
Intro. to Logic
CS402

1

 Temporal Logic
- Model Checking

Moonzoo Kim

CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Intro. to Logic
CS402

2

Mutual exclusion example

 When concurrent processes share a resource, it may be
necessary to ensure that they do not have access to the
common resource at the same time
 We need to build a protocol which allows only one process to

enter critical section
 Requirement properties

 Safety:
 Only one process is in its critical section at anytime

 Liveness:
 Whenever any process requests to enter its critical section, it will

eventually be permitted to do so
 Non-blocking:

 A process can always request to enter its critical section
 No strict sequencing:

 processes need not enter their critical section in strict sequence

Intro. to Logic
CS402

3

1st model
 We model two processes

 each of which is in
 non-critical state (n) or
 trying to enter its critical state

(t) or
 critical section (c)

 No self edges
 each process executes like

n! t ! c ! n ! …
 but the two processes

interleave with each other
 only one of the two

processes can make a
transition at a time
(asynchronous interleaving)

Intro. to Logic
CS402

4

1st model for mutual exclusion

 Safety: s0 ² G : (c1 Æ c2)
 Liveness s0 2 G(t1 ! F c1)

 see s0!s1!s3!s7!s1!s3 !s7…
 Non-blocking

 for every state satisfying ni,
 there is a successor satisfying ti

 s0 satisfies this property
 We cannot express this property
 in LTL but in CTL

 Note that LTL specifies that Á is satisfied for all paths
 No strict ordering

 there is a path where c1 and c2 do not occur in strict order
 Complement of this is

 G(c1 ! c1 W (:c1 Æ :c1 W c2))
 anytime we get into a c1 state, either that condition persists indefinitely, or it ends

with a non-c1 state and in that case there is no further c1 state unless and until we
obtain a c2 state

Intro. to Logic
CS402

5

2nd model for mutual exclusion

 All 4 properties are satisfied
 Safety
 Liveness
 Non-blocking
 No strict sequencing

Intro. to Logic
CS402

6

NuSMV model checker

 NuSMV programs consist of one or more modules.
 one of the modules must be called main

 Modules can declare variables and assign to them.
 Assignments usually give the initial value of a variable x

(init(x)) and its next value (next(x)) as an expression in
terms of the current values of variables.
 this expression can be non-deterministic

 denoted by several expressions in braces, or no assignment at all

Intro. to Logic
CS402

7

Example
 request is under-specified, i.e.,

not controlled by the program
 request is determined (randomly)

by external environment
 thus, whole program works non-

deterministically
 Case statement is evaluated

top-to-bottom

MODULE main
VAR
 request: boolean;
 status: {ready,busy};
ASSIGN
 init(status) := ready;
 next(status) := case
 request : busy;
 1: {ready,busy};
 esac;
LTLSPEC
 G(request -> F status=busy)

Intro. to Logic
CS402

8

Modules in NuSMV

 A module is instantiated when a variable
having that module name as its type is
declared.

 A 3 bit counter increases from 000 to 111
repeatedly
 Req. property

 infinitely setting carry-out of most significant
bit as 1

 By default, modules in NuSMV are
composed synchronously
 there is a global clock and, each time it ticks,

each of the modules executes in parallel
 By use of the ‘process’ keyword, it is

possible to compose the modules
asynchronously

	� Temporal Logic �- Model Checking��Moonzoo Kim�CS Dept. KAIST� �moonzoo@cs.kaist.ac.kr
	Mutual exclusion example
	1st model
	1st model for mutual exclusion
	2nd model for mutual exclusion
	NuSMV model checker
	Example
	Modules in NuSMV

