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Introduction to predicate calculus (1/2)

Propositional logic (sentence logic) dealt quite satisfactorily 
with sentences using conjunctive words (접속사) like not, 
and, or, and if … then.  But it fails to reflect the finer logical 
structure of the sentence
What can we reason about a sentence itself which deals 
with its target domain?

ex. Jane is taller than Alice (target domain : human being)
ex2. For natural numbers x and y, x+y ≥ - (x + y) (target domain: N)

What can we reason about a sentence itself which also 
deal with modifiers like there exists…, all …, among … and 
only ….  ?

Note that these modifiers enable us to reason about an infinite
domain because we do not have to enumerate all elements in the 
domain
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Introduction to predicate calculus (2/2)

Ex.  Every student is younger than some instructor
We could simply identify this assertion with a propositional atom p.  
However, this fails to reflect the finer logical structure of this sentence

This statement is about being a student, being an instructor and being 
younger than somebody else for a set of university members as a 
target domain

We need to express them and use predicates for this purpose
S(yunho), I(moonzoo), Y(yunho,moonzoo)

We need variables x, y to not to write down all instance of S(-), I(-), Y(-)
Every student x is young than some instructor y

Finally, we need quantifiers to capture the actual elements by variables
For every x, if x is a student, then there is some y which is an instructor 
such that x is younger than y
∀x (S(x) → (∃y (I(y) Æ Y(x,y))))
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Relations and predicates
The axioms and theorems of mathematics are defined 
on arbitrary sets (domain) such as the set of integers Z

ex. Fermat's last theorem 
If an integer n is greater than 2, then the equation an + bn = cn has 
no solutions in non-zero integers a, b, and c. 

Can we express the Fermat’s last theorem in propositional logic?
The predicate calculus extends the propositional 
calculus with predicate letters that are interpreted as 
relations on a domain

i.e., predicates are interpreted upon domain
Def 5.2. A relation can be represented by a boolean 
valued function R:Dn → {T,F}, by mapping an n-tuple to T 
iff it is included in the relation

R(d1,…dn) = T iff (d1,… dn) ∈ R
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Predicate formulas
Let P, A and V be countable sets of 
symbols called predicate letters, 
constants, and variables, respectively.

P={p,q,r} A={a,b,c}, V={x,y,z}
Def 5.4 Atomic formulas and formulas

atomic formula
argument ::= x for any x ∈ V
argument ::= a for any a ∈ A
argument_list ::= argument+
atomic_formula ::= p | 

p(argument_list) for any p ∈ P

formula ::== atomic_formula
formula ::= ¬ formula
formula ::= formula Ç formula  
formula ::= ∀ x formula
formula ::= ∃ x formula



Intro. to Logic 
CS402   

6

Free and bound variables
Def 5.6 

∀ is the universal quantifier and is read ‘for all’. 
∃ is the existential  quantifier and is read ‘there exists’.  
In a quantified formula ∀ xA, x is the quantified variable and A is the 
scope of the quantified variable.  

Def 5.7 Let A be a formula.  An occurrence of a variable x in A is a 
free variable of A iff x is not within the scope of a quantified variable x.  

Notation: A(x1,…xn) indicates that the set of free variables of the formula 
A is a subset of {x1,… xn}.  A variable which is not free is bound.
If a formula has no free variable it is closed
If {x1,…,xn} are all the free variables of A, the universal closure of A is 
∀x1… ∀xn A and the existential closure is ∃x1… ∃xn A

Ex 5.8 p(x,y), ∃ y p(x,y), ∀x ∃y p(x,y)
Ex 5.9 

In (∀x p(x)) Æ q(x), the occurrence of x in p(x) is bound and the 
occurrence in q(x) is free.  The universal closure is ∀x (∀xp(x) Æ q(x)).
Obviously, it would have been better to write the formula as ∀xp(x)Æ q(y) 
where y is the free variable
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Interpretations (1/5)
Def 5.10  Let U be a set of formulas s.t. {p1,…pm} are all the 
predicate letters and {a1,…, ak} are all the constant symbols 
appearing in U.  An interpretation I is a triple (D, {R1,…Rm}, 
{d1,…,dk}), where 

D is a non-empty set, 
Ri is an ni-ary relation on D that is assigned to the ni-ary predicate pi

Notation: pi
I = Ri

di ∈ D is an element of D that is assigned to the constant ai

Notation: ai
I = di

Ex 5.11.  Three numerical interpretations for ∀x p(a,x):
I1= (N, {≤}, {0}), I2=(N, {≤}, {1}). I3=(Z, {≤}, {0}).
I4=(S, {substr},{“”}) where S is the set of strings on some alphabet
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Interpretations (2/5)
Def 5.12 Let I be an interpretation.  An assignment σI : V → D is a 
function which maps every variable to an element of the domain of I.  
σI[xi ← di] is an assignment that is the same as σI except that xi is 
mapped to di

Def 5.13 Let A be a formula, I an interpretation and σI an assignment.  
vσI

(A), the truth value of A under σI is defined by induction on the 
structure of A:

Let A = pk(c1,…,cn) be an atomic formula where each ci is either a variable 
xi or a constant ai.  vσI

(A) = T iff 
<d1,…dn> ∈ Rk where Rk is the relation assigned by I to pk and 
di is the domain element assigned to ci, either 

by I if ci is a constant or
by σI if ci is variable

vσI
(¬A)= T iff vσI

(A)= F
vσI

(A1 Ç A2) iff vσI
(A1)= T or vσI

(A2)= T
vσI

(∀x A1) = T iff vσI[x ← d](A1)= T for all d ∈ D
vσI

(∃x A1) = T iff vσI[x ← d](A1)= T for some d ∈ D
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Interpretations (3/5)
Thm 5.14 Let A be a closed formula.  Then vσI

(A) does not depend on σI .  
In such cases, we use simply vI(A) instead of vσI

(A)
(important!) Thm 5.15 Let A’ = A(x1,…,xn) be a non-closed formula and let 
I be an interpretation. Then:

vσI
(A’)=T for some assignment σI iff vI(∃x1…∃xn A’) = T

vσI
(A’)=T for all assignment σI iff vI(∀x1… ∀xn A’) = T

Thm 5.15 is important since we have many chances to add or remove 
quantified variables to and from formula during proofs.

Def 5.16  A closed formula A is true in I or I is a model for A, if vI(A) = T.
Notation: I ² A
Note that we overload ² with usual logical consequence as in propositional 
logic

{A1, A2, A3} ² A
Def 5.18  A closed formula A is satisfiable if for some interpretation I,      
I ² A.  A is valid if for all interpretations I, I ² A

Notation: ² A. 
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Interpretation (4/5)
Ex 5.19 ² (∀x p(x)) → p(a)

Suppose that it is not.  Then there must be an interpretation 
I = (D, {R}, {d}) such that vI(∀x p(x)) = T and vI(p(a)) = F
By Thm 5.15, vσI

(p(x)) = T for all assignments σI, in particular for 
the assignment σ’I that assigns d to x (i.e. vσ’I

(p(x)) = T).  But p(a) 
is closed, so vσ’I

(p(a)) = vI(p(a)) = F, a contradiction
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Interpretation (5/5)


