
Intro. to Logic
CS402

1

 Temporal Logic

- Branching-time logic (2/2)
Moonzoo Kim

CS Dept. KAIST

Intro. to Logic
CS402

2

Syntax and semantics of CTL

 M,s ² AX Á iff for all s1 s.t. s ! s1
we have M, s1 ² Á. Thus AX says
“in every next state”

 M,s ² EX Á iff for some s1 s.t. s !
s1 we have M, s1 ² Á. Thus EX
says “in some next state”

 M,s ² AG Á iff for all paths
s1!s2!s3!... where s1 equals s,
and all si along the path, we have
M,si ² Á.

 M,s ² EG Á iff there is a path
s1!s2!s3!... where s1 equals s,
and all si along the path, we have
M,si ² Á.

 Def 3.12 Á = ? | > | p | : Á | Á Æ Á | Á Ç Á | Á ! Á |
 AX Á | EX Á | AF Á | EF Á | AG Á | EG Á | A (Á U Á) | E (Á U Á)
 Def 3.15 Let M = (S, !, L) be a model for CTL, s in S, Á a CTL formula. The

relation M,s ² Á is defined by structural induction on Á.
 M,s ² AF Á iff for all paths

s1!s2!s3!... where s1 equals s, and
there is some si s.t. M,si ² Á.

 M,s ² EF Á iff there is a path
s1!s2!s3!... where s1 equals s, and
there is some si s.t. M,si ² Á.

 M,s ² A [Á1 U Á2] iff for all paths
s1!s2!s3!... where s1 equals s, that
path satisfies Á1 U Á2

 M,s ² E [Á1 U Á2] iff there is a path
s1!s2!s3!... where s1 equals s, that
path satisfies Á1 U Á2

Intro. to Logic
CS402

3

Practical patterns of specification (1/2)
 It is possible to get to a state where started holds, but ready doesn’t

 EF (started Æ :ready)
 For any state, if a request occurs, then it will eventually be acknowledged

 AG (requested ! AF acknowledged)
 A certain process is enabled infinitely often on every computation path

 AG (AF enabled)
 Whatever happens, a certain process will eventually be permanently

deadlocked
 AF (AG deadlock)

 From any state it is possible to get to a restart state
 AG (EF restart)

 Mutual exclusion protocol
 Non-blocking: a process can always request to
 enter its critical section

 AG (n1 ! EX t1)
 Note that this was not expressible in LTL

 No strict sequencing: processes need not enter
 their critical section in strict sequence.

 EF (c1 Æ E [c1 U (:c1 Æ E[:c2 U c1])])
 This was also not expressible in LTL, though we expressed its negation.

Intro. to Logic
CS402

4

Practical patterns of specification (2/2)

 An upwards travelling lift at the second floor does not change
its direction when it has passengers wishing to go to the fifth
floor:
 AG (floor2 Æ directionup Æ ButtonPressed5 ! A [directionup U floor5])

 The lift can remain idle on the third floor with its dorrs closed
 AG (floor3 Æ idle Æ doorclosed ! EG (floor3 Æ idle Æ doorclosed))

 The property that if the process is enabled infinitely often, then
it runs infinitely often, is not expressible in CTL
 What about AG AF enabled ! AG AF running ?

e r

Intro. to Logic
CS402

5

Equivalence between CTL formulas

 Def 3.16 Two CTL formulas Á and Ã are said to be
semantically equivalent if any state in any model which
satisfies one of them also satisfies the other
 Á ≡ Ã

 : AF Á ≡ EG :Á

 : EF Á ≡ AG : Á

 : AX Á ≡ EX : Á

 AF Á ≡ A [T U Á]
 EF Á ≡ E [T U Á]

 AG Á ≡ Á Æ AX AG Á

 EG Á ≡ Á Æ EX EG Á

 AF Á ≡ Á Ç AX AF Á

 EF Á ≡ Á Ç EX EF Á

 A [Á U Ã] ≡ Ã (Á Æ AX A[Á U Ã])
 E [Á U Ã] ≡ Ã (Á Æ EX E[Á U Ã])
We can define the six connectives on the left in
terms of AX and EX in a non-circular way using
fixed-point characterization of CTL

Intro. to Logic
CS402

6

Adequate sets of CTL connectives

 Thm 3.17 A set of temporal connectives in CTL is
adequate if, and only if, it contains at least one of {AX, EX},
at least one of {EG, AF, AU} and EU

 A[Á U Ã] ≡ A[:(:Ã U (:Á Æ :Ã)) Æ F Ã]
 ≡ :E:[:(:Ã U (:Á Æ :Ã)) Æ F Ã]
 ≡ :E[(:Ã U (:Á Æ :Ã)) Ç G:Ã]
 ≡ :(E [(:Ã U (:Á Æ :Ã)) Ç EG :Ã]

 Note that the proof has intermediate formulas of CTL* which
violates the syntax of CTL

Intro. to Logic
CS402

7

Comparison between LTL and CTL

LTL CTL

Difficulty of
specification

intuitive and easier Difficult and unintuitive

Model checking
complexity

Exponential time Polynomial time

Limitation Cannot specify branching
behavior

Cannot specify a range of
paths

Main target area Requirement property for
software

Requirement property for
hardware

Tools FormalCheck, SPIN,
Intel’s Prover, NuSMV

NuSMV, VIS

	� Temporal Logic �- Branching-time logic (2/2)�Moonzoo Kim�CS Dept. KAIST� �
	Syntax and semantics of CTL
	Practical patterns of specification (1/2)
	Practical patterns of specification (2/2)
	Equivalence between CTL formulas
	Adequate sets of CTL connectives
	Comparison between LTL and CTL

