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Overview 

 2.1 Boolean operators 

 2.2 Propositional formulas 

 2.3 Interpretations 



Intro. to Logic 
CS402    

3 

Boolean Operators 

 A proposition (p, q, r, …) in a propositional calculus can 
get a boolean value (i.e. true or false) 

 Propositional formula can be built by combining smaller 
formula with boolean operators such as :, /\, \/ 

 How many different unary boolean operators exist? 

 

 

 

 

 

 How many different binary boolean operators exist? 

 

p o1 o2 o3 o4 … 

T T T F F 

F T F T F 



Binary Boolean Operators 
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Boolean Operators 

op name symbol op name symbol 

o2 disjunction \/ o15 

 

nor # 

o8 conjunction /\ o9 nand " 

o5 implication ! o12 

o3 reverse 

implication 

Ã  o14 

o7 equivalence $ o10 exclusive or ©  
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 The first five binary operators can all be defined in terms 

of any one of them plus negation 

 Nand or nor by itself is sufficient to define all other 

operators. 

 The choice of an interesting set of operators depends on 

the application 

 Mathematics is generally interested in one-way logical deduction 

(given a set of axioms, what do they imply?). 

 So implication together with negation are chosen as the basic 

operators  

Boolean Operators 
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Propositional formulas 

 Def 2.1 A formula fml 2F  in the propositional calculus is a word that 
can be derived from the following grammar, starting from the initial 
non-terminal fml 

1. fml ::= p for any p 2 P 

2. fml ::= : fml 

3. fml ::=fml op fml where op 2 { \/, /\, ! , Ã , $, #, ", ©  } 

 Each derivation of a formula from a grammar can be represented by a 
derivation tree that displays the application of the grammar rules to the 
non-terminals 

 non-terminals: symbols that occur on the left-hand side of a rule 

 terminal: symbols that occur on only the right-hand side of a rule 

 From the derivation tree we can obtain a formation tree 

 by replacing an fml non-terminal by the child that is an operator or an atom 
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Ambiguous representation of formulas 
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Formulas created by a Polish notation  

 There will be no ambiguity if the linear 
sequence of symbols is created by a 
preorder traversal of the formal tree 

 Visit the root, visit the left subtree, visit 
the right subtree 

 $ ! p q ! :p :q 

 ! p $ q : ! :p :q 

 Polish notation is used in the 
internal representation of an 
expression in a computer 
 advantage: the expression can be 

executed in the linear order the 
symbols appear  

 

 If we rewrite the first 
formula from backwards 

 q: p : ! qp ! $  

 can be directly compiled 
to the following 
sequence of instructions 

Load q 

Negate 

Load p 

Negate 

Imply 

load q 

Load p 

Imply 

Equiv 
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Other ways to remove ambiguity 

 Use parenthesis 

 Define precedence and associativity 

 The precedence order 

  : > /\ > " > \/ > # > ! > $ 

 Operators are assumed to associate to the right 

 a ! b ! c  means (a ! (b ! c)) 

 a\/ b\/ c means (a\/(b\/c)) 

 Some textbook considers /\, \/, $ as associate to the left.  So be 

careful. 
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Structural induction 

 Theorem 2.5. To show property(A) for all formulas A 
2 F, it suffices to show: 

 base case:  

 property(p) for all atoms p 2 P 

 induction step: 

 Assuming property(A), the property(:A) holds 

 Assuming property(A1) and property(A2), then property(A1 op 

A2) hold, for each of the binary operators 

 Example 

 Prove that every propositional formula can be equivalently 

expressed using only " 
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Interpretations 

 Def 2.6 An assignment º is a function º:P ! {T,F} 

 that is º assigns one of the truth values T or F to every atom 

 From now on we use two new syntax terms, “true” and “false” 

 fml ::= true | false where º(true) = T and º(false) = F 

 note that we need to distinguish “true” from T and “false” from F 

 “true” and “false” are syntactic terms in propositional logic, but T and F 

are truth values 

 Note that an assignment º can be extended to a function 

º:F ! {T,F}, mapping formulas to truth values by the 

inductive definition.  

 º is called an interpretation 
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Interpretations 

 Inductive truth value calculation for given formula A  

 Theorem 2.9 An assignment can be extended to exactly one interpretation 

 Theorem 2.10 Let P’ = {pi1, …,pin} µ  P be the atoms appearing in A 2 F.  

Let º1 and º2 be assignments that agree on P’, that is º1(pik) = º2(pik) for all 

pik2 P’. Then the interpretations agree on A, that is º1(A) = º2(A). 
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Examples 


