
The V Model of Software DevelopmentThe V-Model of Software Development
Check a complex global propertyCheck a complex global property
Ex. A password should not be
compared while the password is
updated (concurrency issues)

Requirement
Definition

Acceptance
Level Testing

cases
Use

cases

Sequence

p (y)

Functional
System Design

System Level
Testing

Sequence
diagram

Activity
diagram

Java-MaC

Component
Specification

y g g

Unit Level
Testing

diagram
State

diagram

diagramdiagram

JUnit, JML, JUnit, JML,
CBMC

I l t ti

Specification Testing
diagram

Class
diagram

Simple local check
Ex Check whether

1

Implementation Ex. Check whether
a given password
is correct or not

J M C R tiJava-MaC: a Run-time
Assurance Tool for JavaAssurance Tool for Java

ProgramsPrograms

M KiMoonzoo Kim
CS Division of EECS Dept.

KAISTKAIST
moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/CS350-07

2008-05-21 2

p p

Runtime VerificationRuntime Verification
Motivation:Motivation:
• Run-time correctness is not guaranteed even after numerous

testing
The goal of run-time verification
• to give confidence in the run-time compliance of an execution of a

system w r t formal requirementssystem w.r.t formal requirements
• Monitoring an execution of system constantly with little overhead to

detect symptom of (expected) failures
Th l i lid t ti th t tiThe analysis validates properties on the current execution
of application.

Similar to testing

Run-time verification helps user to detect errors and
prevent system crash.

5/21/2008 3

R l ti B t E ti d R i tRelation Between Execution and Requirements

Program Requirements

Formal RequirementInstrumented Pgm Formal Requirement
Specification

Property safeCrossingp y g
= InCrossing -> GateDown;

train pos :20.5 InCrossing =

5/21/2008 4

_
crossing_pos:50
gate_angle:15

InCrossing
train_pos > crossing_pos;

GateDown =
gate_angle == 0;

Program ExecutionProgram Execution
A ti iA program execution σ is a
sequence of states s0s1…

A t t i t f• A state s consists of
– an environment ρs:V-> R
– a timestamp ts s.t. tsi < tsi 1a timestamp ts s.t. tsi tsi+1

We may abstract out state
information unnecessary toinformation unnecessary to
detect requirements.

t

5/21/2008 5

property p =

3 < y && y < 11

Overview of the Monitoring and Checking
(MaC) Architecture(MaC) Architecture

Informal
Use case

Program

I t

Informal
Requirement

Spec
Sequence
diagram

Human

F l R i t S

Input

Automatic
I t t ti

Formal Requirement Spec
Low-level

Specification
High-level

Specification

Static Phase

Instrumentation
Automatic
Translation

Automatic
Translation

Program Filter
low-level
behavior Event

Recognizer

high-level
behavior Run-time

Checker

2008-05-21 6

Run-time Phase

g

Design of the MaC LanguagesDesign of the MaC Languages
start(position==100) end(position==100)raiseGate start(position 100) end(position 100)raiseGate

position == 100

Must be able to reason about both time instants
1:00:10 1:00:301:00:15 Time

and information that holds for a duration of time in
a program execution.

E d di i l di i i hi h i• Events and conditions are a natural division, which is
also found in other formalisms such as SCR.

Need temporal operators combining events andNeed temporal operators combining events and
conditions in order to reason about traces.

2008-05-21 7

Logical FoundationLogical Foundation
|||)[|)(defined:: CCCCCEECc |C ∧∨ 212121 | | |),[|)(defined:: CCCCCEEC c |C ∧∨¬=
EEEECCeE | | |)(end |)(start | :: 2121 ∧∨=

C diti i t t d 3 l t f l

CE when

Conditions interpreted over 3 values: true, false
and undefined.
[., .) pairs a couple of events to define an interval.
start and end define the events corresponding to p g
the instant when conditions change their value.

2008-05-21 8

The MaC LanguagesThe MaC Languages
M t E t D fi iti L (MEDL)Meta Event Definition Language(MEDL)
• Describes the safety requirements of the system, in terms of

conditions that must always be true and alarms (events) that mustconditions that must always be true, and alarms (events) that must
never be raised.

• Target program implementation independent.g g

Primitive Event Definition Language (PEDL)
• Specify what to monitor in the target programSpecify what to monitor in the target program

– Provides primitives to refer to values of variables and to certain points
in the execution of the program.

• Maps the low-level state information of the system to high-levelMaps the low-level state information of the system to high-level
events.

• PEDL is designed so that events can be recognized in time linear
to the size of the PEDL specification

2008-05-21 9

to the size of the PEDL specification
• Depends on target program implementation

Meta Event Definition Language (MEDL)Meta Event Definition Language (MEDL)
ReqSpec <spec name>_

/* Import section */
import event <e>;
import condition <c>;

Expresses requirements using the
events and conditions
Expresses the subset of safety import condition <c>;

/*Auxiliary variable */
var int <aux_v>;

Expresses the subset of safety
languages.
Describes the safety requirements of _

/*Event and condition */
event <e> = ...;
condition <c>= ;

the system, in terms of conditions
that must always be true, and alarms
(events) that must never be raised condition <c>= ...;

/*Property and violation */
property <c> = ...;

(events) that must never be raised.
• property safeRRC = IC -> GD;
• alarm violation = start (!safeRRC);

alarm <e> = ...;

/*Auxiliary variable update*/
<e> -> { <aux v'> := ; }

Auxilliary variables may be used to
store history.

• endIC-> { num train pass’ =

2008-05-21 10

<e> -> { <aux_v > := ... ; }
End

{ _ _p
num_train_pass + 1; }

The MaC prototype for Java programs: Java MaCThe MaC prototype for Java programs: Java-MaC

PEDL f JPEDL for Java
Monitoring objectsg j
Instrumentation process
S f CStructure of Java-MaC
Run-time componentsRun time components

2008-05-21 11

PEDL for JavaPEDL for Java

P id i iti t f tProvides primitives to refer to
• primitive variables

beginnings/endings of methods
MonScr <spec_name>
/* Export section */

• beginnings/endings of methods
Primitive conditions are constructed
from

export event <e>;
export condition <c>;

from
• boolean-valued expressions over the

monitored variables

/* Monitored entities */
monobj <var>;
monmeth <meth>;

– ex> condition IC = (position == 100);

Primitive events are constructed from
• update(x)

/* Event and condition*/
event <e> = ...;

diti < >• update(x)
• startM(f)/endM(f)

– ex> event raiseGate= startM(Gate.gu());

condition <c>= ...;
End

2008-05-21 12

PEDL for Java (cont)PEDL for Java (cont.)
E t h t tt ib t ti d lEvents can have two attributes - time and value
time(e) gives the time of the last occurrence of
event e
• used for expressing temporal properties

value(e,i) gives the i th value in the tuple of values
of e
• value of update(var) : a tuple containing a current value

of var
l f t tM(f) t l t i i t f th• value of startM(f) : a tuple containing parameters of the

method f
• value of endM(f) : a tuple containing parameters and a

2008-05-21 13

• value of endM(f) : a tuple containing parameters and a
return value of the method f

InstrumentationInstrumentation
Java-MaC instruments Java executable code
Java-MaC instrumentor detects instructions
• variable updatesvariable updates

– putstatic/putfield for global variable updates
– <T>store and iinc for local variable updates

• execution points
– instruction located at the beginning of method definition

return of method definition– return of method definition

At the each detected instruction, Java-MaC
instrumentor inserts a probe invokinginstrumentor inserts a probe invoking
• sendObjMethod(Object parentAddress, <T> value,

String varName)

2008-05-21 14

String varName)

Sample ProbeSample Probe
M it i fi ld i bl V lMonitoring a field variable Var.val

; >> METHOD 8 <<
.method public run()V

; >> METHOD 8 <<
.method public run()V.method public run()V

.limit stack 4

.limit locals 2

...

.method public run()V
.limit stack 7
.limit locals 2
...

getfield DigitalVar.v I
putfield Var.val I
...

getfield DigitalVar.v I
getstatic mac.filter.Filter.lock Ljava.lang.Object;
monitorenter

.end Method dup2
ldc “val”
invokestatic mac.filter.SendMethods.sendObjMethod(

Ljava/lang/Object;Ijava/lang/String;)V
putfield Var.val I
getstatic mac.filter.Filter.lock Ljava.lang.Object;

5/21/2008 15

monitorexit
...

.end Method

Overview of Java MaCOverview of Java-MaC

2008-05-21 16

Run time Components of Java MaCRun-time Components of Java-MaC
FilterFilter
• A filter consists of

– a communication channel to the event recognizerg
– probes inserted into the target system
– a filter thread which flushes the content of communication

buffers to the event recognizerg

Event recognizer
• evaluates the abstract syntax tree generated from a y g

PEDL specification whenever it receives snapshots
from the filter.

• If an event or a condition changing its value is detectedIf an event or a condition changing its value is detected,
the event recognizer sends the event or the condition to
the run-time checker

2008-05-21 17

Run time Components of Java MaC (cont)Run-time Components of Java-MaC (cont.)

R ti h kRun-time checker
• evaluates the abstract syntax tree generated from a

MEDL specification whenever it receives events andMEDL specification whenever it receives events and
conditions from the event recognizer.

• Detects a violation defined as alarm or property and p p y
raises a signal.

Connection among run-time componentsg p
• TCP socket connection
• FIFO file connection
• User implemented connection using InputStream and

OutputStream obtained by Java-MaC API

2008-05-21 18

Monitoring Script for Railroad CrossingMonitoring Script for Railroad Crossing

MonScr RailRoadCrossing
export event startIC, endIC, gEndDown,gStartUp;

monobj float RRC train x;

ReqSpec RailRoadCrossing
import event startIC, endIC, gEndDown, gStartUp;

condition IC = [startIC endIC);monobj float RRC.train_x;
monobj int RRC.train_length;
monobj int RRC.cross_x;
monobj int RRC.cross_length;

condition IC = [startIC, endIC);
condition GD = [gEndDown, gStartUp);

property safeRRC = IC -> GD;

monmeth void Gate.gd(int);
monmeth int Gate.gu();

condition IC =

End

condition IC
RRC.train_x + RRC.train_length > RRC.cross_x &&
RRC.train_x <= RRC.cross_x + RRC.cross_length;

event startIC = start(IC); RRC.train_x

RRC.train_x + RRC.train_length

event startIC start(IC);
event endIC = end(IC);
event gEndDown = endM(Gate.gd(int));
event gStartUp = startM(Gate.gu());

End

2008-05-21 19

End

RRC.cross_x RRC.cross_x +
RRC.cross_length

Specifications for Stock ClientsSpecifications for Stock Clients
MonScr StockClient ReqSpec StockClient

export event startPgm, periodStart, conFail,
queryResend, oldDataUsed;

monmeth void Client.main(String[]);

import event startPgm, periodStart, conFail,
queryResend, oldDataUsed;

var long periodTime;
monmeth void Client.run();
monmeth void Client.failConnection(ConnectTry);
monmeth Object Client.retryGetData(int);
monmeth Object Client.processOldData();

var long lastPeriodStart;
var int numRetried;
var int numConFail;

event startPgm = startM(Client.main(String[]));
event periodStart = startM(Client.run());
event conFail = startM(Client.failConnection(ConnectTry));

alarm violatedPeriod = end((perioidTime’ >= 900)
&& (periodTime’ <= 1100));

alarm wrongFT = oldDataUsed when (
(numRetries’ < 4)|| (numConFail’ < 3));

event queryResend = startM(Client.retryGetData(int));
event oldDataUsed = startM(Client.processOldData());

End
startPgm -> {periodTime’ = 1000;

lastPeriodStart’ = time(startPgm) -1000;
numRetries’ = 0;Server numConFail’ = 0;}

periodStart ->{ numREtries’ = 0;
numConFail’ = 0;
periodTime’ =time(periodStart)-lastPeriodStart;

Server

2008-05-21 20

lastPeriodStart’ = time(periodStart);}
...
End

Stock
client

Stock
client

Stock
client

Conclusion and Future WorkConclusion and Future Work
Th M C hit t id li ht i htThe MaC architecture provides a lightweight
formal methodology for assuring of the correct

ti f t t t tiexecution of a target program at run-time
• Rigorous analysis

Flexibility
•Automation
•Easy of use• Flexibility

Systematic extension of the MaC architecture to
l tf th th J

•Easy of use

platforms other than Java
http://www.cis.upenn.edu/~rtg/mac

2008-05-21 21

