
Intro. to Logic 
CS402    

1 

 
 Temporal Logic  
- Model Checking 

 
Moonzoo Kim 

CS Dept. KAIST 
  

moonzoo@cs.kaist.ac.kr 



Intro. to Logic 
CS402    

2 

Mutual exclusion example 

 When concurrent processes share a resource, it may be 
necessary to ensure that they do not have access to the 
common resource at the same time 
 We need to build a protocol which allows only one process to 

enter critical section 
 Requirement properties 

 Safety:  
 Only one process is in its critical section at anytime 

 Liveness:  
 Whenever any process requests to enter its critical section, it will 

eventually be permitted to do so 
 Non-blocking:  

 A process can always request to enter its critical section 
 No strict sequencing: 

 processes need not enter their critical section in strict sequence 
 



Intro. to Logic 
CS402    

3 

1st model  
 We model two processes 

 each of which is in  
 non-critical state (n) or 
 trying to enter its critical state 

(t) or 
 critical section (c) 

 No self edges 
 each process executes like 

n! t ! c ! n ! … 
 but the two processes 

interleave with each other 
 only one of the two 

processes can make a 
transition at a time 
(asynchronous interleaving) 
 



Intro. to Logic 
CS402    

4 

1st model for mutual exclusion 

 Safety: s0 ² G : (c1 Æ c2) 
 Liveness s0 2 G(t1 ! F c1) 

 see s0!s1!s3!s7!s1!s3 !s7… 
 Non-blocking 

 for every state satisfying ni,  
 there is a successor satisfying ti 

 s0 satisfies this property 
 We cannot express this property  
 in LTL but in CTL 

 Note that LTL specifies that Á is satisfied for all paths  
 No strict ordering 

 there is a path where c1 and c2 do not occur in strict order  
 Complement of this is 

 G(c1 ! c1 W (:c1 Æ :c1 W c2)) 
 anytime we get into a c1 state, either that condition persists indefinitely, or it ends 

with a non-c1 state and in that case there is no further c1 state unless and until we 
obtain a c2 state 



Intro. to Logic 
CS402    

5 

2nd model for mutual exclusion 

 All 4 properties are satisfied 
 Safety 
 Liveness 
 Non-blocking 
 No strict sequencing 



Intro. to Logic 
CS402    

6 

NuSMV model checker 

 NuSMV programs consist of one or more modules. 
 one of the modules must be called main 

 Modules can declare variables and assign to them. 
 Assignments usually give the initial value of a variable x 

(init(x)) and its next value (next(x)) as an expression in 
terms of the current values of variables. 
 this expression can be non-deterministic 

 denoted by several expressions in braces, or no assignment at all 
 



Intro. to Logic 
CS402    

7 

Example 
 request is under-specified, i.e., 

not controlled by the program 
 request is determined (randomly) 

by external environment 
 thus, whole program works non-

deterministically 
 Case statement is evaluated 

top-to-bottom 

MODULE main 
VAR 
  request: boolean; 
  status: {ready,busy}; 
ASSIGN 
  init(status) := ready; 
  next(status) := case 
                          request : busy; 
                          1: {ready,busy}; 
   esac; 
LTLSPEC 
  G(request -> F status=busy) 
 



Intro. to Logic 
CS402    

8 

Modules in NuSMV 

 A module is instantiated when a variable 
having that module name as its type is 
declared. 

 A 3 bit counter increases from 000 to 111 
repeatedly 
 Req. property 

 infinitely setting carry-out of most significant 
bit as 1 

 By default, modules in NuSMV are 
composed synchronously 
 there is a global clock and, each time it ticks, 

each of the modules executes in parallel 
 By use of the ‘process’ keyword, it is 

possible to compose the modules 
asynchronously 


	� Temporal Logic �- Model Checking��Moonzoo Kim�CS Dept. KAIST� �moonzoo@cs.kaist.ac.kr
	Mutual exclusion example
	1st model 
	1st model for mutual exclusion
	2nd model for mutual exclusion
	NuSMV model checker
	Example
	Modules in NuSMV

