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Undecidable problems 

It would be remarkable 
indeed if we could make 
an algorithm that could 
examine any program P 
and tell whether P 
would halt. 

In other words, to decide 
whether a given program 
halts or not is, at least, as 
hard as proving the 
Fermat’s last theorem 
which took 300 years 

We know that no such 
algorithm exists –  

Halting problem is 
undecidable 

 Can you tell whether or not the 
following program halts?  
/* Fermat’s last theorem: for n > 2, there 

exists no positive integers x,y,z s.t. xn + 
yn = zn */ 

main() { 

Nat n, total, x, y, z; 

scanf(‘%d”,&n); 

total=3; 

while(1) {/* loop invariant:total= x+y+z*/ 

for(x=1; x<= total-2; x++) { 

for(y=1; y <= total-x-1; y++) { 

     z= total - x -y; 

     if(xn + yn == zn) halt;  

} 

} 

total++;}} 
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Transform of the Halting problem (1/2) 

 It is undecidable to check whether a Turing machine (TM) will halt if 
started on a blank tape (halting problem) 

 To prove the undecidability of predicate logic, we give an algorithm 
which produces a formula ATM in the predicate calculus for every 
Turing machine, s.t. ATM is valid iff a Turing machine halts   

 Note that we do not make a Turing machine M for every predicate formula, 
since it is enough to show that checking some predicate formulas is 
undecidable 

 If we have such an algorithm, it is clear that validity check of predicate 
formula is at least as hard as halting problem (i.e., undecideble) 

A Turing  
machine 

A predicate 
formula ATM 

TM halts $ ATM is valid 

Algorithm to  
transform 
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Transform of the Halting problem (2/2) 

 To simplify the proof of the transformation algorithm, we 
work with two-register machines (TRM) rather than 
directly with Turing machine 
 i.e., we will show there exists such ATRM for a two-register machine 

 Thm 5.42 Given a Turing machine that computes a 
function f, a two-register machine can be constructed to 
compute the same function f 

A two register 
machine 

A predeicate 
formula ATRM 

TRM halts $ ATRM is valid 

Algorithm to  
transform 

A Turing  
machine 

Thm 5.42 
TM halts $ TRM halts 
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A two-register machine M 

 Def 5.41 A two-register machine M consists of two registers x and y which 

can hold natural numbers, and a program P = (L0,…,Ln) which is a list of 
instructions.  Ln is the instruction halt, and for 0· I < n, L

i
 is one of: 

 x:= x+1  

 y:= y+1  

 if x = 0 then goto Lj else x := x – 1, 0 ·  j ·  n 

 if y = 0 then goto Lj else y := y – 1, 0 ·  j ·  n 

 An execution sequence of M is a sequence of states sk = (Lik
,x,y), where Lik

 

is the current instruction at sk, and x,y are the contents of x and y.   

 sk+1 is obtained from sk by executing Lik
.   

 The initial state s0 = (Li0
, m,0) = (L0, m,0) for some m.   

 If for some k, sk = (Ln,x,y), the computation of M has halted and M has 

computed y = f(m) 
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Examples 
/* L1 is executed m times and then this program halts*/ 

L0:if x=0 then goto L2 else x:=x-1 

L1:if y=0 then goto L0 else y:=y-1 

L2:halt 

s0 

(L0,2,0) 
s1 

(L1,1,0) 
s2 

(L0,1,0) 
s3 

(L1,0,0) 
s4 

(L0,0,0) 
s5 

(L2,0,0) 

Execution where  
x’s initial value=2 

/* L0 is executed infinitely, i.e., this program never halts */ 

L0:x := x + 1 

L1:if y=0 then goto L0 else y:=y-1 

L2:halt 

s0 

(L0,0,0) 
s1 

(L1,1,0) 
s2 

(L0,1,0) 
s3 

(L1,2,0) 
s4 

(L0,2,0) 

Execution where  
x’s initial value=0 

(note that Li0
= L0, Li1

 = L1, Li2
 = L0, , Li3

 = L1, etc) 
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Validity in the predicate calculus  
 Thm 5.43 (Church) Validity in the predicate calculus is 

undecidable 

 Caution: the proof of Thm 5.43 in the textbook has several flaws… 

 For every two-register machine M, we construct a formula SM 

s.t. SM is valid iff M terminates when started in the state (L0,0,0): 

 SM = (Æ (i=0..n-1)Si Æ  p0(0,0)) ! 9 z1z2 pn(z1,z2) 

 Intuitive meaning of pi is as follows 

 vI(pi(m’,m”)) = T iff there exists some state sk=(Li,m’,m”) 

 Si is defined by cases of the  

     instruction Li 
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Example of SM 

/* y=x+1 for x <= 1* */ 

L0:if x=0 then goto L4 else x=x-1 

L1:y:=y+1 

L2:if x=0 then goto L4 else x=x-1 

L3:y:=y+1 

L4:halt 

SM= (p0(0,0) Æ  

(8x(p0(0,x)!p4(0,x)) Æ  8xy(p0(s(x),y)!p1(x,y)))) Æ  

8xy (p1(x,y)!p2(x,s(y)) Æ  

(8x(p2(0,x)!p4(0,x)) Æ  8xy(p2(s(x),y)!p3(x,y)))) Æ    

8xy(p3(x,y)! p4(x,s(y)) )  

! 

 9 z1z2 p4(z1,z2) 

 Intuitive meaning of SM: 

 Given a two-register machine M,  

 execution of M (Æ i=0..n-1 Si Æ  p0(0,0))  

 reaches (!)  

 the halt instruction (9 z1z2 pn(z1,z2)) 
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TRM halts ! ATRM is valid (1/2) 
 Suppose that the execution s0,…sm of M halts and let I be 

an arbitrary interpretation for SM.  If vI(Si) = F (for  0· i<n) or 
vI(p0(0,0))= F, then trivially vI (SM) = T 

 Thus, we assume that (Æ (i=0..n-1)Si Æ  p0(0,0)) is true  

 since we need only consider interpretations that satisfy the 
antecedent of SM 

 We show by induction on k that vI(9z1z2 pik
(z1,z2)) = T  

 pik
 is the predicate associated with the label Lik 

in state sk 

 Mind the incorrect notation in the textbook where Lk and pk is used 
instead of Lik 

and pik
 

 For k=0, vI(9z1z2 pi0
(z1,z2)) = vI(9z1z2 p0(z1,z2)) = T since 

vI(p0(0,0))=T from the assumption 

s0 s1 sk-1 sk sm 

induction on k (i.e., progress of execution)  
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TRM halts ! ATRM is valid (2/2) 
 For k >0, the result follows by induction by cases according to the 

instruction at Lik-1
 

 For x:= x+1 at Lik-1
:  

 vI(8xy (pik-1
(x,y) ! pik-1+1(s(x),y)))= T by the assumption  

 vI(9z1z2 pik-1
(z1,z2)) = T by the inductive hypothesis  

 From the above two facts,  vI(9z1z2 pik-1+1(s(z1),z2)) = T 

 vI(9z1z2 pik-1+1(s(z1),z2)) = vI(9z1z2 pik
(s(z1),z2)) = T since pik-1+1 = pik

   

 We can conclude vI(9z’1z2 pik
(z’1,z2)) = T since 9x A(f(x)) ! 9x’A(x’).   

 By induction, this holds for all k. 

 For if x=0 then goto Lj else x=x-1 at Lik-1
:  

 … 

 By induction, this holds for all k. 

 Since M halts, in the final state sm, Lim
 = Ln the halt instruction, so 

vI(9z’1z2 pn(z’1,z2)) = T and vI(SM) = T.   

 Since I was arbitrary, SM is valid 
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TRM halts Ã  ATRM is valid  

 Suppose that SM is valid, and consider an interpretation I s.t. 
  I =(N, {P0,…,Pn}, {succ}, {0}) where 

 (x,y) 2 Pi iff (Li,x,y) is reached by the register machine M when started in (L0,0,0) 

 

 We will show that antecedent of SM is true in I. So, the conclusion of SM 
is also true, which means that M reaches the halt instruction since (x,y) 2 
Pi iff (Li,x,y) is reached  
 The initial state is (L0,0,0) so (0,0) 2 P0 and vI(p0(0,0)) = T 

 We will show that if the computation has reached Li, then vI(Si)=T.  
 Assume as an inductive hypothesis that if the computation has reached Li, it 

has done so in a computation of length–1 in state sk-1=(Li,xi,yi), so (xi,yi)2Pi. 

 The proof is by cases on the instruction Li 

 For Li = x:= x+1, the computation can reach the state sk = (Lik
, succ(xi), yi) = (Lik-1+1, 

succ(xi),yi), so vI(Si) = T 

 For Li = if x=0 then goto Lj else x := x -1, …so vI(Si) = T 

 Since SM is assumed valid, vI(9z1z2 pn(z1,z2))=T and vI(pn(m1,m2))=T for 
some natural numbers m1, m2.  Thus M halts and computes m2 = f(0) 

 


