- Soundness & Completeness of H

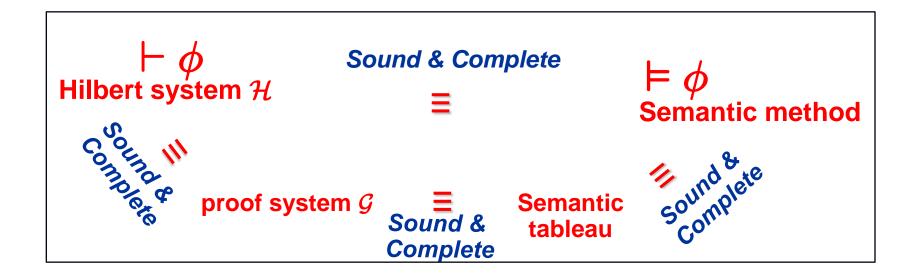
Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Review

- Goal of logic
 - lacksquare To check whether given a formula ϕ is valid
 - To prove a given formula ϕ

Roadmap of the today's class



Soundness of \mathcal{H} (1/2)

- Thm 3.34 \mathcal{H} is sound, that is \vdash A then \models A
 - Proof is by structural induction
 - We show that
 - the all three axioms are valid and that
 - 2. if the premises of MP are valid, so is the conclusion
- Task 1: to prove ⊨ Axiom1, ⊨ Axiom2, and ⊨ Axiom3
 - By showing the semantic tableau of the negated axiom is closed

$$\neg [A \to (B \to A)]$$

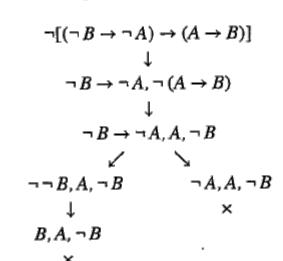
$$\downarrow$$

$$A, \neg (B \to A)$$

$$\downarrow$$

$$A, B, \neg A$$

$$\times$$



Soundness of \mathcal{H} (2/2)

- Task 2: proof by RAA (귀류법)
 - Suppose that MP were not sound.
 - Then there would be a set of formulas $\{A, A \rightarrow B, B\}$ such that A and A \rightarrow B are valid, but B is not valid

$$\frac{\vdash A \qquad \vdash A \rightarrow B}{\vdash B}$$

If B is not valid, there is an interpretation v such that v(B) = F. Since A and A \rightarrow B are valid, for any interpretation, in particular for v, $v(A) = v(A \rightarrow B) = T$. From this we deduce that v(B) = T contradicting the choice of v

Completeness of $\mathcal{H}(1/5)$

- Thm 3.35 H is complete, that is, if ⊨ A then ⊢ A
- Any valid formula can be proved in G (thm 3.8). We will show how a proof in G can be mechanically transformed into a proof in H
- The exact correspondence is that if the set of formulas U is provable in \mathcal{G} then the single formula \vee U is provable in \mathcal{H}
 - A problem is that
 - We can show that $\{ \neg p, p \}$ is an axiom in \mathcal{G} then $\vdash p \lor \neg p$ in \mathcal{H} since this is simply Thm 3.10 ($\vdash A \rightarrow A$)
 - Note that A ∨ B is an abbreviation for ¬ A → B
 - Similarly A \wedge B is an abbreviation for \neg (A \rightarrow \neg B)
 - But if the axiom in \mathcal{G} is {q, ¬p, r, p, s}, we cannot immediately conclude that $\vdash q \lor \neg p \lor r \lor p \lor s$

Completeness of $\mathcal{H}(2/5)$

- Lem 3.36 If U'⊆U and ⊢ ∨U' (in H) then ⊢ ∨U (in H)
- The proof is by induction using Thm 3.31 through 3.33
 - Suppose we have a proof of ∨ U'. By repeated application of Thm 3.31, we can transform this into a proof of ∨ U", where U" is a permutation of the elements of U.
 - Thm 3.31 Weakening $\vdash A \rightarrow A \lor B$ and $\vdash B \rightarrow A \lor B$
 - Now by repeated applications of the commutativity and associativity of disjunction, we can move the elements of U" to their proper places
 - Thm 3.32 Commutativity rule: ⊢ A ∨ B ↔ B ∨ A
 - Thm 3.33 Associativity rule : \vdash A \lor (B \lor C) \leftrightarrow (A \lor B) \lor C

Completeness of $\mathcal{H}(3/5)$

- Completeness proof by induction on the structure of the proof in G
 - We are transforming a proof in \mathcal{G} to a proof in \mathcal{H}
- Task 1:
 - If U is an axiom, it contains a pair of complementary literals and ⊢ ¬p ∨ p can be proved in H. BY Lem 3.36, this may be transformed into a proof of ∨ U.
 - Lem 3.36 If U'⊆U and $\vdash \lor$ U' (in \mathcal{H}) then $\vdash \lor$ U (in \mathcal{H})

Completeness of $\mathcal{H}(4/5)$

Task 2:

- The last step in the proof of U in \mathcal{G} is the application of an α or β rule.
 - $lacksymbol{\square}$ Case 1: An lpha rule was used in $\mathcal G$ to infer $\dfrac{\vdash U_1 \cup \{A_1,A_2\}}{\vdash U_1 \cup \{A_1 \lor A_2\}}$
 - By the inductive hypothesis, $\vdash (\lor U_1 \lor A_1) \lor A_2$ in \mathcal{H} from which we infer $\vdash \lor U_1 \lor (A_1 \lor A_2)$ by associativity
 - \blacksquare Case 2: An β rule was used in $\mathcal G$ to infer

$$\frac{\vdash U_1 \cup \{A_1\} \quad \vdash U_2 \cup \{A_2\}}{\vdash U_1 \cup U_2 \cup \{A_1 \land A_2\}}$$

■ By the inductive hypothesis, $\vdash \lor U_1 \lor A_1$ and $\vdash \lor U_2 \lor A_2$ in \mathcal{H} . From these, we can find a proof of $\vdash \lor U_1 \lor \lor U_2 \lor (A_1 \land A_2)$

Completeness of $\mathcal{H}(5/5)$

From $\vdash \lor U_1 \lor A_1$ and $\vdash \lor U_2 \lor A_2$ in \mathcal{H} , we can find a proof of $\vdash \lor U_1 \lor \lor U_2 \lor (A_1 \land A_2)$ as follows:

- 1. $\vdash \bigvee U_1 \lor A_1$
- 2. $\vdash \neg \bigvee U_1 \rightarrow A_1$
- 3. $\vdash A_1 \rightarrow (A_2 \rightarrow (A_1 \land A_2))$ 4. $\vdash \neg \bigvee U_1 \rightarrow (A_2 \rightarrow (A_1 \land A_2))$
- $5. \vdash A_2 \rightarrow (\neg \bigvee U_1 \rightarrow (A_1 \land A_2))$
- 6. $\vdash \bigvee U_2 \lor A_2$
- 7. $\vdash \neg \bigvee U_2 \rightarrow A_2$
- 8. $\vdash \neg \bigvee U_2 \rightarrow (\neg \bigvee U_1 \rightarrow (A_1 \land A_2))$
- $9. \vdash \bigvee U_1 \lor \bigvee U_2 \lor (A_1 \land A_2)$

Consistency

- Def 3.38 A set of formulas U is inconsistent iff for some formula A, U ⊢ A and U ⊢ ¬ A. U is consistent iff it is not inconsistent
- Thm 3.39 U is inconsistent iff for all A, U ⊢ A
 - Proof: Let A be an arbitrary formula. Since U is incosistent, for some formula B, U ⊢ B and U ⊢ ¬ B.
 - By Thm 3.21 \vdash B \rightarrow (\neg B \rightarrow A). Using MP twice, U \vdash A.
- Corollary 3.40 U is consistent iff for some A, U ⊬ A
- Thm 3.41 U ⊢ A iff U ∪ {¬ A} is inconsistent

Variants of \mathcal{H} (1/2)

- Variant Hilbert systems almost invariably have MP as the only rule. They differ in the choice of primitive operators and axioms
- Axiom 3' \vdash (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)
- Thm 3.44 \mathcal{H} and \mathcal{H} are equivalent
 - A proof of Axiom 3' in \mathcal{H}

 \mathcal{H}' replace Axiom 3 by

- The other direction?
- - $\{ \neg B \rightarrow \neg A, \neg B \rightarrow A, \neg B \} \vdash \neg B$
- - $\{\neg B \rightarrow \neg A, \neg B \rightarrow A, \neg B\} \vdash \neg B \rightarrow A$
 - $3 : \{ \neg B \rightarrow \neg A, \neg B \rightarrow A, \neg B \} \vdash A$
 - 4. $\{ \neg B \rightarrow \neg A, \neg B \rightarrow A, \neg B \} \vdash \neg B \rightarrow \neg A$ $\{ \neg B \rightarrow \neg A, \neg B \rightarrow A, \neg B \} \vdash A \rightarrow B$
 - 6. $\{\neg B \rightarrow \neg A, \neg B \rightarrow A, \neg B\} \vdash B$ 7. $\{\neg B \rightarrow \neg A, \neg B \rightarrow A\} \vdash \neg B \rightarrow B$

11. $\vdash (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$

- 9. $\{\neg B \rightarrow \neg A, \neg B \rightarrow A\} \vdash B$ 10. $\{\neg B \rightarrow \neg A\} \vdash (\neg B \rightarrow A) \rightarrow B$
- **CS402**

Deduction 7 8. $\{\neg B \rightarrow \neg A, \neg B \rightarrow A\} \vdash (\neg B \rightarrow B) \rightarrow B$ Theorem 3.29 MP 8.9 Deduction 9

Assumption

Assumption

Assumption

Contrapositive 4

Deduction 10

MP 1,2

MP 3.5

Variants of \mathcal{H} (2/2)

- H" has the same MP rule but a set of axioms as
 - Axiom $1 \vdash A \lor A \rightarrow A$
 - Axiom 2 ⊢ A → A ∨ B
 - Axiom $3 \vdash A \lor B \rightarrow B \lor A$
 - Axiom $4 \vdash B \rightarrow C \rightarrow (A \lor B \rightarrow A \lor C)$
 - Note that it is also possible to consider ∨ as the primitive binary operator. Then, → is defined by ¬ A ∨ B.
- Yet another variant of Hilbert system H" has only one axiom with MP
 - Meredith's axiom
 - $\qquad (\{[\mathsf{A} \to \mathsf{B}) \to (\, \neg \, \mathsf{C} \to \neg \, \mathsf{D})] \to \mathsf{C}\} \to \mathsf{E}) \to [(\mathsf{E} \to \mathsf{A}) \to (\mathsf{D} \to \mathsf{A})]$

Subformula property

- Def 3.48 A deductive system has the subformula property if any formula appearing in a proof of A is either a subformula of A or the negation of a subformula of A
- - That is why a proof in \mathcal{H} is harder than a proof in \mathcal{G}
- If a deductive system has the subformula property, then mechanical proof may be possible since there exists only
 - there exist only a finite number of subformulas for a finite formula ϕ
 - there exist only a finite number of inference rules

```
\neg p, q, p
                           \neg q, q, p
         \neg (p \lor q), q, p
      \neg (p \lor q), (q \lor p)
      (p \lor q) \to (q \lor p)
         A proof of
(p \lor q) \rightarrow (q \lor p) \text{ in } \mathcal{G}
```

Automated proof

- One desirable property of a deductive system is to generate an automated/mechanical proof
 - We have decision procedure to check validity of a propositional formula automatically (i.e., truth table and semantic tableau)
 - Note that decision procedure requires knowledge on all interpretations (i.e., infinite number of interpretations in general) which is not feasible except propositional logic
- A deductive proof requires only a finite set of sets of formulas, because a deductive proof system analyzes the target formula only, not its interpretations.
 - Many research works to develop (semi)automated theorem prover
- No obvious connection between the formula and its proof in H makes a proof in H difficult (' no mechanical proof)
 - A human being has to rely on his/her brain to select proper axioms

