
Intro. to Logic
CS402

1

 Propositional Calculus

- Semantics (1/3)
Moonzoo Kim

CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Intro. to Logic
CS402

2

Overview

 2.1 Boolean operators

 2.2 Propositional formulas

 2.3 Interpretations

Intro. to Logic
CS402

3

Boolean Operators

 A proposition (p, q, r, …) in a propositional calculus can
get a boolean value (i.e. true or false)

 Propositional formula can be built by combining smaller
formula with boolean operators such as :, /\, \/

 How many different unary boolean operators exist?

 How many different binary boolean operators exist?

p o1 o2 o3 o4 …

T T T F F

F T F T F

Binary Boolean Operators

Intro. to Logic
CS402

4

Intro. to Logic
CS402

5

Boolean Operators

op name symbol op name symbol

o2 disjunction \/ o15

nor #

o8 conjunction /\ o9 nand "

o5 implication ! o12

o3 reverse

implication

Ã o14

o7 equivalence $ o10 exclusive or ©

Intro. to Logic
CS402

6

 The first five binary operators can all be defined in terms

of any one of them plus negation

 Nand or nor by itself is sufficient to define all other

operators.

 The choice of an interesting set of operators depends on

the application

 Mathematics is generally interested in one-way logical deduction

(given a set of axioms, what do they imply?).

 So implication together with negation are chosen as the basic

operators

Boolean Operators

Intro. to Logic
CS402

7

Propositional formulas

 Def 2.1 A formula fml 2F in the propositional calculus is a word that
can be derived from the following grammar, starting from the initial
non-terminal fml

1. fml ::= p for any p 2 P

2. fml ::= : fml

3. fml ::=fml op fml where op 2 { \/, /\, ! , Ã , $, #, ", © }

 Each derivation of a formula from a grammar can be represented by a
derivation tree that displays the application of the grammar rules to the
non-terminals

 non-terminals: symbols that occur on the left-hand side of a rule

 terminal: symbols that occur on only the right-hand side of a rule

 From the derivation tree we can obtain a formation tree

 by replacing an fml non-terminal by the child that is an operator or an atom

Intro. to Logic
CS402

8

Ambiguous representation of formulas

Intro. to Logic
CS402

9

Formulas created by a Polish notation

 There will be no ambiguity if the linear
sequence of symbols is created by a
preorder traversal of the formal tree

 Visit the root, visit the left subtree, visit
the right subtree

 $! p q ! :p :q

 ! p $ q : ! :p :q

 Polish notation is used in the
internal representation of an
expression in a computer
 advantage: the expression can be

executed in the linear order the
symbols appear

 If we rewrite the first
formula from backwards

 q: p : ! qp ! $

 can be directly compiled
to the following
sequence of instructions

Load q

Negate

Load p

Negate

Imply

load q

Load p

Imply

Equiv

Intro. to Logic
CS402

10

Other ways to remove ambiguity

 Use parenthesis

 Define precedence and associativity

 The precedence order

 : > /\ > " > \/ > # > ! > $

 Operators are assumed to associate to the right

 a ! b ! c means (a ! (b ! c))

 a\/ b\/ c means (a\/(b\/c))

 Some textbook considers /\, \/, $ as associate to the left. So be

careful.

Intro. to Logic
CS402

11

Structural induction

 Theorem 2.5. To show property(A) for all formulas A
2 F, it suffices to show:

 base case:

 property(p) for all atoms p 2 P

 induction step:

 Assuming property(A), the property(:A) holds

 Assuming property(A1) and property(A2), then property(A1 op

A2) hold, for each of the binary operators

 Example

 Prove that every propositional formula can be equivalently

expressed using only "

Intro. to Logic
CS402

12

Interpretations

 Def 2.6 An assignment º is a function º:P ! {T,F}

 that is º assigns one of the truth values T or F to every atom

 From now on we use two new syntax terms, “true” and “false”

 fml ::= true | false where º(true) = T and º(false) = F

 note that we need to distinguish “true” from T and “false” from F

 “true” and “false” are syntactic terms in propositional logic, but T and F

are truth values

 Note that an assignment º can be extended to a function

º:F ! {T,F}, mapping formulas to truth values by the

inductive definition.

 º is called an interpretation

Intro. to Logic
CS402

13

Interpretations

 Inductive truth value calculation for given formula A

 Theorem 2.9 An assignment can be extended to exactly one interpretation

 Theorem 2.10 Let P’ = {pi1, …,pin} µ P be the atoms appearing in A 2 F.

Let º1 and º2 be assignments that agree on P’, that is º1(pik) = º2(pik) for all

pik2 P’. Then the interpretations agree on A, that is º1(A) = º2(A).

Intro. to Logic
CS402

14

Examples

