wedemonstrate how to extend such simulations to check propo-sitions expressing safety properties of network event tracesin an extended form of linear temporal logic. Our techniqueuses the NS simulator together with a component of the JavaMaC system to provide a uniform framework. We demon-strate its e�ectiveness by analyzing simulations of the AdHoc On-Demand Distance Vector (AODV) routing protocolfor packet radio networks. Our analysis �nds violations ofsigni�cant properties, and we discuss the faults that causethem. Novel aspects of our approach include modest inte-gration costs with other simulation objectives such as perfor-mance evaluation, greatly increased 
exibility in specifyingproperties to be checked, and techniques for analyzing com-plex traces of alarms raised by the monitoring software.
KeywordsVerisim, Formal Analysis, Network, Simulation, Testing,Routing, NS, MEDL, AODV, Temporal Logic, Ad Hoc Net-works, Packet Radio, Meta-trace, Tuning, Population Ab-straction, Packet-Type Abstraction
1. INTRODUCTIONNetwork protocols such as routing protocols are di�cult totest because meaningful experiments may involve dozens oreven thousands of hosts and routers. Developing an ade-quate testbed would be prohibitively expensive while exper-iments involving operational systems may be too risky orinconvenient. Thus simulations are widely used as a testingtechnique for both performance and correctness properties.In this paper we describe a tool suite called Verisim whichfacilitates the analysis of correctness properties in networksimulations. The advantage of Verisim comes from its com-bination of a popular network simulator tool, NS, with the
exible trace-checking component of the Java MaC system.Traces are generated using NS (version 2) and analyzed todetermine whether they satisfy desired properties. These

properties are expressed using the Meta-Event De�nitionLanguage (MEDL) from Java MaC. MEDL is an expressivelanguage extending Linear Temporal Logic; it is able to ex-press a variety of important safety properties of the kindnetwork software is expected to satisfy. With this combina-tion, it is possible to seamlessly integrate 
exible testing ofsuch properties into the processes generally used to designand analyze network systems.In this paper, we provide an overview of the MaC frameworkfor system analysis, describe its instantiation in Verisim,and illustrate the application of Verisim on existing simula-tion code for Ad Hoc On-Demand Distance Vector routing(AODV), a protocol for routing in ad hoc packet radio net-works. Our case study has two parts, based on code weobtained from the Monarch Group at Carnegie-Mellon. The�rst part illustrates a basic approach for using Verisim to�nd and correct bugs in the simulation code; the second partshows how the 
exibility of Verisim can reduce turn-aroundtime in debugging.In the �rst part of our case study we run an NS simula-tion and create a trace T which is analyzed for propertiesAODV is expected to satisfy. The properties are expressedby a MEDL formula � and the checker produces as its out-put a metatrace T� of alarms indicating violations of � bythe given trace. Our study revealed several bugs in the sim-ulation code, and we use Verisim to locate each of these andcarry out regression testing until they are all removed. Thetechnique is what we call Repair First Bug (RFB). RFBproceeds by taking the trace and analyzing the �rst alarmto determine what may have caused it. Assuming that theformula � is properly expressed, this represents a bug inthe simulation code. This bug is repaired and the newlymodi�ed program P1 is again run through the simulationto produce an output trace T1, which is again examined to�nd a second bug. Assuming that three bugs are found, thisprocess generates a program P3 which satis�es the property�. In all, this debugging session required three runs of thesimulation.In the second part of our case study we illustrate howthe 
exibility of Verisim can be exploited to improve turn-around time for debugging. In this study we attempt toavoid some of steps where the simulation was rerun to gen-erate a new trace for continued debugging. The situationis similar to what one sees for compilers, where an e�ort ismade to produce error messages that are as independent as



possible in hope that the several faults in the program can beremoved before the compilation needs to be repeated. Thisis especially useful for simulations, which may run for longperiods of time (even days), and where analysis may gen-erate vast, incomprehensible metatraces of alarms. Alarmsrepresent bugs that must be repaired, and it is necessary torepair as many as possible before rerunning the simulation.The automated techniques used by compilers are largely in-applicable since errors generated by routing protocols arequite di�erent in nature. We focus on mixture of manualand automated techniques we call tuning. The metatraceT� is manually inspected to �nd bug classes and then theMEDL property � is modi�ed or `tuned' to produce a for-mula  that ignores one or more bugs recognized in this�rst manual analysis. Verisim then re-analyzes the originalT to produce a new metatrace T , which is inspected fornew bugs. Note that the second step can proceed withoutrerunning the simulation, since it precedes from the originaltrace. This strategy is repeatedly applied until it becomesdesirable to �x a collection of bugs and rerun the trace.The paper is divided into eight sections. After this intro-duction we describe in three sections the MaC framework,the NS system, and Verisim. Then, in the �fth section wedescribe the AODV protocol. Simulator code for this proto-col is then analyzed in two case studies in the sixth section.The seventh section discusses some of the related work, andthe eighth section concludes.
2. MAC MONITORING AND CHECKINGMonitoring and Checking (MaC) is a framework for dynamicanalysis of safety properties of systems with a trace-basedsemantics. The overall framework is depicted in Figure 1.The �rst component of the MaC framework is the Monitor,which extracts a Trace; this trace is input to the secondcomponent, the Checker, which uses it to produce a Meta-trace. The metatrace is examined by a human or anotherprogram to determine system status, including deviationsfrom expected behavior. Inputs to the monitor include theProgram and its Data (that is, inputs from its environment)and possibly a Monitoring Script which aids the trace ex-traction. The goal of the checker is to �nd deviations ofthe trace from a set of Properties that are also input to thechecker.The MaC framework provides an architecture for analyz-ing systems formally and 
exibly using runtime informa-tion. This is illustrated by a prototype implementation ofthe framework for Java programs described in [16, 17, 18]and illustrated in Figure 2. This system, which we will callJava MaC provides a general approach to the analysis ofJava programs based on trace information obtained frominstrumented Java programs. A distinguishing feature ofthe system is the ability of its monitor component to aidthe instrumentation of Java programs in order to producetraces. Very brie
y, a Primitive Event De�nition Language(PEDL) de�nes low-level events and is used to generate aninstrumented Java byte code program. This program pro-duces a Partial State Sequence (PSS), which is supplied toan Event Recognizer to produce the desired trace.Our focus in this paper is on the use of the checker compo-nent of Java MaC. The monitor component of Java MaC will

Table 1: MEDL Grammar<C> ::= c <E> ::= e| [ <E>, <E> ) | start(<C>)| ! <C> | end(<C>)| <C> && <C> | <E> && <E>| <C> || <C> | <E> || <E>| <C> => <C> | <E> when <C><G> ::= <E> -> <Statements>be replaced by NS to obtain the Verisim system, which is themain focus of the paper. To understand Verisim it is there-fore necessary to have some familiarity with the checker com-ponent of Java MaC, so we provide a brief explanation hereand refer the reader to other sources for details. The checkeris based on a Meta Event De�nition Language (MEDL),which is used to express properties of traces. Violations ofthese properties are obtained by running the checker withMEDL properties and an input trace to produce a meta-trace. We now overview MEDL.MEDL is based on an extension of linear temporal logic(LTL) with auxiliary variables. Auxiliary variables are ad-ditional variables that may be used to record certain aspectsof the trace. These variables represent the checker's statewhen trying to check if the trace conforms to the property.The presence of auxiliary variables in MEDL allows usersto overcome certain well known limitations in the expressivepower of LTL. For example, within MEDL one can `count'and so it is possible to express things like `RREP should hap-pen before the 5th occurrence of RREQ'. As in SCR [13], wedistinguish between two kinds of data that make up the traceof an execution: things that are true at some instant duringthe execution (which we call events), and facts that holdfor a longer duration of time (which are called conditions).For example, the return from the method SendRequest oc-curs only at the instant when the control returns from themethod, while a boolean condition like (next hopd == 2)holds for as long as next hopd does not change its valuefrom 2. The distinction between events and conditions isimportant in terms of what the checker can infer about theexecution based on the information extracted by the moni-tor. The checker assumes that truth values of all conditionsremains unchanged between updates from the monitor. Forevents, the checker makes the dual assumption, namely, thatno events (of interest) happen between updates.Based on this distinction between events and conditions, wehave a simple two-sorted logic that constitutes MEDL. Thesyntax of conditions (C) and events (E) is given in Table 1.Here e refers to primitive events that are reported in thetrace by the monitor; c is either a primitive condition re-ported in the trace or it is a boolean condition de�ned onthe auxiliary variables. Guards (G) are used to update aux-iliary variables that may record something about the historyof the execution.The models for this logic are similar to those for linear tem-poral logic, in that they are sequences of worlds. The worldscorrespond to instants in time at which we have information
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TraceFigure 2: Overview of the MaC Prototype for Javaabout the truth values of primitive conditions and events.Each world is, therefore, labeled by the time instant it cor-responds to and the set of primitive conditions and eventsthat are true at that instant. Intuitively, these worlds cor-respond to the times when the monitor adds something tothe trace.The intuition in describing the semantics of events andconditions based on such models, is that conditions retaintheir truth values in the duration between two worlds, whileevents are present only at the instants corresponding to cer-tain worlds. The labels on the worlds give the truth valuesof primitive conditions and events. The semantics for nega-tion (!c), conjunction (c1 && c2), disjunction (c1 || c2)and implication (c1 => c2) of conditions is de�ned natu-rally; so !c is true when c is false, c1 && c2 is true onlywhen both c1 and c2 are true, c1 || c2 is true when eitherc1 or c2 is true, and c1 => c2 is true if c2 is true wheneverc1 is true. Conjunction (e1 && e2) and disjunction (e1 ||e2) on events is de�ned similarly. Now, since conditionsare true from some time until just before the instant whenthey become false, two events can naturally be associatedwith a condition, namely the instant when the condition be-comes true (start(c)) and the instant when the conditionbecomes false (end(c)). Any pair of events de�ne an in-terval of time, and forms a condition [e1, e2) that is truefrom event e1 until e2. The event e when c is true if e oc-curs and condition c is true at that time instant. Finally, aguard e -> stmt, is executed when event e is true; the ef-fect of the execution is to update the values of the auxiliary

variables according to the assignments given in stmt. Theformal semantics for the logic is given in [16, 18].The checker, which is generated automatically from theMEDL script, evaluates the events and conditions describedin the script, whenever it reads an element from the trace.The evaluation of individual events and conditions is fairlystandard based on the semantics of the logic. However,there are dependencies between di�erent events and con-ditions. For example, an event e1 that is de�ned in termsof an auxiliary variable that is updated by event e2, mustbe evaluated after e2 and the variable have been updated.Hence, the checker must evaluate the events and conditionsin a consistent order. In our implementation we use a DAGdata structure that implicitly encodes this dependency andhas additional information that allows for fast evaluation ofthe events and conditions. Details of this algorithm can befound in [16].
3. NS NETWORK SIMULATIONSSimulator implementations of protocols under developmentcan provide an idea of how the protocols behave in a widevariety of network environments. Typically, a protocol anda suite of scenarios can be generated quickly and the sim-ulation results can inform the protocol design. As such,simulator traces often reveal design 
aws and potential im-provements in the protocol before a laboratory testbed iseven considered. Moreover, the simulator code often servesas a reference implementation for the protocol.



The development of a custom simulation framework fora single protocol allows the designer to investigate smalltopologies and basic characteristics of a new protocol. How-ever, such simulations are limited in their ability to providedata about how a protocol interacts in the larger, multi-protocol environments where it must eventually operate.An extensible, multi-protocol simulation framework allowsprotocol designers to layer their protocol implementation atthe node level and analyze its performance and interactionwith other protocols. NS [12] is a discrete event networksimulator developed by the VINT Project (http://netweb.usc.edu/vint), a collaboration between UC Berkeley, LBL,USC/ISI, and Xerox PARC, that provides such a framework.The system we study in this paper is based on NS, and ourcase studies use an extension of it by the CMU Monarchgroup (http://monarch.cs.cmu.edu) that adds link-layerand physical layer support for wireless networks.A block diagram showing the steps in an NS simulation isshown in Figure 3. In order to carry out simulations us-ing NS, one �rst implements the protocol in C++ using acollection of simulator constructs. A number of well-knownprotocols have been implemented for NS and can be usedin simulations of newer protocols. For instance, the NS re-lease provides TCP, UDP, IP, and various routing protocols.These protocols are typically implemented as vertical layerson a node. New protocols may be implemented on top ofor in between such pre-existing layers. Next one needs togenerate a simulation scenario written as an OTcl script. Atypical NS scenario consists of a dynamic topology descrip-tion, a tra�c model, and various protocol con�guration pa-rameters. The simulator is then compiled with the protocolcode and the scenario to produce a protocol-speci�c simu-lator. When the simulator is executed, a network model isconstructed from the scenario topology, while data sourcesand sinks are added according to the tra�c model. Proto-col agents are attached to nodes in the network and theirbehavior is simulated. The result is a trace of all the pack-ets produced, transported, dropped in the network, and anyother diagnostic information directly instrumented into theprotocol simulator code. This trace is typically used to an-alyze the performance of the protocol in terms of metricslike end-to-end delay, queue lengths, bandwidth, networkthroughput and goodput. It can also be fed into a visu-alization tool to help understand the network scenario andprotocol response.The need for validating protocol implementations in simula-tors has been well-recognized. Not only could an improperimplementation of the given protocol lead to incorrect sim-ulation results, but if it becomes a part of the simulationsuite, it could lead to incorrect results for other protocolssimulated with it. NS comes with a validation test suitefor most of the core protocols, so that modi�ed versions ofthese protocols can be validated to have the same proper-ties. These tests compare the performance of a modi�edprotocol with a pre-computed expected performance chartfor the scenario.There are at least three ways in which testing based only onperformance measures is less than one would like for carefulanalysis of a protocol: such an analysis may not be ableto detect certain kinds of bugs in the simulator code, it

is desirable to have more support for �nding 
aws in theprotocol itself, and there are 
aws of interest that are notimmediately manifested as performance problems. Let usconsider each of these brie
y.Simulator code can be buggy. An inherent assumption inthe validation tests is that any signi�cant bug will show upas a performance degradation, but this need not be true. Inparticular, a bug may simply alter the overall performancepro�le. If the aim of the simulation is to �nd the right pa-rameters to include in the standard speci�cation of the pro-tocol, these parameters may be incorrect because they werelearned from a simulation that was incorrectly coded. Inparticular, there may be poorer-than-expected performancefrom a deployed system if it implements the protocol prop-erly. Assuming this is even discovered, it may be very painfulto reconcile the di�erences and �nd the proper parameters,especially if they have been set in stone by the standard.Suppose the protocol has a design 
aw that causes bad per-formance �gures during simulation. The performance �guresalone may give only limited information about the nature ofthe 
aw. For a complex protocol that interacts with manyother protocols fuller diagnostic information would be in-valuable. Current practice involves searching for the 
awby repeated runs of the simulation as informed by man-ual inspection of the packet trace or processing by ad hocshell scripts. A structured, logical framework for discoveringthese 
aws can facilitate such interactive discovery.There are some properties of protocols that do not relate di-rectly to performance. Suppose that a routing protocol alsohas a security requirement that a packet at a node n1 meantfor a neighboring node n2 will never be seen by a third noden3. If this property is violated, the hit on performance islikely to be very small but one would still like to know if theproperty is violated in any of the simulated scenarios. Evenif one is only concerned with performance, there are correct-ness properties that will impact performance in importantcircumstances. It may be easier to �nd these 
aws by search-ing for non-performance-a�ecting violations rather than bycreating scenarios in which these 
aws actually cause per-formance problems. For instance, routing loops can degradeperformance, but may also occur without signi�cant impacton performance. If they are not expected to happen, thentheir occurrence in a simulation would be of interest, even ifthey did not impact performance in that particular scenario.
4. VERISIMVerisim is the integrated system obtained by using NS andthe checker of Java MaC to provide the instantiation of theMaC framework depicted in Figure 4. The resulting inte-grated system enables 
exible formal analysis of networksimulations where properties are expressed in MEDL andchecked on traces produced by NS.The remainder of this paper is focused on the validation ofVerisim as a test harness for network simulations. To carryout this validation, we perform a case study based on a newprotocol currently being standardized by IETF in the ManetWorking Group. This protocol is described in the next sec-tion, along with some of the properties it is expected tosatisfy. For this study, we selected simulation code written
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Figure 4: The Architecture of Verisimby the Monarch group at CMU, one of the research groupsworking on Manet protocols. As with any complex software,the version of the Monarch code we study has some bugs.We show how to �nd several of these using Verisim in a sim-ulation of modest complexity.1 Our �rst analysis focuses onthe use of Verisim as a debugging aid, demonstrating thekinds of bugs that can be found. Our second study focuseson the strategy for using Verisim for debugging, focusing one�cient means for analyzing metatraces to �nd collectionsof independent bugs. The aim of the �rst study is to deter-mine whether Verisim is useful while the aim of the second isto determine whether re�nements in methodology can makeit more useful.
5. AODV ROUTINGThis section describes the AODV routing protocol [21, 22]which we used in our case study. The �rst part providesa short protocol description of the protocol. The secondpart discusses some of its requirements|properties that areexpected to hold in AODV implementations.
5.1 AODV ProtocolThe Ad Hoc On-Demand Distance Vector (AODV) routingprotocol is used in packet radio networks. A packet radionetwork consists of a collection of mobile nodes whose link1We reported these bugs when we found them so they couldbe removed from subsequent versions of the Monarch simu-lator code.

connectivity frequently changes due to the node movement.Because of dynamic connectivity and a typically low linkbandwidth, AODV establishes routes `on-demand' (that is,only when they are needed).A route to a destination d contains the following �elds:next hopd: Next node on a path to d.hop cntd: Distance from d, measured in the number of nodes(hops) that need to be traversed to reach d.seq nod: Last recorded sequence number for d.lifetimed: Remaining time before route expiration.The purpose of sequence numbers is to track changes intopology. Each node maintains its own sequence number.It is incremented whenever the set of neighbors of the nodechanges. When a route is established, it is stamped with thecurrent sequence number of its destination. As the topologychanges, more recent routes will have larger sequence num-bers. That way, nodes can distinguish between recent andobsolete routes.When a node s wants to communicate with a destination d,it broadcasts a route request (RREQ) message to all of itsneighbors. The message has the following format:RREQ(d; hops to src; seq no; s; src seq no):



Argument hops to src determines the current distance fromthe node which initiated the route request. The initial RREQhas this �eld set to 0, and every subsequent node incrementsit by 1. Argument seq no speci�es the least sequence numberfor a route to d that s is willing to accept (s usually uses itsown seq nod for this purpose). Argument src seq no is thesequence number of the initiating node.When a node t receives a RREQ, it �rst checks whether ithas a route to d stamped with a sequence number at leastas big as seq no. If it does not, it rebroadcasts the RREQwith incremented hops to src �eld. At the same time, t canuse the received RREQ to set up a reverse route to s. Thisroute would eventually be used to forward replies back to s.If t has a fresh enough route to d, it replies to s (unicast viathe reverse route) with a route reply (RREP) message whichhas the following format:RREP(hop cntd; d; seq nod; lifetimed):Arguments hop cntd; seq nod; and lifetimed are the corre-sponding attributes of t's route to d. Similarly, if t is thedestination itself (t = d), it replies withRREP(0; d; big seq no;MY ROUTE TIMEOUT):The value of big seq no needs to be at least as big as d'sown sequence number and at least as big as seq no from therequest. Parameter MY ROUTE TIMEOUT is the defaultlifetime, locally con�gured at d. Every node that receives aRREP increments the value of the hop cnt packet �eld andforwards the packet along the reverse route to s. When anode receives a RREP for some destination d, it uses infor-mation from the packet to update its own route for d. Ifit already has a route to d, preference is given to the routewith the bigger sequence number. If sequence numbers arethe same, the shorter route is chosen. This rule is used bothby s and by all of the intermediate forwarding nodes.The above preference rule is important for propagating er-ror messages. In addition to the routing table, each nodes keeps track of the active neighbors for each destinationd. This is the set of neighboring nodes that use s as theirnext hopd on the way to d. If s detects that its route to dis broken, it sends an unsolicited RREP message to all of itsactive neighbors for d. This message contains hop cnt = 255(in�nity), and its seq no is one more than the previous se-quence number for that route. Such arti�cially incrementedsequence number forces the recipients to accept this `route'and propagate it further upstream, all the way to the originof the route.
5.2 AODV PropertiesRouting protocols are often compared based on performancestatistics like speed of convergence, amount of bandwidthand memory needed for control data, and so on. However,the quality of the results produced by di�erent protocolsmay vary. For instance, it is hard to compare a slow routingprotocol that always �nds shortest routes with a really fastprotocol that sometimes creates routing loops. This is whyit is important to know what kind of correctness attributesa given protocol provides when comparing its performanceto other protocols. These attributes are sometimes high-level requirements that can be asked about any protocol.

A common requirement for a routing protocol is Loop Free-dom: Computed routes never contain loops. Other exam-ples include optimality of the routes, convergence proper-ties, maximum route length, and so on. Other attributesare protocol-speci�c. These test whether a given implemen-tation has expected behavior, usually with respect to thestandard. For instance, the standard may prescribe that af-ter some event, certain �elds in the routing table must havepositive values. In some cases we may want to test evena stronger hypothesis, stating that the standard is satis�edin a particular way (e.g. the value of the �eld is not onlypositive, but also an even number).Here are examples of some AODV-speci�c properties:Monotone Sequence Numbers: A node's own sequencenumber never decreases.Destination Stops: When a packet (RREQ, RREP ordata) reaches its destination, it should not be for-warded.Correct Route: If a packet addressed to d (RREP or data)is forwarded, it is forwarded along the best unexpiredroute to d seen so far.Destination Reply: When the destination replies to aroute request, the value of the hop cnt �eld of the replyshould be 0.Node Reply: When a node sends a route, it sends the bestunexpired route seen so far.RREQ Sequence Number: When a node initiates a routerequest for a destination d, the requested sequencenumber should either be 0 or the last sequence numberrecorded for d (seq nod).Loop Invariant: Along every AODV route to a destina-tion d, pair (�seq nod; hop cntd) strictly decreases inthe lexicographic ordering.2Detect Route Error: If a node detects a broken route,it should use seq no = 1 + (its own) seq nod in theunsolicited RREP.Forward Route Error: When a node forwards an unso-licited RREP, it should forward the same sequencenumber that it received.
6. CHECKING AODV SIMULATIONSIn this section, we analyze AODV simulations using Verisim.Verisim generates a large metatrace of property violations.We use bug-repairing and tuning to discover errors in theprotocol implementation.
6.1 AODV properties in MEDLOur �rst task is to translate properties given in section 5.2 inMEDL. Generally, all properties are constructed to capturedeviations of the observed behavior from the ideal (correct)behavior. In our framework, observable behavior of a rout-ing protocol is the sequence of packets exchanged between2This property is an important invariant that is su�cient(but not necessary) for loop freedom, as shown in [4].



the nodes. Based on the packet sequence, our MEDL prop-erty constructs the ideal system state and compares it tothe observed system state. For instance, if a RREP packetheading towards a node u is forwarded from node v to nodew, the observed routing table at v has next hopu = w. How-ever, by monitoring the history of RREP messages receivedat v, we can see whether v was indeed expected to have sucha route to u.To give an example, recall the Loop Invariant property fromthe previous section. Consider some three di�erent nodes:at , nxt and dst . Assume that the node at has a route to dstthrough its neighbor nxt :next hopdst(at) = nxt :Let (s(at); h(at)) be the sequence number and the hopcount that node at has for the destination dst (similarly(s(nxt); h(nxt)) for the node nxt). The Loop Invariant prop-erty says:(s(at) � s(nxt)) ^ (s(at) = s(nxt) ) h(at) > h(nxt)):Therefore, the property is violated exactly when the follow-ing holds:(s(at) > s(nxt)) _ (s(at) = s(nxt) ^ h(at) � h(nxt)):Table 2 shows a MEDL alarm that detects this violation inthe observed state.Table 2: Loop Invariant in MEDLalarm LoopInv[at][nxt][dst] = sendroute[at][dst] when((at!=nxt) && (at!=dst) && (nxt!=dst) &&(obs_nexthop[at][dst] == nxt) &&((obs_seqno[at][dst] > obs_seqno[nxt][dst]) ||((obs_seqno[at][dst] == obs_seqno[nxt][dst]) &&(obs_hopcnt[at][dst] <= obs_hopcnt[at][dst]))))Event sendroute[at][dst] is generated whenever the nodeat sends a control packet containing the route informationfor dst (either a RREP carrying route information for dst ,or a RREQ originated at dst). By inspecting the contentsof the packet, we observe the route that at uses for dst . Atthis point the checker will re-evaluate the Loop Invariantcondition to check for violations.This will be our general strategy for translation|we con-vert the desired properties into alarms by negation. Ta-ble 3 shows properties and their corresponding MEDL alarmnames.
6.2 AODV Simulation Case StudyWe consider an implementation of AODV written by theCMU Monarch Project(http://monarch.cs.cmu.edu) forthe network simulator NS. This code was used primarily forperformance analysis of AODV in comparison with otherrouting protocols for mobile, ad hoc networks [8]. In or-der to carry out this comparison, a number of large randomscenarios were constructed as well.The Monarch implementation is based on the �rst versionof AODV [21], and is known to have bugs|because of in-complete speci�cation in the standard, and due to program-mer errors. The code is already instrumented to produce

Table 3: MEDL AlarmsProperty MEDL alarmMonotone Sequence Numbers MonSeqNoDestination Stops DestStopsCorrect Forwarding CorrectFwdDestination Reply DestRepNode Reply NodeRepRREQ Sequence Number ReqSeqNoLoop Invariant LoopInvDetect Route Error DetectRErrForward Route Error FwdRErra packet trace for every packet generated, forwarded anddropped by the protocol. We use Verisim to analyze NSsimulations of this code on a small network scenario S with5 nodes, as shown in Figure 5.
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AODV parameters: We use the optimal AODV con�gura-tion computed by the Monarch group. The con�gu-ration involves parameters like route timeout intervalsand the number of times a request should be re-tried.When the AODV protocol is simulated on scenario S, NSgenerates a trace T . The initial fragment of a typical traceis shown in Table 4. When a packet send or receive eventhappens at a node N, there is a line in the trace with theformat:<send/recv> <time> _N_ RTR -- <Link Layer info> --\<IP info> --- <AODV info>Table 4: Typical Trace Ts 0.000000000 _1_ RTR --- 0 AODV 52 [0 0 0 0 0] ------- \[1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 1]] (REQUEST)s 0.000000000 _2_ RTR --- 0 AODV 52 [0 0 0 0 0] ------- \[2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)s 0.000000000 _3_ RTR --- 0 AODV 52 [0 0 0 0 0] ------- \[3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)r 0.000519784 _2_ RTR --- 0 AODV 52 [20 0 ffffffff 1 800] ----\[1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 1]] (REQUEST)r 0.000535386 _3_ RTR --- 0 AODV 52 [20 0 ffffffff 1 800] ----\[1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 1]] (REQUEST)r 0.002002991 _1_ RTR --- 0 AODV 52 [20 0 ffffffff 3 800] ----\[3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)r 0.002006118 _2_ RTR --- 0 AODV 52 [20 0 ffffffff 3 800] ----\[3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)r 0.002014489 _4_ RTR --- 0 AODV 52 [20 0 ffffffff 3 800] ----\[3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)s 0.002360210 _4_ RTR --- 0 AODV 52 [20 0 ffffffff 3 800] ----\[4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 1]] (REQUEST)r 0.002689325 _1_ RTR --- 0 AODV 52 [20 0 ffffffff 2 800] ----\[2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)r 0.002700822 _4_ RTR --- 0 AODV 52 [20 0 ffffffff 2 800] ----\[2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)r 0.002708053 _3_ RTR --- 0 AODV 52 [20 0 ffffffff 2 800] ----\[2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)s 0.002777804 _4_ RTR --- 0 AODV 52 [20 0 ffffffff 2 800] ----\[4:255 -1:255 31 0] [0x2 1 1 [5 0] [2 1]] (REQUEST)r 0.003439172 _2_ RTR --- 0 AODV 52 [20 0 ffffffff 4 800] ----\[4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 1]] (REQUEST)r 0.003449342 _5_ RTR --- 0 AODV 52 [20 0 ffffffff 4 800] ----\[4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 1]] (REQUEST)s 0.003449342 _5_ RTR --- 0 AODV 44 [0 0 0 0 0] ------- \[5:255 3:255 32 4] [0x4 1 [5 2] 600] (REPLY)
6.3 Repair First BugWe start with Monarch code for AODV (P ), and simulate itusing NS for the scenario S to produce the trace T (Table 4).Verisim then checks whether T satis�es the AODV proper-ties �, and produces a meta-trace T� of property violations(alarms). This meta-trace generation is then repeated, onsucceeding versions of P . Statistics on the alarms found inthese meta-traces are shown in Table 5.
Step IThe �rst meta-trace T� contains 220 alarms, and the initialfragment is as shown in Table 6. This alarm trace has 4DestRep alarms, 43 instances of LoopInv, 54 DetectRErralarms, and 38 instances of NodeRep. Incidentally, the �rstalarm in T� is raised at the last event of T shown in Table 4.The �rst alarm is a DestRep at destination 5, which meansthat the implementation is not setting the initial hop-count

Table 6: Typical Meta-trace T�-----------------------------------------------------------Time: 0.003449342s, Alarm DestRep raised at 5 for dest 5best route at 5 for 5: <seqno: -1,hc: -1,next: -1>observed route at 5 for 5: <seqno: 2,hc: 1>-----------------------------------------------------------Time: 0.004823314s, Alarm DestRep raised at 5 for dest 5best route at 5 for 5: <seqno: 2,hc: -1,next: -1>observed route at 5 for 5: <seqno: 3,hc: 1>-----------------------------------------------------------Time: 2.567054284s, Alarm DetectRErr raised at 4 for dest 5best route at 4 for 5: <seqno: 3,hc: 1,next: 5>observed route at 4 for 5: <seqno: 3,hc: 255>-----------------------------------------------------------Time: 2.567054284s, Alarm DetectRErr raised at 4 for dest 5best route at 4 for 5: <seqno: 3,hc: 1,next: 5>observed route at 4 for 5: <seqno: 3,hc: 255>-----------------------------------------------------------value in an RREP correctly. All four instances of the alarmin T� indicate that the initial value has been set to 1. Sowe go into the code and correct this simple o�-by-one error,changing the initial hop-count from 1 to 0. This producesa new implementation P1, which we use to produce a newtrace T1, by running the simulation again.
Step IIWe run Verisim on T1 and � to produce the second meta-trace T�1 . T�1 has 216 alarms, and is the same as T� exceptthat the DestRep alarms have been eliminated. The �rstalarm in the trace is a DetectRErr at node 4, where thenode 4 is sending an unsolicited RREP, saying that the des-tination 5 is unreachable. However, the sequence numberin the RREP is not 1 more than the best sequence numberat 4. This leads us to suspect that the implementation failsto increment the sequence number at 4 before sending theunsolicited RREP. Looking at other DetectRErr alarms inthe trace con�rms this bug. We repair P1, to eliminate thisbug and produce the third version of our code, P2.
Step IIIAs before we analyze P2 through Verisim to produce T2 andT�2 . T�2 has 206 alarms, of which 44 alarms are due Loop-Inv, 48 are DetectRErr alarms, and 39 are NodeRep alarms.Some of the DetectRErr alarms we detected before are gone,but a number of alarms remain. Interestingly, the NodeRepalarms and the LoopInv alarms increase by 1. This is be-cause in the old trace, when the incorrect route errors arereceived by nodes, the MEDL formula assumes they are ig-nored. However, in the new trace, the generated route errorshave the correct hop-count, so � recognizes that they will beacknowledged by the recipients. This leads to more errorsbeing recognized.The �rst alarm is a NodeRep at node 3, which advertises aroute with hop-count 2 for the destination 5 even though itno longer has a route to the destination. It is in e�ect ad-vertising outdated routes. We conclude that the conditionsthat check whether an RREP should be sent are buggy andthat routes are not deleted properly in the code. Indeedwe �nd, when we look at the code, that the RREP gener-ation code has multiple errors in it. We need to change 3conditional expressions in the code, to make it conform toour properties. Finally, we again run Verisim on this new



Table 5: RFB AlarmsMeta-trace DestRep DetectRErr NodeRep LoopInv Total alarmsT� 4 54 38 43 220T�1 0 54 38 43 216T�2 0 48 39 44 206T�3 0 0 0 0 1implementation P3 to produce a trace T3 and meta-traceT�3 .
Step IVThe fourth meta-trace just contains one alarm, which israised because of an unexpected bu�ering at a lower layerprotocol in the simulation. Essentially, a packet pn receivedat node 3 is bu�ered at a lower layer while the protocol re-sponds to an older packet po. However, our MEDL formula,which does not model lower layer protocols, assumes that pnhas already been seen and processed by the protocol, caus-ing the alarm. As such, T3 is `correct' with respect to theAODV properties that we modeled in MEDL.
6.4 TuningThe previous section demonstrated the repair �rst bug tech-nique for bug-hunting, involving new simulations every timea bug was discovered. In this section, we demonstrate tun-ing for MEDL, which allows us to discover multiple bugs inevery simulation run. We �rst simulate P with S to get T ,which is analyzed with the MEDL formula � to get the meta-trace T�. As before, we start our analysis by looking at T�.However, when we �nd a bug, we tune our MEDL formula �instead of repairing the protocol code P . After this tuning,we re-run the checking part of Verisim on T along with thenew MEDL formula to generate the next meta-trace. Thealarm statistics for tuning are as shown in Table 7.
Step IAs before the �rst alarm in T� is a DestRep at destination5, which initializes the hop-count in the RREP to 1. Thisprobably means that the code is initializing a node's self-hop-count to 1 instead of 0. So we go into the MEDL formulaand modify the alarm DestRep to check whether a nodeever emits a hop-count other than 1 (instead of 0). Thenwe run Verisim on T and this new MEDL formula �1 toget the meta-trace T�1 . All the DestRep alarms disappearin the new meta-trace which validates our assumption andidenti�es the �rst bug in the code.
Step IIThe second meta-trace T�1 has 216 alarms and is the sameas T� except that the DestRep alarms no longer appear. Wesee that the �rst alarm, DetectRErr, is again due to the in-accurate incrementing of sequence numbers at nodes. Hav-ing identi�ed the error, we can modify the alarm to ignorethis case. However, if a node fails to increment its sequencenumber on sending an unsolicited RREP, all future alarmsare also a�ected because the node has an incorrect state. Sowe need to modify the MEDL formula not to increment itssequence number as well. Note that by making this modi-�cation, we are making the MEDL formula `incorrect'|we

are changing the ideal state so that it becomes the same asthe observed state. This change generates the third version,�2, which is used to produce the meta-trace T�2 . Indeed,T�2 seems to not have the kinds of DetectRErr alarms andfollow-up alarms as noticed before.
Step IIIT�2 has 166 alarms, of which 50 are LoopInv alarms and 38are NodeRep alarms. Both DestRep and DetectRErr havebeen eliminated. Observe that the LoopInv alarms haveincreased because the modi�ed MEDL state allows morealarms to be identi�ed. As before, we conclude that theways replies are generated in the protocol code must be in-correct. In particular, even when a node has lost a route, itkeeps its hop-count around and when an RREQ is received,it incorrectly replies as if it has a route. We imitate this be-havior by changing the MEDL formula to assume the sameby changing the conditions under which a RREP can be sentand allowing hop counts to stay even after the route hasbeen lost. We run Verisim on this formula �3 and generatethe fourth meta-trace T�3 .
Step IVThe new meta-trace T�3 still has 30 alarms, with 21NodeRep alarms that are di�cult to interpret. Essentially,at this point, too much information has been �ltered outof the trace to make any �rm conclusions about the ori-gin of the errors. So we go back to the code to repair thethree bugs detected above. When we look at the code forthe RREP generation, we realize that the implementationhas multiple bugs causing it to behave highly unexpectedly.These bugs explain the alarms remaining in T�3 . We repairP to produce a new implementation Pf ., which is analyzedthrough Verisim to produce T�f . T�f has a total of 1 alarmdue to packet bu�ering at a node.
6.5 AnalysisWe discovered 3 errors in the AODV implementation, whichaltogether required rewriting 18 lines of the Monarch code.Of these, the RREP generation problem is particularly in-teresting. This error causes the AODV implementation toactually form loops, which we detected in our simulation.The loop formation itself is not a very easy property to de-tect. Indeed, our previous manual analyses of AODV sim-ulations failed to detect the existence of loop or the RREPgeneration bugs that cause it. The automation provided byVerisim was crucial to detect and wade through propertyviolations in the simulation.
7. ‘OFF-THE-SHELF’ SIMULATIONSIn order to see how well our techniques scale up to simu-lations usually analyzed to measure the performance of a



Table 7: Tuning AlarmsMeta-trace DestRep DetectRErr NodeRep LoopInv Total alarmsT� 4 54 38 43 220T�1 0 54 38 43 216T�2 0 0 38 50 166T�3 0 0 21 0 30Table 8: Results of MonSeqNo Property on TraceExp Trace Property Time Rate[# of events] [size in bytes] (in secs) (time/events/prop)A T [6; 446; 316] � [1; 476; 638] > 4 days N/AB T [6; 446; 316] F�(�) [14; 543] 51; 045 0:54�sC E� (T ) [706; 753] � [1; 476; 638] > 4 days N/AD E� (T ) [706; 753] F�(�) [14; 543] 5; 440 0:53�sE P�0 (T ) [631; 253] F�0(�) [145; 178] 85; 012 0:93�sF P�(T ) [69; 411] F�(�) [14; 543] 556 0:55�sG E� (P�(T )) [6; 812] F�(�) [14; 543] 51 0:55�snetwork protocol, we applied our techniques to the largesttrace made available by the CMU Monarch group [8]. This`O�-The-Shelf' (OTS) trace was generated by AODV sim-ulation on a site of size 1500 � 300 meters with 50 nodesconstantly moving at 20 meters per second. There were150 data connections transmitting four 64 byte packets ev-ery second. The simulation and our Verisim analyses of thetrace were carried out on a dual Pentium-III 550Mhz Xeonprocessors machine with one gigabyte of memory. The OSwas Red Hat Linux 6.1 with the 2.2.12-20 SMP Kernel. Weused NS version 2.1b1 and MACSware 0.99 implemented inIBM JDK 1.1.8 for Linux and running on the JVM. TheNS simulation itself required about 5220 seconds to com-plete and generated 6,446,316 events. This is much largerthan the traces analyzed by Verisim in the previous section,which all had less than 10,000 events. A naive e�ort to useVerisim to analyze MonSeqNo, a relatively simple property,on this trace was prohibitively time-consuming. We estimatethat the time required to check the desired relationship aftereach of 6,446,316 events between each pair of nodes (2500relations) to be more than 100 days based on extrapolatinga four-day run of the analysis. On the bright side, errorswith MonSeqNo were detected in the �rst 4 days of analy-sis. More signi�cantly, there are a number of optimizationsthat will �nd an error with considerably less e�ort. Theresults of analyzing the OTS simulation with various opti-mizations for the MonSeqNo (called �) property are givenin Table 8. Two additional optimizations were tested on theLoopInv (called �) property, and these results are providedin Table 9. The OTS trace is called T in the tables. Thenaive analysis is Experiment A, recorded in the �rst line ofTable 8.The experiments measure the e�ects of various abstractionsthat one may perform on either the trace or the property tomake the analysis feasible, while also �nding errors in thecode. There were two abstractions that we chose to apply:population abstraction and packet-type abstraction. Popula-tion abstraction is when we choose to focus only on a smallset of nodes. We could apply this abstraction to either the

property being tested or to the trace. For example, whenapplied to the property MonSeqNo, it would mean that wecheck that only certain nodes satisfy the MonSeqNo prop-erty. When we apply this to the trace, we prune the traceto consist of only events sent or received by these nodes. Inour case study, we looked at two population abstractions.In one we focused on packets where both the sender andthe receiver were among nodes 6 through 10 (25 relations).We call this �. In the other population abstraction, called�0, we looked at all packets where the sender or the receiverwas among nodes 6 through 10 (250 relations). The result ofapplying the population abstraction � to a formula ' is de-noted by F�('). When the population abstraction is appliedto a trace T , we denote it by P�(T ). Population abstractionis applied to either the property or the trace in ExperimentsB, D, E, F, G, H, I of Tables 8 and 9.In packet-type abstraction, we prune the trace to includeonly events that directly a�ect the property we are interestedin. For example, for the MonSeqNo property, this abstrac-tion (denoted by E� ) when applied to the trace, removes allevents except for the sendroute[at][dst] event. The cor-responding abstraction for the LoopInv property (denotedby E� 0), removes a di�erent set of events from the trace.In experiments C,D,G, and I a packet type abstraction wasapplied.Our case study revealed two things: linear growth in com-plexity and signi�cant bene�ts from abstractions. First, thetime taken to process the trace depends only linearly onthe length of the trace and the size of the formula; this canbe seen from the fact that the last column of our tables isnearly constant. The reason why the rates in Table 9 arethree times more than those in Table 8 is because the prop-erty of LoopInv is more complicated and has a 3 alternationsbetween && and ||. Second, abstractions can signi�cantlyimprove the time taken in performing the analysis. For ex-ample, after applying both population and packet type ab-stractions, the time for the analysis went from more than 4days (Experiment A) to 51 seconds (Experiment G). More-



Table 9: Results of LoopInv Property on TraceExp Trace Property Time Rate[# of events] [size in bytes] (in secs) (time/events/prop)H P�(T ) [69; 411] F�(�) [75; 508] 8064 1:54�sI E� 0(P�(T )) [48; 735] F�(�) [75; 508] 5912 1:61�sover, this optimization did not excessively compromise ourability to discover bugs in the trace: the alarms associatedwith nodes 6 to 10 that would have been generated had weanalyzed the entire trace are still generated when we test themuch smaller trace we get after applying the abstractions.
8. RELATED WORKWhile there has been a great deal of research on the formalveri�cation of communication systems, these e�orts havegenerally been limited in two respects. First, they gener-ally prove properties of the protocol and therefore may notbe helpful in �nding problems in protocol implementations.Second, few e�orts have focused on multi-party protocolslike routing, where proving a property of a �xed numberof routers limits the scope of the proof drastically. [14] de-scribes a method for studying behavior of multi-party proto-cols (such as PIM-SM) in `stressful' conditions. (See [4] for ageneral discussion of verifying routing protocols.) These twoproblems are partially addressed by the Verisim strategy ofanalyzing trace runs from simulations. First, the simulationcode is closer to the implementation code and therefore theVerisim tests are more likely to reveal problems with thedeployed system. Second, the ease of creating simulationsmakes it possible to test a large variety of con�gurations,thus partially addressing the problem that all con�gurationscannot be tested. In any event, Verisim analysis is comple-mentary to both static and dynamic analysis, so it can beuseful as long as it is convenient. Integration with NS con-tributes to this objective since simulations created for otherreasons like performance analysis can easily be subjected toVerisim analysis as well.A large body of related research work concentrates on au-tomated generation of test oracles from the requirements.A general methodology for doing this is discussed in [24],together with examples in Real Time Interval Logic (RTIL)and Z. Papers [6, 5, 7] describe a trace analysis tool forLOTOS requirements, while [11] describes a similar tool forEstelle requirements. Generating test oracles for GraphicalInterval Logic (GIL) is discussed in [10, 20]. An equiva-lent problem for a safe fragment of Linear Temporal Logicis discussed in [15]. This fragment is expressively similarto the requirements language of Verisim. However, an im-portant feature that distinguishes Verisim from most of theabove work is its focus on integration of simulation and test-ing. Another toolset that follows this idea is the simulationand monitoring platform MTSim [9], based on the graphicalreal-time speci�cation language Modechart. An advantageof Verisim is that instead of using formal models, it useso�-the-shelf network simulators already designed for proto-typing, performance evaluation and other purposes.There is similarity between Verisim formal analysis of pro-tocol simulations and network Intrusion Detection Systems

(IDS's). IDS's aim to detect anomalies in network tra�c toenable operators to discover problems or trigger automatedresponses. Examples include Next-generation Intrusion De-tection Expert System (NIDES) [1], which performs bothstatistical analysis and rule-based signature analysis on au-dit records and Event Monitoring Enabling Responses toAnomalous Live Disturbances (EMERALD) [23], which de-tects malicious activity through and across large networks.Although IDS's often focus on detecting statistical anoma-lies like unusual volumes of certain kinds of tra�c, at leastsome are able to check properties of the kind we describein MEDL. Although we are not aware of any e�orts to doso, such systems could perhaps be used in the way we haveused Verisim to produce metatraces as a debugging aid foranalyzing simulations. For instance, the rule-based analy-sis language (P-BEST language) [19] used in [1, 23] is asexpressive as MEDL.Additional information about related work can be obtainedfrom [3], which describes a taxonomy for logical analysis ofnetworks and uses this to classify some of the literature.A survey of tools used in the Verinet project (includingVerisim) can be found in [2].
9. CONCLUSIONWe have demonstrated an integrated system called Verisimconsisting of a network simulator and a logic-based checkerfor traces of events. This combination provides a 
exi-ble approach to studying correctness properties of networksimulations. We have shown the usefulness of the tool bydemonstrating how it can �nd 
aws in non-trivial simulatorcode. We have also shown how its 
exibility can be ex-ploited through the concept of tuning to improve debuggingturn-around time. We believe that the approach is practi-cal and scalable and can be used as a productive adjunct tostandard network protocol engineering practices.
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