Linear Temporal Logic Moonzoo Kim CS Dept. KAIST

Motivation for verification

- There is a great advantage in being able to verify the correctness of computer systems
 - This is most obvious in the case of safety-critical systems
 - ex. Cars, avionics, medical devices
 - Also applies to mass-produced embedded devices
 - ex. handphone, USB memory, MP3 players, etc
- Formal verification can be thought of as comprising three parts
 - 1. a system description language
 - 2. a requirement specification language
 - a verification method to establish whether the description of a system satisfies the requirement specification.

Model checking

Model checking

- In a model-based approach, the system is represented by a model *M*. The specification is again represented by a formula ϕ .
 - The verification consists of computing whether \mathcal{M} satisfies $\phi \mathcal{M} \models \phi$
 - Caution: $\mathcal{M} \models \phi$ represents satisfaction, not semantic entailment

In model checking,

- The model \mathcal{M} is a transition systems and
- the property ϕ is a formula in temporal logic

 \blacksquare ex. \Box p, \Box q, \diamondsuit q, \Box \diamondsuit q

4

Linear time temporal logic (LTL)

- LTL models time as a sequence of states, extending infinitely into the future
 - sometimes a sequence of states is called a computation path or an execution path, or simply a path
- Def 3.1 LTL has the following syntax
 - $\phi ::= \mathbf{T} \mid \perp \mid \mathbf{p} \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi$ $\mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \cup \phi \mid \phi \mathsf{W} \phi \mid \phi \mathsf{R} \phi$

where p is any propositional atom from some set Atoms

- Operator precedence
 - the unary connectives bind most tightly. Next in the order come U, R, W, ∧, ∨, and →

 $\textbf{F} \textbf{p} \rightarrow \textbf{G} \textbf{r} \lor \neg \textbf{q} \textbf{U} \textbf{p}$

Semantics of LTL (1/3)

Def 3.4 A transition system (called model) $\mathcal{M} = (S, \rightarrow, L)$

- a set of states S
- a transition relation \rightarrow (a binary relation on S)
 - such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$
- a labeling function L: $S \rightarrow P$ (Atoms)
- Example
 - $S = \{s_0, s_1, s_2\}$
 - $\rightarrow = \{(s_0, s_1), (s_1, s_0), (s_1, s_2), (s_0, s_2), (s_2, s_2)\}$
 - L={ $(s_0, \{p,q\}), (s_1, \{q,r\}), (s_2, \{r\})$ }
- Def. 3.5 A path in a model M = (S, →, L) is an infinite sequence of states s_{i1}, s_{i2}, s_{i3},... in S s.t. for each j≥ 1, s_{ij}→ s_{ij+1}. We write the path as s_{i1}→ s_{i2}→ s_{i2}→ ...
 - From now on if there is no confusion, we drop the subscript index i for the sake of simple description
- We write π^i for the suffix of a path starting at s_{i} .

• ex.
$$\pi^3$$
 is $s_3
ightarrow s_4
ightarrow \dots$

Semantics of LTL (2/3)

- Def 3.6 Let *M* = (S, →, L) be a model and π = s₁ → ... be a path in *M*. Whether π satisfies an LTL formula is defined by the satisfaction relation ⊨ as follows:
 - Basics: $\pi \models \top$, $\pi \nvDash \bot$, $\pi \models p$ iff $p \in L(s_1)$, $\pi \models \neg \phi$ iff $\pi \nvDash \phi$
 - Boolean operators: $\pi \vDash p \land q$ iff $\pi \vDash p$ and $\pi \vDash q$
 - similar for other boolean binary operators
 - $\pi \vDash \mathsf{X} \phi$ iff $\pi^2 \vDash \phi$ (next °)
 - $\pi \models \mathbf{G} \phi$ iff for all $i \ge 1$, $\pi^i \models \phi$ (always \Box)
 - $\pi \models \mathbf{F} \phi$ iff there is some $i \ge 1$, $\pi^i \models \phi$ (eventually \diamondsuit)
 - $\pi \vDash \phi \bigcup \psi$ iff there is some $i \ge 1$ s.t. $\pi^i \vDash \psi$ and for all j=1,...,i-1 we have $\pi^j \vDash \phi$ (strong until)
 - $\pi \vDash \phi \ W \psi$ iff either (weak until)
 - either there is some i \geq 1 s.t. $\pi^i \vDash \psi$ and for all j=1,...,i-1 we have $\pi^j \vDash \phi$
 - or for all $k \geq 1$ we have $\pi^k \vDash \phi$
 - $\pi \vDash \phi \mathbf{R} \psi$ iff either (release)
 - either there is some i \geq 1 s.t. $\pi^i \vDash \phi$ and for all j=1,...,i we have $\pi^j \vDash \psi$
 - or for all k \geq 1 we have $\pi^k \vDash \psi$

examples


```
[]p is satified at all locations in \sigma
<>p is satisfied at all locations in \sigma
[]<>p is satisfied at all locations in \sigma
<>q is satisfied at all locations except s_{n-1} and s_n
Xq is satisfied at s_{i+1} and at s_{i+3}
pUq (strong until) is satisfied at all locations except s_{n-1} and s_n
<>(pUq) (strong until) is satisfied at all locations except s_{n-1} and s_n
<>(pUq) (weak until) is satisfied at all locations
[]<>(pUq) (weak until) is satisfied at all locations
```

in model checking we are typically only interested in whether a temporal logic formula is satisfied for all runs of the system, starting in the initial system state (that is: at s_0)

visualizing LTL formulae

interpreting formulae...

LTL: (<>(b1 && (!b2 U b2))) -> []!a3

another example

LTL: (<>b1) -> (<>b2)

