
Intro. to Logic
CS402

1

 Predicate Calculus

- Undecidability of predicate calculus
Moonzoo Kim

CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Intro. to Logic
CS402

2

Undecidable problems

It would be remarkable
indeed if we could make
an algorithm that could
examine any program P
and tell whether P
would halt.

In other words, to decide
whether a given program
halts or not is, at least, as
hard as proving the
Fermat’s last theorem
which took 300 years

We know that no such
algorithm exists –

Halting problem is
undecidable

 Can you tell whether or not the
following program halts?
/* Fermat’s last theorem: for n > 2, there

exists no positive integers x,y,z s.t. xn +
yn = zn */

main() {

Nat n, total, x, y, z;

scanf(‘%d”,&n);

total=3;

while(1) {/* loop invariant:total= x+y+z*/

for(x=1; x<= total-2; x++) {

for(y=1; y <= total-x-1; y++) {

 z= total - x -y;

 if(xn + yn == zn) halt;

}

}

total++;}}

Intro. to Logic
CS402

3

Transform of the Halting problem (1/2)

 It is undecidable to check whether a Turing machine (TM) will halt if
started on a blank tape (halting problem)

 To prove the undecidability of predicate logic, we give an algorithm
which produces a formula ATM in the predicate calculus for every
Turing machine, s.t. ATM is valid iff a Turing machine halts

 Note that we do not make a Turing machine M for every predicate formula,
since it is enough to show that checking some predicate formulas is
undecidable

 If we have such an algorithm, it is clear that validity check of predicate
formula is at least as hard as halting problem (i.e., undecideble)

A Turing
machine

A predicate
formula ATM

TM halts $ ATM is valid

Algorithm to
transform

Intro. to Logic
CS402

4

Transform of the Halting problem (2/2)

 To simplify the proof of the transformation algorithm, we
work with two-register machines (TRM) rather than
directly with Turing machine
 i.e., we will show there exists such ATRM for a two-register machine

 Thm 5.42 Given a Turing machine that computes a
function f, a two-register machine can be constructed to
compute the same function f

A two register
machine

A predeicate
formula ATRM

TRM halts $ ATRM is valid

Algorithm to
transform

A Turing
machine

Thm 5.42
TM halts $ TRM halts

Intro. to Logic
CS402

5

A two-register machine M

 Def 5.41 A two-register machine M consists of two registers x and y which

can hold natural numbers, and a program P = (L0,…,Ln) which is a list of
instructions. Ln is the instruction halt, and for 0· I < n, L

i
 is one of:

 x:= x+1

 y:= y+1

 if x = 0 then goto Lj else x := x – 1, 0 · j · n

 if y = 0 then goto Lj else y := y – 1, 0 · j · n

 An execution sequence of M is a sequence of states sk = (Lik
,x,y), where Lik

is the current instruction at sk, and x,y are the contents of x and y.

 sk+1 is obtained from sk by executing Lik
.

 The initial state s0 = (Li0
, m,0) = (L0, m,0) for some m.

 If for some k, sk = (Ln,x,y), the computation of M has halted and M has

computed y = f(m)

Intro. to Logic
CS402

6

Examples
/* L1 is executed m times and then this program halts*/

L0:if x=0 then goto L2 else x:=x-1

L1:if y=0 then goto L0 else y:=y-1

L2:halt

s0

(L0,2,0)
s1

(L1,1,0)
s2

(L0,1,0)
s3

(L1,0,0)
s4

(L0,0,0)
s5

(L2,0,0)

Execution where
x’s initial value=2

/* L0 is executed infinitely, i.e., this program never halts */

L0:x := x + 1

L1:if y=0 then goto L0 else y:=y-1

L2:halt

s0

(L0,0,0)
s1

(L1,1,0)
s2

(L0,1,0)
s3

(L1,2,0)
s4

(L0,2,0)

Execution where
x’s initial value=0

(note that Li0
= L0, Li1

 = L1, Li2
 = L0, , Li3

 = L1, etc)

Intro. to Logic
CS402

7

Validity in the predicate calculus
 Thm 5.43 (Church) Validity in the predicate calculus is

undecidable

 Caution: the proof of Thm 5.43 in the textbook has several flaws…

 For every two-register machine M, we construct a formula SM

s.t. SM is valid iff M terminates when started in the state (L0,0,0):

 SM = (Æ (i=0..n-1)Si Æ p0(0,0)) ! 9 z1z2 pn(z1,z2)

 Intuitive meaning of pi is as follows

 vI(pi(m’,m”)) = T iff there exists some state sk=(Li,m’,m”)

 Si is defined by cases of the

 instruction Li

Intro. to Logic
CS402

8

Example of SM

/* y=x+1 for x <= 1* */

L0:if x=0 then goto L4 else x=x-1

L1:y:=y+1

L2:if x=0 then goto L4 else x=x-1

L3:y:=y+1

L4:halt

SM= (p0(0,0) Æ

(8x(p0(0,x)!p4(0,x)) Æ 8xy(p0(s(x),y)!p1(x,y)))) Æ

8xy (p1(x,y)!p2(x,s(y)) Æ

(8x(p2(0,x)!p4(0,x)) Æ 8xy(p2(s(x),y)!p3(x,y)))) Æ

8xy(p3(x,y)! p4(x,s(y)))

!

 9 z1z2 p4(z1,z2)

 Intuitive meaning of SM:

 Given a two-register machine M,

 execution of M (Æ i=0..n-1 Si Æ p0(0,0))

 reaches (!)

 the halt instruction (9 z1z2 pn(z1,z2))

Intro. to Logic
CS402

9

TRM halts ! ATRM is valid (1/2)
 Suppose that the execution s0,…sm of M halts and let I be

an arbitrary interpretation for SM. If vI(Si) = F (for 0· i<n) or
vI(p0(0,0))= F, then trivially vI (SM) = T

 Thus, we assume that (Æ (i=0..n-1)Si Æ p0(0,0)) is true

 since we need only consider interpretations that satisfy the
antecedent of SM

 We show by induction on k that vI(9z1z2 pik
(z1,z2)) = T

 pik
 is the predicate associated with the label Lik

in state sk

 Mind the incorrect notation in the textbook where Lk and pk is used
instead of Lik

and pik

 For k=0, vI(9z1z2 pi0
(z1,z2)) = vI(9z1z2 p0(z1,z2)) = T since

vI(p0(0,0))=T from the assumption

s0 s1 sk-1 sk sm

induction on k (i.e., progress of execution)

Intro. to Logic
CS402

10

TRM halts ! ATRM is valid (2/2)
 For k >0, the result follows by induction by cases according to the

instruction at Lik-1

 For x:= x+1 at Lik-1
:

 vI(8xy (pik-1
(x,y) ! pik-1+1(s(x),y)))= T by the assumption

 vI(9z1z2 pik-1
(z1,z2)) = T by the inductive hypothesis

 From the above two facts, vI(9z1z2 pik-1+1(s(z1),z2)) = T

 vI(9z1z2 pik-1+1(s(z1),z2)) = vI(9z1z2 pik
(s(z1),z2)) = T since pik-1+1 = pik

 We can conclude vI(9z’1z2 pik
(z’1,z2)) = T since 9x A(f(x)) ! 9x’A(x’).

 By induction, this holds for all k.

 For if x=0 then goto Lj else x=x-1 at Lik-1
:

 …

 By induction, this holds for all k.

 Since M halts, in the final state sm, Lim
 = Ln the halt instruction, so

vI(9z’1z2 pn(z’1,z2)) = T and vI(SM) = T.

 Since I was arbitrary, SM is valid

Intro. to Logic
CS402

11

TRM halts Ã ATRM is valid

 Suppose that SM is valid, and consider an interpretation I s.t.
 I =(N, {P0,…,Pn}, {succ}, {0}) where

 (x,y) 2 Pi iff (Li,x,y) is reached by the register machine M when started in (L0,0,0)

 We will show that antecedent of SM is true in I. So, the conclusion of SM
is also true, which means that M reaches the halt instruction since (x,y) 2
Pi iff (Li,x,y) is reached
 The initial state is (L0,0,0) so (0,0) 2 P0 and vI(p0(0,0)) = T

 We will show that if the computation has reached Li, then vI(Si)=T.
 Assume as an inductive hypothesis that if the computation has reached Li, it

has done so in a computation of length–1 in state sk-1=(Li,xi,yi), so (xi,yi)2Pi.

 The proof is by cases on the instruction Li

 For Li = x:= x+1, the computation can reach the state sk = (Lik
, succ(xi), yi) = (Lik-1+1,

succ(xi),yi), so vI(Si) = T

 For Li = if x=0 then goto Lj else x := x -1, …so vI(Si) = T

 Since SM is assumed valid, vI(9z1z2 pn(z1,z2))=T and vI(pn(m1,m2))=T for
some natural numbers m1, m2. Thus M halts and computes m2 = f(0)

