
Intro. to Logic
CS402

1

 Predicate Calculus

- Undecidability of predicate calculus
Moonzoo Kim

CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Intro. to Logic
CS402

2

Undecidable problems

It would be remarkable
indeed if we could make
an algorithm that could
examine any program P
and tell whether P
would halt.

In other words, to decide
whether a given program
halts or not is, at least, as
hard as proving the
Fermat’s last theorem
which took 300 years

We know that no such
algorithm exists –

Halting problem is
undecidable

 Can you tell whether or not the
following program halts?
/* Fermat’s last theorem: for n > 2, there

exists no positive integers x,y,z s.t. xn +
yn = zn */

main() {

Nat n, total, x, y, z;

scanf(‘%d”,&n);

total=3;

while(1) {/* loop invariant:total= x+y+z*/

for(x=1; x<= total-2; x++) {

for(y=1; y <= total-x-1; y++) {

 z= total - x -y;

 if(xn + yn == zn) halt;

}

}

total++;}}

Intro. to Logic
CS402

3

Transform of the Halting problem (1/2)

 It is undecidable to check whether a Turing machine (TM) will halt if
started on a blank tape (halting problem)

 To prove the undecidability of predicate logic, we give an algorithm
which produces a formula ATM in the predicate calculus for every
Turing machine, s.t. ATM is valid iff a Turing machine halts

 Note that we do not make a Turing machine M for every predicate formula,
since it is enough to show that checking some predicate formulas is
undecidable

 If we have such an algorithm, it is clear that validity check of predicate
formula is at least as hard as halting problem (i.e., undecideble)

A Turing
machine

A predicate
formula ATM

TM halts $ ATM is valid

Algorithm to
transform

Intro. to Logic
CS402

4

Transform of the Halting problem (2/2)

 To simplify the proof of the transformation algorithm, we
work with two-register machines (TRM) rather than
directly with Turing machine
 i.e., we will show there exists such ATRM for a two-register machine

 Thm 5.42 Given a Turing machine that computes a
function f, a two-register machine can be constructed to
compute the same function f

A two register
machine

A predeicate
formula ATRM

TRM halts $ ATRM is valid

Algorithm to
transform

A Turing
machine

Thm 5.42
TM halts $ TRM halts

Intro. to Logic
CS402

5

A two-register machine M

 Def 5.41 A two-register machine M consists of two registers x and y which

can hold natural numbers, and a program P = (L0,…,Ln) which is a list of
instructions. Ln is the instruction halt, and for 0· I < n, L

i
 is one of:

 x:= x+1

 y:= y+1

 if x = 0 then goto Lj else x := x – 1, 0 · j · n

 if y = 0 then goto Lj else y := y – 1, 0 · j · n

 An execution sequence of M is a sequence of states sk = (Lik
,x,y), where Lik

is the current instruction at sk, and x,y are the contents of x and y.

 sk+1 is obtained from sk by executing Lik
.

 The initial state s0 = (Li0
, m,0) = (L0, m,0) for some m.

 If for some k, sk = (Ln,x,y), the computation of M has halted and M has

computed y = f(m)

Intro. to Logic
CS402

6

Examples
/* L1 is executed m times and then this program halts*/

L0:if x=0 then goto L2 else x:=x-1

L1:if y=0 then goto L0 else y:=y-1

L2:halt

s0

(L0,2,0)
s1

(L1,1,0)
s2

(L0,1,0)
s3

(L1,0,0)
s4

(L0,0,0)
s5

(L2,0,0)

Execution where
x’s initial value=2

/* L0 is executed infinitely, i.e., this program never halts */

L0:x := x + 1

L1:if y=0 then goto L0 else y:=y-1

L2:halt

s0

(L0,0,0)
s1

(L1,1,0)
s2

(L0,1,0)
s3

(L1,2,0)
s4

(L0,2,0)

Execution where
x’s initial value=0

(note that Li0
= L0, Li1

 = L1, Li2
 = L0, , Li3

 = L1, etc)

Intro. to Logic
CS402

7

Validity in the predicate calculus
 Thm 5.43 (Church) Validity in the predicate calculus is

undecidable

 Caution: the proof of Thm 5.43 in the textbook has several flaws…

 For every two-register machine M, we construct a formula SM

s.t. SM is valid iff M terminates when started in the state (L0,0,0):

 SM = (Æ (i=0..n-1)Si Æ p0(0,0)) ! 9 z1z2 pn(z1,z2)

 Intuitive meaning of pi is as follows

 vI(pi(m’,m”)) = T iff there exists some state sk=(Li,m’,m”)

 Si is defined by cases of the

 instruction Li

Intro. to Logic
CS402

8

Example of SM

/* y=x+1 for x <= 1* */

L0:if x=0 then goto L4 else x=x-1

L1:y:=y+1

L2:if x=0 then goto L4 else x=x-1

L3:y:=y+1

L4:halt

SM= (p0(0,0) Æ

(8x(p0(0,x)!p4(0,x)) Æ 8xy(p0(s(x),y)!p1(x,y)))) Æ

8xy (p1(x,y)!p2(x,s(y)) Æ

(8x(p2(0,x)!p4(0,x)) Æ 8xy(p2(s(x),y)!p3(x,y)))) Æ

8xy(p3(x,y)! p4(x,s(y)))

!

 9 z1z2 p4(z1,z2)

 Intuitive meaning of SM:

 Given a two-register machine M,

 execution of M (Æ i=0..n-1 Si Æ p0(0,0))

 reaches (!)

 the halt instruction (9 z1z2 pn(z1,z2))

Intro. to Logic
CS402

9

TRM halts ! ATRM is valid (1/2)
 Suppose that the execution s0,…sm of M halts and let I be

an arbitrary interpretation for SM. If vI(Si) = F (for 0· i<n) or
vI(p0(0,0))= F, then trivially vI (SM) = T

 Thus, we assume that (Æ (i=0..n-1)Si Æ p0(0,0)) is true

 since we need only consider interpretations that satisfy the
antecedent of SM

 We show by induction on k that vI(9z1z2 pik
(z1,z2)) = T

 pik
 is the predicate associated with the label Lik

in state sk

 Mind the incorrect notation in the textbook where Lk and pk is used
instead of Lik

and pik

 For k=0, vI(9z1z2 pi0
(z1,z2)) = vI(9z1z2 p0(z1,z2)) = T since

vI(p0(0,0))=T from the assumption

s0 s1 sk-1 sk sm

induction on k (i.e., progress of execution)

Intro. to Logic
CS402

10

TRM halts ! ATRM is valid (2/2)
 For k >0, the result follows by induction by cases according to the

instruction at Lik-1

 For x:= x+1 at Lik-1
:

 vI(8xy (pik-1
(x,y) ! pik-1+1(s(x),y)))= T by the assumption

 vI(9z1z2 pik-1
(z1,z2)) = T by the inductive hypothesis

 From the above two facts, vI(9z1z2 pik-1+1(s(z1),z2)) = T

 vI(9z1z2 pik-1+1(s(z1),z2)) = vI(9z1z2 pik
(s(z1),z2)) = T since pik-1+1 = pik

 We can conclude vI(9z’1z2 pik
(z’1,z2)) = T since 9x A(f(x)) ! 9x’A(x’).

 By induction, this holds for all k.

 For if x=0 then goto Lj else x=x-1 at Lik-1
:

 …

 By induction, this holds for all k.

 Since M halts, in the final state sm, Lim
 = Ln the halt instruction, so

vI(9z’1z2 pn(z’1,z2)) = T and vI(SM) = T.

 Since I was arbitrary, SM is valid

Intro. to Logic
CS402

11

TRM halts Ã ATRM is valid

 Suppose that SM is valid, and consider an interpretation I s.t.
 I =(N, {P0,…,Pn}, {succ}, {0}) where

 (x,y) 2 Pi iff (Li,x,y) is reached by the register machine M when started in (L0,0,0)

 We will show that antecedent of SM is true in I. So, the conclusion of SM
is also true, which means that M reaches the halt instruction since (x,y) 2
Pi iff (Li,x,y) is reached
 The initial state is (L0,0,0) so (0,0) 2 P0 and vI(p0(0,0)) = T

 We will show that if the computation has reached Li, then vI(Si)=T.
 Assume as an inductive hypothesis that if the computation has reached Li, it

has done so in a computation of length–1 in state sk-1=(Li,xi,yi), so (xi,yi)2Pi.

 The proof is by cases on the instruction Li

 For Li = x:= x+1, the computation can reach the state sk = (Lik
, succ(xi), yi) = (Lik-1+1,

succ(xi),yi), so vI(Si) = T

 For Li = if x=0 then goto Lj else x := x -1, …so vI(Si) = T

 Since SM is assumed valid, vI(9z1z2 pn(z1,z2))=T and vI(pn(m1,m2))=T for
some natural numbers m1, m2. Thus M halts and computes m2 = f(0)

