Propositional Calculus - Semantics (3/3)

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Overview

- 2.1 Boolean operators
- 2.2 Propositional formulas
- 2.3 Interpretations
- 2.4 Logical Equivalence and substitution
- 2.5 Satisfiability, validity, and consequence
- 2.6 Semantic tableaux
- 2.7 Soundness and completeness

- The method of semantic tableaux is a relatively efficient algorithm for deciding satisfiability in the propositional calculus.
 - Search systematically for a model.
 - If one is found, the formula is satisfiable; otherwise, it is unsatisfiable.
- This method is the main tool for proving general theorems about the calculus.

Definition 2.43

- A literal is an atom or a negation of an atom.
- An atom is a positive literal and the negation of an atom is a negative literal.
- For any atom p, {p, ¬p} is a complementary pair of literals.
- For any formula A, {A, ¬A} is a complementary pair of formulas.
- A is the complement of ¬A and ¬A is the complement of A.

- Analyze the satisfiablity of $A = p \land (\neg q \lor \neg p)$ $\nu(A) = T$ iff both $\nu(p) = T$ and $\nu(\neg q \lor \neg p) = T$. Hence, $\nu(A) = T$ if and only if either:
 - 1. $\nu(p) = T$ and $\nu(\neg q) = T$ or
 - 2. $\nu(p) = T \text{ and } \nu(\neg p) = T$
 - → {p, ¬ p} or {p, ¬ q}

Reduce the question of the satisfiability of formula *A* to question about the satisfiability of sets of literals. (top-down approach)

- Formula $B=(p \lor q) \land (\neg p \land \neg q)$.
- ν (*B*) = *T* iff ν ($p \lor q$) = *T* and ν ($\neg p \land \neg q$) = *T*.
- Hence, $\nu(B) = T$ iff $\nu(p \lor q) = \nu(\neg p) = \nu(\neg q) = T$.
- Hence, ν (*B*) = *T* iff either

1.
$$\nu(p) = \nu(\neg p) = \nu(\neg q) = T$$
, or
2. $\nu(q) = \nu(\neg p) = \nu(\neg q) = T$.

Since both { $p, \neg p, \neg q$ } and { $q, \neg p, \neg q$ } contain complementary pairs, B is unsatisfiable.

- The systematic search is easy to conduct if a data structure is used to keep track of the assignments that must be made to subformulas.
- In semantic tableaux, trees are used.
- A leaf containing a complementary set of literals will marked ×, while a satisfiable leaf will be marked •.

$$p \land (\neg q \lor \neg p)$$

$$\downarrow$$

$$p, \neg q \lor \neg p$$

$$\swarrow$$

$$p, \neg q \qquad \qquad \searrow$$

$$p, \neg p \qquad \qquad p, \neg p$$

$$\odot \qquad \qquad \times$$

$$(p \lor q) \land (\neg p \land \neg q)$$

$$\downarrow$$

$$p \lor q, \neg p \land \neg q$$

$$\downarrow$$

$$p \lor q, \neg p, \neg q$$

$$\swarrow$$

$$p, \neg p, \neg q$$

$$q, \neg p, \neg q$$

$$\times$$

$$x$$

$$(p \lor q) \land (\neg p \land \neg q)$$

$$\downarrow$$

$$p \lor q, \neg p \land \neg q$$

$$\downarrow$$

$$p \lor q, \neg p, \neg q$$

$$\swarrow$$

$$p, \neg p, \neg q$$

$$\chi$$

$$x$$

$$\downarrow$$

$$(p \lor q) \land (\neg p \land \neg q)$$

$$\downarrow$$

$$p \lor q, \neg p \land \neg q$$

$$\swarrow$$

$$p, \neg p \land \neg q$$

$$q, \neg p \land \neg q$$

$$\downarrow$$

$$p, \neg p, \neg q$$

$$q, \neg p, \neg q$$

$$\chi$$

$$x$$

- α -formulas are conjuctive and are satisfiable only if both subformulas α_1 and α_2 are satisfied
- β -formulas are disjuctive and are satisfied even if only one of the subformulas β_1 or β_2 is satisfiable.

α	α_1	α2
$\neg \neg A_1$	A_1	
$A_1 \wedge A_2$	A_1	A ₂
$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$
$\neg \left(A_{1} \rightarrow A_{2} \right)$	A_1	$\neg A_2$
$\neg (A_1 \uparrow A_2)$	A_1	<i>A</i> ₂
$A_1 \downarrow A_2$	$\neg A_1$	$\neg A_2$
$A_1 \leftrightarrow A_2$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$
$\neg (A_1 \oplus A_2)$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$

β	β_1	β ₂
$\neg (B_1 \wedge B_2)$	$\neg B_1$	$\neg B_2$
$B_1 \vee B_2$	B_1	<i>B</i> ₂
$B_1 \rightarrow B_2$	$\neg B_1$	<i>B</i> ₂
$B_1 \uparrow B_2$	$\neg B_1$	$\neg B_2$
$\neg (B_1 \downarrow B_2)$	B_1	<i>B</i> ₂
$\neg (B_1 \leftrightarrow B_2)$	$\neg (B_1 \rightarrow B_2)$	$\neg (B_2 \rightarrow B_1)$
$B_1 \oplus B_2$	$\neg (B_1 \rightarrow B_2)$	$\neg \left(B_2 \rightarrow B_1\right)$

Algorithm 2.46 (Construction of a semantic tableau)
 Input: A formula A of the propositional calculus.
 Output: A semantic tableau T for A all of whose leaves are marked.

 \mathcal{T} for A is a tree each node of which will be labeled with a set of formulas

- U(I): the set of formula of leaf I.
- The construction terminates when all leaves are marked \times or \odot .

- If U(l) is a set of literals, check if there is a complementary pair of literals in U(l). If so, mark the leaf closed ×; if not, mark the leaf as open ⊙.
- If U(l) is not a set of literals, choose a formula in U(l) which is not a literal.
 - If the formula is an α−formula, create a new node l' as a child of l and label l' with U(l') = (U(l) {α}) ∪ {α₁, α₂}.
 - If the formula is a β –formula, create two new nodes l' and l" as children of l. Label l' with U(l') = (U(l) {β}) ∪ {β₁}, and label l" with U(l") = (U(l) {β}) ∪ {β₂}.

Definition 2.47

- A tableau whose construction has terminated is called a completed tableau.
- A completed tableau is closed if all leaves are marked closed (x). Otherwise, it is open.

Theorem 2.48

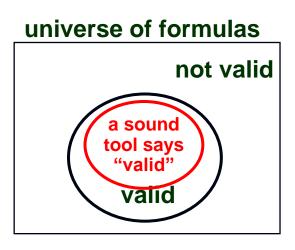
The construction of a semantic tableau terminates.

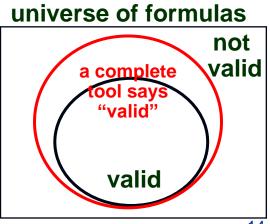
Soundness and completeness

- A tool is sound if the tool says that a formula ϕ is valid (validity, not satisfiability), then ϕ is really valid
 - $\vdash \phi$ implies $\models \phi$
- A tool is complete if ϕ is valid, then the tool says that ϕ is valid
 - $\models \phi \text{ implies } \vdash \phi$
 - Writing in a contra-positive way
 - A tool (or method) is complete if the tool says that ϕ is not valid, then ϕ is really not valid
- Therefore, if a tool is sound and complete, then
 - the tool says that ϕ is valid iff ϕ is really valid
- Note that

CS402

- For every φ, if a dumb tool says that φ is not valid, then that tool is still sound
- For every ϕ , if a dumb tool says that ϕ is valid, then that tool is still complete





Soundness and completeness

Theorem 2.49(Soundness and completeness of <u>semantic tableau method</u>)

- Let T be a completed tableau for a formula A. A is unsatisfiable if and only if T is closed.
- Corollary 2.50 A is satisfiable if and only if \mathcal{T} is open.
- Corollary 2.51 *A* is valid iff the tableau for $\neg A$ closes.
- Corollary 2.52 The method of semantic tableaux is a decision procedure for validity in the propositional calculus.

Soundness

Proof of soundness

- if the tableau \mathcal{T} for a formula A closes, then A is unsatisfiable.
- if a subtree rooted at node n of \mathcal{T} closes, then the set of formulas U(n) labeling n is unsatisfiable.
 - *h*: height of the node n in \mathcal{T} .
 - If h = 0, n is a leaf. Since T closes, U(n) contains a complementary set of literals. Hence U(n) is unsatisfiable.

Soundness

- If h > 0, then some α or β rule was used in creating the child(ren) of n:
 - Case 1: An α –rule was used. $U(n) = \{A_1 \land A_2\} \cup U_0$ and $U(n') = \{A_1, A_2\} \cup U_0$ for some set of formulas U_0 .
 - The height of n' is h-1, so, by induction hypothesis, U(n') is unsatisfiable since the subtree rooted at n' closes.
 - Let ν be an arbitrary interpretation. Since U(n') is unsatisfiable, $\nu(A') = F$ for some $A' \in U(n')$. There are three possibilities: $h \in [A_1 \land A_2] \cup U_0$
 - For some $A_0 \in U_0$, $\nu(A_0) = F$. But $A_0 \in U_0 \subseteq U(n)$.
 - $\nu(A_1) = F$. $\nu(A_1 \land A_2) = F$, and $A_1 \land A_2 \in U(n)$.
 - $\nu(A_2) = F$. $\nu(A_1 \land A_2) = F$, and $A_1 \land A_2 \in U(n)$.

Thus ν (*A*) = *F* for some $A \in U(n)$; U(n) is unsatisfiable.

h-1 $n \in [A_1, A_2] \cup U_0$

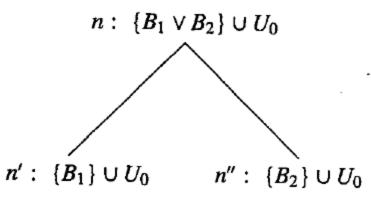
Soundness

Case 2:

A β –rule was used. $U(n) = \{B_1 \lor B_2\} \cup U_0$, $U(n') = \{B_1\} \cup U_0$, and $U(n'') = \{B_2\} \cup U_0$. By the inductive hypothesis, both U(n') and U(n'') are unsatisfiable. Let ν be an arbitrary interpretation. There are two possibilities:

- U(n') and U(n'') are unsatisfiable because $\nu(B_0) = F$ for some $B_0 \in U_0$. U_0 . But $B_0 \in U_0 \subseteq U(n)$.
- Otherwise, $\nu(B_0) = T$ for all $B_0 \in U_0$. Since both U(n') and U(n'') are unsatisfiable, $\nu(B_1) = \nu(B_2) = F$. By definition of ν on \lor , $\nu(B_1 \lor B_2) = F$, and $B_1 \lor B_2 \in U(n)$.

Thus ν (*B*) = *F* for some $B \in U(n)$; since ν was arbitrary, U(n) is unsatisfiable.



Completeness

Proof of completeness

- If A is unsatisfiable then every tableau for A closes.
- Contrapositive statement (Cor 2.50)
 - If some tableau for A is open (i.e., if some tableau for A has an open branch), then the formula A is satisfiable.

Completeness

Definition 2.57

Let U be a set of formulas. U is a Hintikka set iff:

- 1. For all atoms *p* appearing in a formula of *U*, either $p \notin U$ or $\neg p \notin U$.
- 2. If $\alpha \in U$ is an α -formula, then $\alpha_1 \in U$ and $\alpha_2 \in U$.
- 3. If $\beta \in U$ is a β –formula, then $\beta_1 \in U$ or $\beta_2 \in U$.

Theorem 2.59

Let l be an open leaf in a completed tableau \mathcal{T} .

Let $U = \bigcup_i U(i)$, where *i* runs over the set of nodes on the branch from the root to *l*. Then *U* is a Hintikka set.

Completeness

Theorem 2.60(Hintikka's Lemma)

Let U be a Hintikka set. Then U is satisfiable.

Proof of completeness:

Let \mathcal{T} be a completed open tableau for A. Then U, the union of the labels of the nodes on an open branch, is a Hintikka set by Theorem 2.59 and a model can be found for U by Theorem 2.60. Since A is the formula labeling the root, $A \in U$, so the interpretation is a model of A.

