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Semantics of LTL (3/3) 
 Def 3.8 Suppose M = (S, !, L) is a model, s 2 S, and Á 

an LTL formula.  We write M,s ² Á if for every execution 
path ¼ of M starting at s, we have ¼ ² Á 
 If M is clear from the context, we write s ² Á 

 Example 
 s0 ² p Æ q since ¼ ² p Æ q for every path ¼ beginning in s0 
 s0 ² :r, s0 ² > 
 s0 ² X r, s0 2 X (q Æ r) 
 s0 ² G :(p Æ r), s2 ² G r 
 For any s of M, s ² F(:q Æ r) ! F G r 

 Note that s2 satisfies :q Æ r 
 s0 2 G F p 

 s0 ! s1 ! s0 ! s1 … ² G F p 
 s0 ! s2 ! s2 ! s2 … 2 G F p 

 s0 ² G F p ! G F r 
 s0 2 G F r ! G F p 

 
 

M 
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Practical patterns of specification 
 For any state, if a request occurs, then it 

will eventually be acknowledge 
 G(requested ! F acknowledged) 

 A certain process is enabled infinitely 
often on every computation path 
 G F enabled 

 Whatever happens, a certain process 
will eventually be permanently 
deadlocked 
 F G deadlock 

 If the process is enabled infinitely often, 
then it runs infinitely often 
 G F enabled ! G F running 

 An upwards traveling lift at the second 
floor does not change its direction when 
it has passengers wishing to go to the 
fifth floor 
 G (fllor2 Æ directionup Æ 

ButtonPressed5 ! (directionup U floor5) 

 It is impossible to get to a state where a 
system has started but is not ready 
 Á = G :(started Æ :ready) 
 What is the meaning of (intuitive) 

negation of Á ? 
 It is possible to get to such a state 

(startedÆ:ready). 
 There exists a such path that gets to 

such a state. 
 we cannot express this meaning directly 

 LTL has limited expressive power 
 For example, LTL cannot express 

statements which assert the existence 
of a path 
 From any state s, there exists a path ¼ 

starting from s to get to a restart state 
 The lift can remain idle on the third floor 

with its doors closed 
 Computation Tree Logic (CTL) has 

operators for quantifying over paths and 
can express these properties 
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Summary of practical patterns 
G p always p invariance 

F p eventually p guarantee 

p ! (F q) p implies eventually q response 

p ! (q U r) p implies q until r 
 

precedence 

G F p always, eventually p recurrence 
(progress) 

F G p eventually, always p stability (non-
progress) 

F p ! F q eventually p implies eventually q correlation 
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Equivalences between LTL formulas 

 Def 3.9 Á ≡ Ã if for all models M and all paths ¼ in M: ¼ ² Á iff ¼ ² Ã 

 :G Á ≡ F :Á, :F Á ≡ G :Á, :X Á ≡ X :Á 

 : (Á U Ã) ≡ :Á R :Ã, :(Á R Ã) ≡ :Á U :Ã 

 F (Á Ç Ã) ≡ F Á Ç F Ã 

 G (Á Æ Ã) ≡ G Á Æ G Ã 

 F Á ≡ T U Á, G Á ≡ ? R Á 

 Á U Ã ≡ Á W Ã Æ F Ã 

 Á W Ã ≡ Á U Ã Ç G Á  

 Á W Ã ≡ Ã R (Á Ç Ã) 
 Á R Ã ≡ Ã W (Á Æ Ã) 
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Adequate sets of connectives for LTL (1/2) 

 X is completely orthogonal to the other connectives 
 X does not help in defining any of the other connectives. 
 The other way is neither possible 

 Each of the sets {U,X}, {R,x}, {W,X} is adequate 
 {U,X} 

 Á R Ã ≡ : (: Á U : Ã) 
 Á W Ã ≡ Ã R (Á Ç Ã) ≡ : (:Ã U :(Á Ç Ã)) 

 {R,X} 
 Á U Ã ≡ : (:Á R :Ã) 
 Á W Ã ≡ Ã R (Á Ç Ã) 

 {W,X} 
 Á U Ã ≡ : (: Á R : Ã) 
 Á R Ã ≡ Ã W (Á Æ Ã) 
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Adequate sets of connectives for LTL (2/2) 

 Thm 4.10  Á U Ã ≡ :(:Ã U (:Á Æ :Ã)) Æ F Ã 

 Proof: take any path s0 ! s1 ! s2 ! … in any model 
 Suppose s0 ² Á U Ã 

 Let n be the smallest number s.t. sn ² Ã 
 We know that such n exists from Á U Ã.  Thus, s0 ² F Ã 

 For each k < n, sk ² Á since Á U Ã 

 We need to show s0 ² :(:Ã U (:Á Æ :Ã))  
 case 1: for all i, si 2 :Á Æ :Ã.  Then, s0 ² :(:Ã U (:Á Æ :Ã))   
 case 2: for some i, si ² :Á Æ :Ã. Then, we need to show 

 (*)for each i >0, if si ² :Á Æ :Ã, then there is some j < i with sj 2 :Ã (i.e. sj ² Ã) 
 Take any i >0 with si ² :Á Æ :Ã. We know that i > n since s0 ² Á U Ã. So we can 

take j=n and have sj ² Ã 
 Conversely, suppose s0 ² :(:Ã U (:Á Æ :Ã)) Æ F Ã 

 Since s0 ² F Ã, we have a minimal n as before s.t. sn ² Ã 
 case 1: for all i, si 2 :Á Æ :Ã (i.e. si ² Á Ç Ã).  Then s0 ² Á U Ã 

 case 2: for some i, si ² :Á Æ :Ã.  We need to prove for any i <n, si ² Á 

 Suppose si 2 Á (i.e., si ² :Á ). Since n is minimal, we know si ² :Ã.  So by (*) 
there is some j <i<n with sj ² Ã, contradicting the minimality of n. Contradiction 
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