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Undecidable problems 

It would be remarkable 
indeed if we could make 
an algorithm that could 
examine any program P 
and tell whether P 
would halt. 

In other words, to decide 
whether a given program 
halts or not is, at least, as 
hard as proving the 
Fermat’s last theorem 
which took 300 years 

We know that no such 
algorithm exists –  

Halting problem is 
undecidable 

 Can you tell whether or not the 
following program halts?  
/* Fermat’s last theorem: for n > 2, there 

exists no positive integers x,y,z s.t. xn + 
yn = zn */ 

main() { 

Nat n, total, x, y, z; 

scanf(‘%d”,&n); 

total=3; 

while(1) {/* loop invariant:total= x+y+z*/ 

for(x=1; x<= total-2; x++) { 

for(y=1; y <= total-x-1; y++) { 

     z= total - x -y; 

     if(xn + yn == zn) halt;  

} 

} 

total++;}} 
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Transform of the Halting problem (1/2) 

 It is undecidable to check whether a Turing machine (TM) will halt if 
started on a blank tape (halting problem) 

 To prove the undecidability of predicate logic, we give an algorithm 
which produces a formula ATM in the predicate calculus for every 
Turing machine, s.t. ATM is valid iff a Turing machine halts   

 Note that we do not make a Turing machine M for every predicate formula, 
since it is enough to show that checking some predicate formulas is 
undecidable 

 If we have such an algorithm, it is clear that validity check of predicate 
formula is at least as hard as halting problem (i.e., undecideble) 

A Turing  
machine 

A predicate 
formula ATM 

TM halts $ ATM is valid 

Algorithm to  
transform 



Intro. to Logic 
CS402    

4 

Transform of the Halting problem (2/2) 

 To simplify the proof of the transformation algorithm, we 
work with two-register machines (TRM) rather than 
directly with Turing machine 
 i.e., we will show there exists such ATRM for a two-register machine 

 Thm 5.42 Given a Turing machine that computes a 
function f, a two-register machine can be constructed to 
compute the same function f 

A two register 
machine 

A predeicate 
formula ATRM 

TRM halts $ ATRM is valid 

Algorithm to  
transform 

A Turing  
machine 

Thm 5.42 
TM halts $ TRM halts 
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A two-register machine M 

 Def 5.41 A two-register machine M consists of two registers x and y which 

can hold natural numbers, and a program P = (L0,…,Ln) which is a list of 
instructions.  Ln is the instruction halt, and for 0· I < n, L

i
 is one of: 

 x:= x+1  

 y:= y+1  

 if x = 0 then goto Lj else x := x – 1, 0 ·  j ·  n 

 if y = 0 then goto Lj else y := y – 1, 0 ·  j ·  n 

 An execution sequence of M is a sequence of states sk = (Lik
,x,y), where Lik

 

is the current instruction at sk, and x,y are the contents of x and y.   

 sk+1 is obtained from sk by executing Lik
.   

 The initial state s0 = (Li0
, m,0) = (L0, m,0) for some m.   

 If for some k, sk = (Ln,x,y), the computation of M has halted and M has 

computed y = f(m) 
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Examples 
/* L1 is executed m times and then this program halts*/ 

L0:if x=0 then goto L2 else x:=x-1 

L1:if y=0 then goto L0 else y:=y-1 

L2:halt 

s0 

(L0,2,0) 
s1 

(L1,1,0) 
s2 

(L0,1,0) 
s3 

(L1,0,0) 
s4 

(L0,0,0) 
s5 

(L2,0,0) 

Execution where  
x’s initial value=2 

/* L0 is executed infinitely, i.e., this program never halts */ 

L0:x := x + 1 

L1:if y=0 then goto L0 else y:=y-1 

L2:halt 

s0 

(L0,0,0) 
s1 

(L1,1,0) 
s2 

(L0,1,0) 
s3 

(L1,2,0) 
s4 

(L0,2,0) 

Execution where  
x’s initial value=0 

(note that Li0
= L0, Li1

 = L1, Li2
 = L0, , Li3

 = L1, etc) 
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Validity in the predicate calculus  
 Thm 5.43 (Church) Validity in the predicate calculus is 

undecidable 

 Caution: the proof of Thm 5.43 in the textbook has several flaws… 

 For every two-register machine M, we construct a formula SM 

s.t. SM is valid iff M terminates when started in the state (L0,0,0): 

 SM = (Æ (i=0..n-1)Si Æ  p0(0,0)) ! 9 z1z2 pn(z1,z2) 

 Intuitive meaning of pi is as follows 

 vI(pi(m’,m”)) = T iff there exists some state sk=(Li,m’,m”) 

 Si is defined by cases of the  

     instruction Li 
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Example of SM 

/* y=x+1 for x <= 1* */ 

L0:if x=0 then goto L4 else x=x-1 

L1:y:=y+1 

L2:if x=0 then goto L4 else x=x-1 

L3:y:=y+1 

L4:halt 

SM= (p0(0,0) Æ  

(8x(p0(0,x)!p4(0,x)) Æ  8xy(p0(s(x),y)!p1(x,y)))) Æ  

8xy (p1(x,y)!p2(x,s(y)) Æ  

(8x(p2(0,x)!p4(0,x)) Æ  8xy(p2(s(x),y)!p3(x,y)))) Æ    

8xy(p3(x,y)! p4(x,s(y)) )  

! 

 9 z1z2 p4(z1,z2) 

 Intuitive meaning of SM: 

 Given a two-register machine M,  

 execution of M (Æ i=0..n-1 Si Æ  p0(0,0))  

 reaches (!)  

 the halt instruction (9 z1z2 pn(z1,z2)) 
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TRM halts ! ATRM is valid (1/2) 
 Suppose that the execution s0,…sm of M halts and let I be 

an arbitrary interpretation for SM.  If vI(Si) = F (for  0· i<n) or 
vI(p0(0,0))= F, then trivially vI (SM) = T 

 Thus, we assume that (Æ (i=0..n-1)Si Æ  p0(0,0)) is true  

 since we need only consider interpretations that satisfy the 
antecedent of SM 

 We show by induction on k that vI(9z1z2 pik
(z1,z2)) = T  

 pik
 is the predicate associated with the label Lik 

in state sk 

 Mind the incorrect notation in the textbook where Lk and pk is used 
instead of Lik 

and pik
 

 For k=0, vI(9z1z2 pi0
(z1,z2)) = vI(9z1z2 p0(z1,z2)) = T since 

vI(p0(0,0))=T from the assumption 

s0 s1 sk-1 sk sm 

induction on k (i.e., progress of execution)  
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TRM halts ! ATRM is valid (2/2) 
 For k >0, the result follows by induction by cases according to the 

instruction at Lik-1
 

 For x:= x+1 at Lik-1
:  

 vI(8xy (pik-1
(x,y) ! pik-1+1(s(x),y)))= T by the assumption  

 vI(9z1z2 pik-1
(z1,z2)) = T by the inductive hypothesis  

 From the above two facts,  vI(9z1z2 pik-1+1(s(z1),z2)) = T 

 vI(9z1z2 pik-1+1(s(z1),z2)) = vI(9z1z2 pik
(s(z1),z2)) = T since pik-1+1 = pik

   

 We can conclude vI(9z’1z2 pik
(z’1,z2)) = T since 9x A(f(x)) ! 9x’A(x’).   

 By induction, this holds for all k. 

 For if x=0 then goto Lj else x=x-1 at Lik-1
:  

 … 

 By induction, this holds for all k. 

 Since M halts, in the final state sm, Lim
 = Ln the halt instruction, so 

vI(9z’1z2 pn(z’1,z2)) = T and vI(SM) = T.   

 Since I was arbitrary, SM is valid 
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TRM halts Ã  ATRM is valid  

 Suppose that SM is valid, and consider an interpretation I s.t. 
  I =(N, {P0,…,Pn}, {succ}, {0}) where 

 (x,y) 2 Pi iff (Li,x,y) is reached by the register machine M when started in (L0,0,0) 

 

 We will show that antecedent of SM is true in I. So, the conclusion of SM 
is also true, which means that M reaches the halt instruction since (x,y) 2 
Pi iff (Li,x,y) is reached  
 The initial state is (L0,0,0) so (0,0) 2 P0 and vI(p0(0,0)) = T 

 We will show that if the computation has reached Li, then vI(Si)=T.  
 Assume as an inductive hypothesis that if the computation has reached Li, it 

has done so in a computation of length–1 in state sk-1=(Li,xi,yi), so (xi,yi)2Pi. 

 The proof is by cases on the instruction Li 

 For Li = x:= x+1, the computation can reach the state sk = (Lik
, succ(xi), yi) = (Lik-1+1, 

succ(xi),yi), so vI(Si) = T 

 For Li = if x=0 then goto Lj else x := x -1, …so vI(Si) = T 

 Since SM is assumed valid, vI(9z1z2 pn(z1,z2))=T and vI(pn(m1,m2))=T for 
some natural numbers m1, m2.  Thus M halts and computes m2 = f(0) 

 


