
Formal Construction and Verification of Home

Service Robots: A Case Study

Moonzoo Kim and Kyo Chul Kang

CSE Dept. Pohang University of Science and Technology,
Pohang, South Korea

{moonzoo,kck}@postech.ac.kr

Abstract. Home service robots have attracted much attentions to an-
ticipate improved quality of human life. Considering that malfunctions
of home service robots can directly threat the safety of human users, the
assurance of robot’s safe operation is a crucial prerequisite for the wide
deployment of home service robots. Current practice of robot develop-
ment, however, often fails to satisfy this requirement. Robot developers
tend to concentrate on technical components only and fail to consider
how these components will integrate to create the service. This practice
frequently causes feature interaction problems. Furthermore, reactive na-
ture of the robot applications adds to further complexity. Traditional
testing is unsuccessful with this setting due to the difficulty of testing
embedded systems and uncertainty caused by sensor devices. These situ-
ations make formal construction and verification essential to ensure safe
operation of home service robots.

In this paper, we present our experience of formally constructing and
verifying the core of Samsung Home Robot (SHR) with the use of Esterel.
First, we reverse-engineered SHR to identify and analyze the core of
SHR. Then, we re-implemented the core part in Esterel and verified SHR
to satisfy safety properties regarding stopping behaviors through model
checking. Through the verification, we detected and solved a feature
interaction problem which caused the robot to ignore a stop command.

1 Introduction

With the advances of robotics, computer science, and other related areas, home
service robots have received a strong academic and industrial attention. It is be-
cause home service robots can increase a quality of human life in a wide range of
application areas. Thus, those leading companies such as Sony [3], Honda [2], and
Samsung have invested a great deal of efforts in developing home service robots.
Home service robots utilize various technology-intensive components such as vi-
sion recognizer, speech processors, and actuators to offer services. Thus, robot
applications should coordinate these components in harmony. Robot developers,
however, tend to focus on technical components at an early stage of product
development without any consideration of how they will integrate these com-
ponents to provide services. In addition, these components are developed by

D.A. Peled and Y.-K. Tsay (Eds.): ATVA 2005, LNCS 3707, pp. 429–443, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 M. Kim and K.C. Kang

separated teams, which makes integration of these components more difficult.
As a result, robot products often suffer from feature interaction problems [9,17].
Furthermore, reactive nature of home service robots adds further complexity to
robot applications. Therefore, it is a highly challenging task to develop robot
applications satisfying stringent temporal and safety requirements.

Due to high complexity of robot applications, testing and debugging often
takes more than a half of total development time but still fails to provide sat-
isfying result. Thus, the necessity of formal validation and verification (V&V)
has been recognized in robotics areas [11,18]. Also, robot domain specific V&V
frameworks such as ORCAAD [7] and MAESTRO [8] have been developed. In
robot industry, however, a practice of applying formal methods is not very pop-
ular because robot industry does not have enough field experiences with formal
methods yet. In addition, the gap between a formal model and a real implemen-
tation discourages developers from adopting formal methods as well. Therefore,
we need to apply a unified formal framework supporting both construction and
verification of robots. Furthermore, for practicality, we should aim to apply for-
mal methods to the core of relatively a small size with an acceptable development
overhead, rather than to the whole applications [12].

In this paper, we describe our experience of formally constructing and veri-
fying Samsung Home Robot (SHR) with Samsung Advanced Institute of Tech-
nology (SAIT). First, we reverse-engineered SHR application that SAIT had
developed. Based on the extracted architectural information, we re-engineered
SHR application while identifying the core of the application. Then, we re-
implemented the core in Esterel [6] and verified that SHR satisfied safety prop-
erties regarding stopping behaviors through model checking. Through the veri-
fication, we detected and solved a feature interaction problem which caused the
robot not to stop when a user commanded the robot to stop. 1

Section 2 describes background of SHR. Section 3 overviews the Esterel
framework. Section 4 illustrates the previous SHR application and re-engineered
one. Section 5 shows the verification results about stopping behaviors of SHR.
Finally, Section 6 concludes with the summary of this paper.

2 Background of SHR100

Sect. 2.1 gives an overview of the SHR project and Sect. 2.2 explains the services
which SHR provides. Sect. 2.3 describes statistics on the SHR application code.

2.1 SHR Project

We have developed three versions of SHR - SHR00, SHR50, and SHR100. The
development of SHR00 started in 2002 by four separate teams of SAIT consisting
1 We used the Esterel framework for this project mainly because we can verify an

Esterel program by model checking and generate a C code from the verified Esterel
program. This unified framework is suitable for industrial projects, which require a
reliable working code as a final result with minimal overhead.

Formal Construction and Verification of Home Service Robots 431

of thirteen people working on speech recognition, vision recognition, simultane-
ous localization and mapping (SLAM), and actuator control. SHR50 as well as
SHR00, however, often experienced unstable behaviors such as missing user’s
commands and showed stuttered movement even though each part worked suc-
cessfully before the integration (this kind of failure is not uncommon in robotics
field [9]). After ten months into the new development of SHR100, for higher reli-
ability, SAIT requested POSTECH to re-engineer SHR100 supporting “call and
come” and “user following” services (see Sect. 2.2). With this request, POSTECH
re-engineered an existing implementation for six months. The overview of the
SHR100 components is illustrated in Fig. 1.

Fig. 1. HW Components of SHR100

2.2 Services of SHR100

Some of the primary services of SHR100 are described as follows.

– Call and Come (CC)
There are two commands: namely “come” and “stop”. Once a “come” com-
mand is recognized, the robot tries to detect the direction of sound source by
comparing the strength of sound captured via microphones. Then, the robot
rotates to the direction of sound source and tries to recognize user’s face by
analyzing images captured through the front camera. If the caller’s face is
detected, the robot moves forward until it reaches within one meter from
the user. A “Stop” command makes the robot stop. CC is preemptible, i.e.,
while CC is executed, newly recognized command makes the robot ignore
the previous command and allow to proceed the new one.

– User Following (UF)
This service is triggered right after CC is completed. Once UF is triggered,
the robot constantly checks vision data and data from the structured light
sensor which is used to locate the user. The robot tracks down the user
within the distance of one meter range. If the robot misses a user, the robot

432 M. Kim and K.C. Kang

notifies the user by speaking “I lost you” and UF ends. Similar to CC, UF
is a preemptible service.

– Tele-presence (TP)
A remote user can control a robot by using a PDA. In addition, the robot
can send images obtained from the front camera to the PDA for surveillance
purpose through a home server.

– Security Monitoring (SM)
The robot patrols around a house using the map generated by SLAM com-
ponent for surveillance. When accidents are detected, the robot reports to
the user.

2.3 SHR100 Application Statistics

The rough statistic summary of the SHR100 application is described in Table 1.
Some parts of the application (mostly controller parts) were given to POSTECH
as source code in C/C++ while other parts (mostly recognition algorithms and
device drivers) were given as binary libraries.

Table 1. Statistics on the SHR100 application

Components # of files Size

Call and come 29 4000 lines

User following 43 9000 lines

Others 43 3600 lines

Libraries 39 38 MB

3 The Esterel Framework

In this section, we briefly describe the Esterel language and its toolset.

3.1 The Esterel Language

Esterel [6] is a language for programming reactive systems that wait for a set
of inputs, and react to these inputs by computing and producing outputs. Since
Esterel is based on the “synchrony hypothesis”, every reaction to a set of inputs
should be instantaneous. In practice, this means that a system should react to
input signals before input signals of the next cycle arrive. Synchrony hypothesis
considerably simplifies the specifications of reactive systems. Furthermore, many
application areas satisfy this hypothesis.

A program written in Esterel specifies the components (called modules) run-
ning in parallel. Modules communicate with each other and the outside world
through input/output signals, which are broadcasted and may carry values of
arbitrary types. Thus, the interaction between components can be clearly de-
scribed. Furthermore, Esterel provides reactive/preemptive operators which are

Formal Construction and Verification of Home Service Robots 433

useful for developing robot applications. An Esterel program has its semantics
as a finite state Mealy machine whose transitions are labeled with pairs of input
and output signals (see Fig 6).

3.2 The Esterel Toolset

Esterel toolset consists of the following three components. 2

– Esterel compiler esterel
– graphical simulator xes
– model checker xeve

esterel compiles an Esterel program into various formats including the C
language. Using esterel, once a developer has proved the correctness of an Es-
terel program through model checking, one can generate correct C code without
a manual conversion. This WYPIWYE (What You Prove Is What You Ex-
ecute) principle is a strong advantage of Esterel over other formal modeling
languages. In addition, an Esterel program can be seamlessly integrated with
existing C/C++ codes through well-defined APIs. Furthermore, generated C
code is platform neutral so that a developer can port an Esterel program into
different OS/HW platforms (e.g. Linux or VxWorks) without a difficulty.

xes supports interactive simulation as well as guided simulation. With a
given Esterel program, a user can execute the program by symbolically selecting
input signals to emit and advancing its ticks (time instants). xes is also used to
examine the execution trace of a counter example generated from xeve.

xeve minimizes and analyzes a finite state machine generated from an Esterel
program. Basic verification process of xeve is to check the presence of output
signals with given configuration of input signals by model checking. A simple
property such as “if a user does not give a command to a robot, the robot must
not move” (see Sect. 5.2) can be checked in this way. More complex property
can be checked by building an observer module which emits a violation signal
when the property is violated (see Sect. 5.3). [15] proved that safety properties
described in temporal logic could be translated into observer modules in Esterel.

4 Re-engineering of SHR100

In this section, we describe both previous SHR100 implementation (Sect. 4.1)
and re-engineered SHR100 implementation (Sect. 4.2).

4.1 Previous SHR100 Implementation

SHR100 was implemented in a service-oriented way because each service feature
such as CC and UF, had been developed separately. Consequently, operations
2 A commercial Esterel studio [1] provides an integrated development environment

including a visual language editor.

434 M. Kim and K.C. Kang

Fig. 2. Previous architecture of SHR100 regarding the CC service

of a service were dispersed among components, which does not clarify compo-
nent architecture design. In addition, there existed redundant computational
components because some computational components (e.g. vision) were used by
different services. Therefore, developers experienced difficulty in identifying the
interactions among the components of its original implementation, which often
caused feature interaction problems. In order to improve reliability, we needed
to clarify the previous SHR100 architecture first. Otherwise, it would be difficult
to identify and analyze the core. Also, re-writing the core of SHR100 in Esterel
would be messy because the new core should cooperate with existing C/C++
components.

Fig. 2 illustrates the recovery of a conceptual architecture from the object
relationship diagram of CC through abstraction. The left part of Fig. 2 describes
CC service unit and its constituent operational units. Using functional cohesion
as a criterion, we classified operational units into three categories - sensor (in-
put), controller (coordination), and actuator (output). Then, we identified five
operational units -“Face Detection”, “Clap Recognition”, “SL Sensing”, “CC
Command Controller”, and “Actuator”. After a data flow analysis, these units
are configured into the conceptual architecture depicted in the right part of
Fig. 2. We found out that “CC Command Controller” unit, which consists of
CCallComeDlg and CPlanner classes, serves as the core of CC service by re-
ceiving data from the sensor units and making decisions to the actuator unit.
Also, we found that the core was executed fast enough to satisfy the synchrony
hypothesis required by the Esterel framework (see Sect. 3.1).

Formal Construction and Verification of Home Service Robots 435

Through the re-engineering process, several bugs in the original implemen-
tation were found. For example, a main control function of the CC service is
void CCallComeDlg ::processState() as in Fig. 3. processState() is called
periodically once in every 100 milliseconds. Given a command, CC executes the
command through multiple sequential steps. Each step is represented by a corre-
sponding case statement block and is identified by the value of m order declared
at line 2. At the end of each case statement block, m order is updated to deter-
mine the next step. After one step is executed, processState() is terminated
and is called again after 100 milliseconds. If a new command is given between
these two adjacent invocations, a previous command is ignored and the new
command is processed.

01:class CCallComeDlg {

02: int m_order;

03: ...

04: void processState() {

05: ...

06: switch(m_order) {

07: case 0: STOP();

08: m_order++;

09: break;

10: case 1: ROTATE();

11: m_order++;

12: break;

13: case 2: static int nCount = 0;

14: if (abs(m_befO-curO)==0) nCount++;

15: else nCount = 0;

16: if (nCount > 2) m_order++;

17: break;

18: ...

19: case 9: CC_DONE();

20: m_order = -1;

21: break;

22:} } }

Fig. 3. A main control procedure for the CC service in C++

This pattern of reactive programming is a straight-forward way to allow
preemption in C++, and is found frequently in robot applications. This pattern
of reactive programming is, however, error-prone. For example, at line 16, nCount
is used to test twice whether SHR100 stops its rotation or not. However, testing
may happen only once because nCount is declared as a static local variable at
line 13 and can be greater than two all the time without re-initialization. This
error decreases the accuracy of user recognition due to blurred images captured
while the robot does not stop its rotation completely. As a number of possible
cases increase by adding more features, the complexity of C/C++ code increases

436 M. Kim and K.C. Kang

rapidly so that developers can hardly manage and debug the program. Note that
Esterel prevents such errors by handling a preemptive event e with preemption
operator every e do statements end every (see line 11 to line 24 in Fig. 5).

4.2 New SHR100 Implementation

The architecture model in Fig. 2 is not adequate for multiple services; it does not
provide the coordination of multiple service controllers (e.g. CC controller and
UF controller) to handle interaction among services. Furthermore, the complex-
ity of interactions among services grows exponentially within the previous archi-
tecture due to spaghetti-like communications among the components. Therefore,
based on the extracted conceptual architectures, we re-designed the architecture
of SHR100 concerning with handling issues such as priorities among services or
global system modes (for more details on the re-engineering process of SHR100,
see [14]). We separated control plane containing control components from data
plane containing computational components. Firstly, we could easily identify
four separate control components (CC, UF, TP, and SM) which specify their
own behaviors for corresponding services. In addition, we defined Mode Man-
ager to control global behaviors (e.g. initialization and interaction policy) of
the robot by receiving all up-stream events from the computational components
and managing control components. Each of these control components was im-
plemented as a separate Esterel module. 3 Secondly, after data flow analysis,
we could come up with five computational components - SLAM, Navigation,
User Interface, Vision Manager, and Audio Manager. Fig. 4 describes the new
software architecture.

Fig. 4. New SHR100 architecture

3 The size of the Esterel program is around 200 lines. A generated C code from the
Esterel program is around 1700 lines. Memory usage and execution speed of the new
implementation does not show observable difference from the previous one.

Formal Construction and Verification of Home Service Robots 437

Fig. 5 is a skeleton of the re-implemented CC service in Esterel. A module
control plane (line 1 to line 5) represents a whole control application including
the Mode Manager mm, the CC service cc, the UF service uf, and so on (see line
4). Communication among those modules is implemented by using input/output
signals declared at line 2 and line 3 (note that the output signals in Fig. 5 invoke
the C functions of the same names shown in Fig. 3). COME CMD and STOP CMD
are input signals corresponding to the “come” and “stop” commands. A “come”
command is handled from line 14 to line 18 and a “stop” command is handled
from line 19 to line 21. A task of rotating SHR100 toward the user and detecting
the user is implemented as a submodule rot det and is executed at line 16.

01:module control_plane: % Control software

02: input COME_CMD, STOP_CMD, ...

03: output STOP, ROTATE, GO, CC_DONE, UF_DONE,...

04: run mm || run cc || run uf || run tp || run sm ...

05:end module

06:

07:module cc: % Call and Come service

08: input COME_CMD, STOP_CMD;

09: output STOP,ROTATE,GO,CC_DONE,...

10: signal Reset in

11: every immediate [COME_CMD or STOP_CMD] do

12: weak abort

13: present

14: case COME_CMD do % come command

15: emit STOP; pause;

16: run rot_det;

17: ...

18: emit CC_DONE;pause;

19: case STOP_CMD do % stop command

20: emit STOP;

21: emit CC_DONE;pause;

22: end present;

23: when Reset;

24: end every

25: end signal

26:end module

27:...

Fig. 5. Skeleton Esterel code for the CC service

As we have seen, the new implementation defines components concretely
using modules/submodules. In addition to this, the new implementation makes
interaction visible among the components by using explicit communication mech-
anisms such as input/output signals. These features assign responsibility for the
behaviors to these components clearly and it helps to analyze feature interaction
problems.

438 M. Kim and K.C. Kang

5 Formal Verification of SHR100 Movement

There are various safety properties to assure SHR100’s correct operation. In this
project, we concentrate on the most critical safety properties, which are about
movements that may cause crash with any obstacles (e.g. furniture or users).
There can be many causes for collision such as obstacle recognition failure, HW
failure to signal actuator, etc. We focused on, however, discrete SW controller
which we re-wrote in Esterel. Stopping behavior of SHR100 is the first target
to verify. Considering that SHR100 can move upto 2 m/s (=7.2 km/h), these
properties should be checked carefully for user’s safety.

In this section, we describe safety properties P1, P2, and P3 regarding stop-
ping behavior of SHR100. We describe the most primitive safety property P1

first, then incrementally refine P1 into P2 and P3. Sect. 5.1 describes verification
preliminary for SHR100. Sect. 5.2 and Sect. 5.3 illustrate verification of SHR100
running the CC service only. Sect. 5.4 describes verification of SHR100 running
CC and UF concurrently. Sect. 5.5 summarizes the verification results. 4

5.1 Verification Preliminary for SHR100

We used the xeve model checker [4] to verify safety properties. First, xeve per-
forms bisimulation minimization on FSM which is generated from an Esterel
program. Then, a user selects input signals as “always present”, “always ab-
sent”, or “having any value”. In addition, a user can specify exclusion relation
among input signals (e.g. COME CMD and STOP CMD cannot present at the same
time). Finally, the user selects an output signal to check if it can be emitted with
given configuration of input signals. Simple properties (e.g. P1 in Sect. 5.2) can
be checked easily in this way. More complex properties (e.g. P2 in Sect. 5.3 and
P3 in Sect. 5.4) can be checked by building an observer which emits a violation
signal when given properties are violated.

Basically, safety properties on stopping behavior can be described using
bounded-response formula [5] in temporal logic [16]

�(Cstop → ♦dstop)

where Cstop and stop stand for STOP CMD and STOP signals in the Esterel imple-
mentation. The actual safety properties for robot application, however, are more
complex. First, when STOP is emitted, GO or ROTATE must not be emitted without
any new command. In other words, we also need to check signals nullifying STOP
such as GO and ROTATE. In addition, we have to check whether output signals
are emitted arbitrarily regardless of input signals. For example, if a user does
not give a command to the robot, the robot must not move at all. We could
describe a safety property in temporal logic and then translate the property
into an Esterel observer following the guideline of [15]. This generates, however,
a unnecessarily complex observer. Thus, we developed an observer directly in
Esterel without describing and translating a temporal logic property.
4 Preliminary verification results are from [13].

Formal Construction and Verification of Home Service Robots 439

5.2 Verification of the CC Service Without an Observer

First, we checked the CC service without other services. Consider the following
property P1.

P1 : If a user does not give a command to the robot, the robot must not
move.

Although P1 looks obvious, this requirement is important to ensure a safe op-
eration of the robot. Violation of P1 may lead the robot to move autonomously
without a user’s command and as a result, it can cause damage to house appli-
ances or accidently hurt a man. Furthermore, guaranteeing satisfaction of P1 is
a difficult task without model checking because a developer has to find out all
the possible test cases [10].

There are only two output signals to make the robot move - GO and ROTATE.
We checked if the CC service satisfied P1 by setting COME CMD and STOP CMD
as “always absent” and selecting GO as an output signal to check. Then, xeve
showed that GO is never emitted by the robot. In the same way, xeve showed
that ROTATE is never emitted, either. Thus, we concluded that the CC service
satisfied P1.

Slightly refined property P ′
1 can be described as follows.

P ′
1 : If a user does not give a “come” command, but may give a “stop”

command to the robot, the robot does not move.

We can verify that the CC service satisfies P ′
1 too.

Using a FSM visualization tool atg, we could explore the FSM of the new
SHR100 implementation written in Esterel. This FSM exploration helps under-
stand global behavior of SHR100. For example, Fig. 6 depicts the behavior of
the CC service. Each transition is labeled with a pair of input/output signals. A
present input signal has a prefix ? and an input signal which is not present has a
prefix #. A present output signal has a prefix !. An initial state (a doubly circled
state at the top left corner) of the CC service has only two outgoing transitions.

– a self transition α :#CM.#ST + #CM.?ST.!STOP.!CC DONE 5

– a transition β (going to a lower state) :?CM.!STOP

The first half of α transition (#CM.#ST) indicates that SHR100 does not move
without any command, which corresponds to the verification result on P1. The
second half of α transition means that “stop” commands alone do not make the
robot move, which corresponds to the verification result on P ′

1. Once a “come”
command is given, SHR100 takes β transition and traverses the FSM.

5 To increase readability of Fig. 6, we use shorthand notations CM and ST for COME CMD

and STOP CMD respectively.

440 M. Kim and K.C. Kang

tautautautautautautautautautautautautautautautautau

#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET

!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

tautautautautautautautautautautautautautautautautau

#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET#CM.?ST.!STOP.!CC_DONE+!N_DET

!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET!DET

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP
tautautautautautautautautautautautautautautautautau

tautautautautautautautautautautautautautautautautau

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE#CM.#ST+#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE#CM.#ST.!CC_DONE+#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP#CM.#ST.!STOP
?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

tautautautautautautautautautautautautautautautautau

!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO!GO
?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE#CM.#ST.!ROTATE

#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE#CM.?ST.!STOP.!CC_DONE

?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP?CM.!STOP

Fig. 6. A FSM for the CC service

5.3 Verification of the CC Service Using an Observer

Consider the property P2 as below.

P2 : If a user gives a “stop” command, the robot stops and does not move
without any new command.

To verify P2, we built an observer as in Fig. 7. We incorporated observer with
the cc module in parallel. observer emits STOP VIOLATION at line 9 and line
13 if P2 is violated. If a “stop” command is given (line 5) and the robot stops
immediately (line 6), then observer keeps its watch if the robot rotates or moves
forward (line 7 to line 11) unless any new command is given by the user. We
verified that STOP VIOLATION is never emitted.

5.4 Verification of the Concurrent CC and UF Services

We checked if the control software which consists of the CC and UF services
satisfied P1 and P ′

1. We showed that the control software satisfied P1, but sur-
prisingly not P ′

1. The verification result on P ′
1 claimed that ROTATE and GO could

be possibly emitted when COME CMD was absent and STOP CMD might be given.
In general, verification result from xeve is sound but not complete because a
FSM is generated from an Esterel program without evaluating expressions. 6

Therefore, a user has to check whether a violation is a real one or a false alarm.
6 xeve ignores external C functions as well because the expressions containing return

values of external C functions are ignored anyway.

Formal Construction and Verification of Home Service Robots 441

01:module observer: % Observer for detecting safety violation

02: input STOP_CMD, COME_CMD, ROTATE, STOP, GO;

03: output STOP_VIOLATION;

04: weak abort

05: every immediate STOP_CMD do

06: present STOP then

07: loop

08: present [ROTATE or GO]

09: then emit STOP_VIOLATION;

10: end present;pause;

11: end loop;

12: end present

13: emit STOP_VIOLATION;

14: end every

15: when COME_CMD;

16:end module

Fig. 7. An observer for detecting violation of P2

Through simulations displaying interactions between the CC and UF com-
ponents, we could figure out that UF made the robot rotate and move forward
when a “stop” command was given; the violation was a real one. This viola-
tion occurred because UF was triggered by CC DONE which was emitted by CC
when a “come” command or a “stop” command was successfully processed (see
Sect. 2.2 and line 18/line 21 of Fig. 5). UF should have been triggered only after
a “come” command was processed, not after a “stop” command was processed.
Thus, we refined CC DONE into CC COME DONE and CC STOP DONE. Then, we mod-
ified the UF implementation so that only CC COME DONE could invoke UF. After
this modification, the concurrent CC and UF services satisfied P ′

1.
SAIT had not find this feature interaction problem previously. During UF

service, SHR100 does not move unless it succeeds to detect the user. While
the user was testing SHR100, he did not intend to be detected by the robot
when he gave a “stop” command because he expected the robot to stop, not to
start UF service. Thus, the user was usually outside the vision area of SHR100
when he gave a “stop” command. In addition, due to uncertainty of the vision
recognizer (e.g. low accuracy in a dark room or with strong light), SHR100 often
misses the user. When the robot fails to detect the user, it should report to the
user by synthetic voice. It happened, however, that voice synthesis sometimes
did not work when running with other components. Therefore, without thorough
testing, SAIT simply thought that SHR100 stopped accordingly to a given “stop”
command and missed the problem.

We checked if P2 was satisfied by the revised control software running CC
and UF concurrently. We used observer in Fig. 7 without modification and
verified that the control software satisfied P2.

442 M. Kim and K.C. Kang

Furthermore, we refined P2 into P3 by adding a real-time constraint.

P3 : If a user gives a “stop” command, the robot stops within one second
and does not move without any new command.

P3 is more general than P2 because the robot may not stop immediately with a
given “stop” command but within one second due to an urgent situation such as
collision avoidance. Temporal property can be encoded in an observer by using
the fact that the CC service is invoked every 100 milliseconds (see Sect. 4.2). We
verified that the CC and UF services satisfied P3 after modifying the observer
to check this temporal property.

5.5 Experimental Results of the Verification

We used a WindowsXP machine with Pentium IV 2.8C and 1GB memory for
the verification. Verification of each property of P1, P

′
1, P2, and P3 generated

around 100 states and took less than ten seconds and 128 MB memory, which
was not burdensome to developers. Notice that what we had verified here was
a real implementation, not an abstract model. We replaced the legacy C/C++
implementation of control software loaded on SHR100 with the Esterel program.
After replacing the control software, SHR100 operated successfully with high
reliability obtained by formal V&V.

As we have seen through Sect. 5.2 to Sect. 5.4, defining safety properties
takes considerable effort. We believe, however, that such effort can reduce an
overall development and its field operation costs by increasing the reliability of
applications.

6 Conclusion

We have reported our experience of formally developing and verifying a home
service robot SHR100. Our task to develop a robot with high reliability was
a challenging target due to its own reactive nature and its complexity caused
by coordinating diverse components together. The gist of our approach is to re-
engineer a robot application to formally develop and verify the core for increased
reliability. Through the re-engineering process, we found and fixed several sub-
tle bugs which would be uncovered otherwise. In addition, we could demonstate
that formal V&V was useful to identify feature interaction problems which were
hard to detect through traditional testing. Furthermore, the new SHR100 im-
plementation re-written in Esterel became compact and easy to analyze due to
its clear component definitions and explicit communication mechanisms.

References

1. Esterel technology. http://www.esterel-technologies.com.
2. Honda asimo home page. http://asimo.honda.com/.

Formal Construction and Verification of Home Service Robots 443

3. Sony qrio home page. http://www.sony.net/SonyInfo/QRIO/top nf.html.
4. A.Bouali. Xeve: an esterel verification environment. Technical report, INRIA,

2000.
5. R. Alur and T. Henzinger. Time for logic. ACM SIGACT News, 22(3), 1991.
6. G. Berry. The foundations of esterel. Proof, Language and Interaction: Essays in

Honour of Robin Milner, 2000.
7. J. Borrelly, E. Coste-Maniére, B. Espiau, K. Kapellos, R. Pissard-Gibollet, D. Si-

mon, and N. Turro. The orccad architecture. International Journal of Robotics
Research, 17(4):338–359, 1998.

8. E. Coste-Maniére and N. Turro. The maestro language and its environment :
Specification, validation and control of robotic missions. Proceedings of the 10th
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997.

9. A. C. Domı́nguez-Brito, D. Hernández-Sosa, J. Isern-González, and J. Cabrera-
Gámez. Integrating robotics software. IEEE International Conference on Robotics
and Automation, 2004.

10. E.M.Clarke, O.Grumberg, and D.A.Peled. Model Checking. MIT Press, January
2000.

11. B. Espiau, K. Kapellos, and M. Jourdan. Formal verification in robotics: Why and
how? International Symposium on Robotics Research, Oct 1995.

12. G.H. Holzmann and M.H. Smith. Automating software feature verification. Bell
Labs Technical Journal, 5(2):72–87, 2000.

13. M. Kim, K. Kang, and H. Lee. Formal verification of robot movements - a case
study on home service robot shr100. International Conference on Robotics and
Automation, 2005.

14. M. Kim, J. Lee, K. Kang, Y. Hong, and S. Bang. Re-engineering software architec-
ture of home service robots: A case study. International Conference on Software
Engineering, 2005.

15. L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety property verifi-
cation of Esterel programs and applications to telecommunications software. In
P. Wolper, editor, Proceedings of the 7th International Conference On Computer
Aided Verification, pages 127–140, Liege, Belgium, 1995.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1992.

17. R.T. Pack, D. Mitchell Wilkes, and K. Kawamura. A software architecture for
integrated service robot development. IEEE Internationall Conference on Systems,
Man and Cybernetics, 1997.

18. L.E. Pinzon, H.-M. Hanisch, M.A. Jafari, and T. Boucher. A comparative study of
synthesis methods for discrete event controllers. Formal Methods in System Design,
15(2):123–267, 1999.

	Introduction
	Background of SHR100
	SHR Project
	Services of SHR100
	SHR100 Application Statistics

	The Esterel Framework
	The Esterel Language
	The Esterel Toolset

	Re-engineering of SHR100
	Previous SHR100 Implementation
	New SHR100 Implementation

	Formal Verification of SHR100 Movement
	Verification Preliminary for SHR100
	Verification of the CC Service Without an Observer
	Verification of the CC Service Using an Observer
	Verification of the Concurrent CC and UF Services
	Experimental Results of the Verification

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

