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Abstract

Flash memory has become virtually indispensable in
most mobile devices. In order for mobile devices to success-
fully provide services to users, it is essential that flash mem-
ory be controlled correctly through the device driver soft-
ware. However, as is typical for embedded software, con-
ventional testing methods often fail to detect hidden flaws
in the complex device driver software. This deficiency in-
curs significant development and operation overhead to the
manufacturers.

Model checking techniques have been proposed to
compensate weaknesses of conventional testing methods
through exhaustive analyses. These techniques, however,
require significant manual efforts to create an abstract tar-
get model and, thus, are not widely applied in industry. In
this project, we applied model checking technique based
on Boolean satisfiability (SAT) solver. One advantage of
SAT-based model checking is that a target C code can be
analyzed directly without an abstract model, thereby en-
abling fully-automated and bit-level accurate verification.
In this project, we have applied CBMC, a SAT-based soft-
ware model checker, for unit testing of the Samsung One-
NAND device driver. Through this project, we detected sev-
eral bugs that had not been discovered previously.

1 Introduction

Among the various available storage platforms, flash
memory has become the most popular choice for mobile
devices owing to its good characteristics such as low power
consumption and strong resistance to physical shock. Thus,

in order for mobile devices to successfully provide services
to users, it is essential that the device driver of the flash
memory operates correctly. However, as is typical of em-
bedded software, conventional testing methods often fail to
detect hidden bugs in the complex device driver software.
This deficiency incurs significant overhead to the manufac-
turers.

Conventional testing has limitations in terms of check-
ing whether a target software satisfies a given requirement
specification, since testing does not provide complete cov-
erage; it is very hard to systematically generate and test all
possible scenarios/environments/configurations for the tar-
get software. As a result, subtle bugs are hardly detected
by testing and cause significant overhead after the target
software is deployed. In addition, even after detecting a
violation, debugging requires significant human effort to
trace the scenario leading to the violation step-by-step and
thereby identify the cause of the violation. These limita-
tions were manifest in the development of flash software for
Samsung OneNANDTM flash memory [1]. For example, a
multi-sector read function was added to flash software to
optimize the reading speed (see Sect. 5.3). However, this
function caused numerous errors in spite of extensive test-
ing and debugging efforts, to the extent that the developers
seriously considered removing the feature.

Model checking techniques [10] have been proposed
to compensate the aforementioned weaknesses of conven-
tional testing methods by automatically exploring all state
spaces of an abstract model of the target software. This is
equivalent to testing the target model in all possible scenar-
ios. In addition, if a violation is detected, a model checker
generates a concrete counter example through which a bug
can be conveniently identified.
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However, model checking techniques are not widely ap-
plied in industry since there exists a gap between the target
software and its abstracted model. To apply model check-
ing, significant additional manual efforts are required to cre-
ate an abstract target model, which is not affordable for
most industrial software projects. On the other hand, soft-
ware model checkers with automated abstraction capability
can analyze a C code directly by automatically creating an
abstract model out of the target C program. However, au-
tomatic abstraction based model checkers often provide in-
accurate analysis results due to severe abstraction on arrays
or pointers. Thus, these weaknesses of model checkers hin-
der adoption of model checking techniques as main-stream
verification & validation (V&V) methods.

In this project, we applied a SAT-based model checker,
CBMC [8], to find subtle bugs from the Samsung One-
NAND device driver. CBMC directly analyzes C code
without an abstract model and provides an accurate bit-
level analysis. Thus, the aforementioned problems associ-
ated with model checkers are overcome by means of the
advanced computational power of a modern SAT solver
through intelligent heuristics (see Section 3). Through this
project, we have demonstrated that a model checker can be
used as an automated and productive unit-testing tool for an
exhaustive analysis, which increases the reliability of em-
bedded C codes as well as the productivity of software de-
velopment in an industry setting.

2 Overview of the OneNAND Flash Device
Driver

2.1 Overview of the Device Driver Soft-
ware for OneNAND Flash Memory

There are two types of flash memories: NAND and NOR
flash. NAND flash has higher density and thus is typically
used as a storage medium. NOR flash is typically used to
store software binaries, because it can execute software in
place (XIP) whereas NAND cannot. OneNAND is a single
chip comprising a NOR flash interface, a NAND flash con-
troller logic, a NAND flash array, and a small internal RAM.
OneNAND provides a NOR interface through its internal
RAM. When an application executes a program in One-
NAND, the corresponding page of the program is loaded
into the RAM in OneNAND by the demand paging man-
ager (DPM) for XIP (execution in place).

A unified storage platform (USP) is a software solution
for OneNAND based mobile embedded systems. Fig. 1
presents an overview of USP. It manages both code stor-
age and data storage. USP allows applications to store and
retrieve data on OneNAND through a file system. USP con-
tains a flash translation layer (FTL) through which data and
programs in the OneNAND device are accessed. The FTL

consists of three layers - a sector translation layer (STL),
a block management layer (BML), and a low-level device
driver layer (LLD). Generic I/O requests from applications
are fulfilled through the file system, STL, BML, and LLD,
in order. A prioritized read request for executing a program
is made by DPM and this request goes to BML directly.
Although USP allows concurrent I/O requests from mul-
tiple applications through STL, BML operations must be
executed sequentially, not concurrently. For this purpose,
BML uses a binary semaphore to coordinate concurrent I/O
requests from STL. Furthermore, a prioritized read request
from DPM can preempt generic I/O operations requested
from STL. Thus, it is important to guarantee the correctness
of I/O operations in concurrent settings. In this verifica-
tion project, we analyzed FTL and DPM components of the
USP.

OneNAND Flash Memory Devices
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Figure 1. An overview of USP

2.2 Overview of Logical-to-Physical Sec-
tor Translation

A NAND flash device consists of a set of pages, which
are grouped into blocks. A unit can be equal to a block or
multiple blocks. Each page contains a set of sectors. When
new data is written to flash memory, rather than overwrit-
ing old data directly, the data is written on empty physical
sectors and the physical sectors that contain the old data are
marked as invalid. Since the empty physical sectors may
reside in separate physical units, one logical unit (LU) con-
taining data is mapped to a linked list of physical units (PU).
STL manages this mapping from logical sectors (LS) to
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physical sectors (PS) and performs garbage collection. This
mapping information is stored in a sector allocation map
(SAM), which returns the corresponding PS offset from a
given LS offset. Each PU has its own SAM.
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Figure 2. Mapping from logical sectors to
physical sectors

Fig. 2 illustrates a mapping from logical sectors to phys-
ical sectors where 1 unit contains 4 sectors. Suppose that
a user writes LS0 of LU7. An empty physical unit PU1 is
then assigned to LU7, and LS0 is written into PS0 of PU1
(SAM1[0]=0). The user continues to write LS1 of LU7, and
LS1 is subsequently stored into PS1 of PU1 (SAM1[1]=1).
The user then updates LS1 and LS0 in order, which results
in SAM1[1]=2 and SAM1[0]=3. Finally, the user adds LS2
of LU7, which adds a new empty physical unit PU4 to LU7
and yields SAM4[2]=0.

3 Overview of SAT-based Model Checking
Technology

3.1 Boolean Satisfiability Solver

A Boolean satisfiability problem (SAT) entails determin-
ing whether there exists a propositional variable assignment
σ that makes a given Boolean formula φ evaluate to true
(i.e. ∃σ.σ(φ) = true). SAT is a canonical NP-Complete
problem and has received intensive theoretical treatment. In
spite of its theoretical complexity, SAT solvers find applica-
tions in many fields including AI planning, circuit testing,
and software model checking, since structured formulas
generated from real-world problems are successfully solved
by SAT solvers in many cases. The modern SAT solvers
such as MiniSAT [9] and Chaff [15] exploit various heuris-
tics [13] and can solve a large formula containing millions

of variables and clauses [2] in a modest time. For example,
[16] explains the mechanism by which modern SAT solvers
can solve large formulas efficiently in spite of intractable
complexity.

3.2 Translation from C Code to SAT For-
mulas

To use a SAT solver as a bounded model checker [5] to
check whether a given C code (C) satisfies a requirement
property (R), it is necessary to translate both C and R into
Boolean formulas φC and φR, respectively. A SAT solver
then determines whether φC ∧¬φR is satisfiable: if the for-
mula is satisfiable, it means that C violates R; if not, C
satisfies R.

A brief sketch of the translation process is as follows [8].
We assume that a given C program is already preprocessed.
First, the C program is transformed through the following
steps

• The break, continue, and return statements are
replaced by semantically equivalent goto statements.

• switch statements are transformed into semantically
equivalent if and goto statements.

• The for and do while statements are replaced by
equivalent while statements.

• Function calls are inlined and side effects such as ++
are replaced with equivalent statements by using new
auxiliary variables.

Loop statements are then unwound. The while loops are
unwound using the following transformation n times:

while(e) stm ⇒ if(e) { stm; while(e) stm}

After unwinding the loop n times, the remaining while
loop is replaced by an unwinding assertion that guarantees
that the program does not execute more iterations. If the
unwinding assertion is violated, n is increased until the un-
winding bound is sufficiently large. Note that this bound n
is just an upper bound of loop iteration, and does not have
to be the exact number of iterations.

Finally, the transformed C program consists of only
nested if, assignments, assertions, labels, and goto state-
ments. This C program is transformed into a static single
assignment (SSA) form. Fig. 3.b) illustrates this SSA trans-
formation. This SSA program is converted into correspond-
ing bit-vector equations and the final Boolean formula is a
conjunction of all these bit-vector equations.

For example, Fig. 3.c) illustrates a Boolean conjunction
of SSA statements (they are not converted into bit-vector
equations yet for the reader’s convenience). We know that
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Fig. 3.a) violates assert(x<3), since φC ∧ ¬φR is sat-
isfiable by σ such that σ(x0) = 1, σ(x1) = 1, σ(x2) =
2, σ(x3) = 3, σ(x4) = 3, σ(y0) = 0.

x=x+y;
if (x!=1)x=2;
else x=x+2;
assert(x<3); 

x1=x0+y0;
if (x1!=1)x2=2;
else x3=x1+2;
x4=(x1!=1)?x2:x3;
assert(x4<3); 

φC ≡ x1=x0+y0 ∧ x2=2 ∧ x3=x1+2 
∧(x1!=1→x4=x2)∧(x1=1→x4=x3)

φR ≡ x4 < 3 

a) A target C program b) Corresponding SSA  
representation

c) Corresponding semi-Boolean formula
(not in bit-vector representation)

Figure 3. An example of translating a C pro-
gram into a (semi) Boolean formula

3.3 C-based Bounded Model Checker
(CBMC)

CBMC [8] is a bounded model checker for ANSI-C de-
veloped at CMU. CBMC receives a C program as its input
and analyzes all C statements including pointer arithmetics,
array, struct, etc with a bit-level accuracy as if it actually ex-
ecutes the target program. A requirement property is writ-
ten as an assert statement in a target C program. The loop
unwinding bound n is given explicitly as a command line
parameter. If φC ∧ ¬φR is satisfiable, CBMC generates a
counter example showing an execution leading to the viola-
tion of the requirement property step by step.

One distinct feature of a CBMC based analysis, com-
pared to testing, is the capability of handling non-
deterministic values (i.e. function parameters, uninitial-
ized local variables, or variables assigned with an non-
deterministic values), which are useful to model unexpected
user inputs or a range of values as a whole. Using this
feature, CBMC provides a convenient method to exhaus-
tively analyze all execution scenarios of a target C program.
For example, if we analyze the adder(unsigned char
x, unsigned char y) function, CBMC symbolically
analyzes all 65536(= 2562) possible cases. If we pro-
vide an explicit constraint CPROVER assume(x==1),
the total number of cases to be analyzed is reduced to
256 cases since only y can have non-deterministic values
ranging from 0 to 255. This capability of analyzing non-
deterministic values can help automated unit testing of a C
function by reducing the need of explicit generation of nu-
merous test cases (see Sect. 5).

4 Project Overview

4.1 Overall Project Plan

Our team consists of two professors, one graduate stu-
dent, and one senior engineer at Samsung Electronics. We
worked on this verification project for six months. We spent
the first three months reviewing the USP design documents
and code to become better familiarized with USP and One-
NAND flash. Most parts of USP are written in C and a small
portion of USP is written in ARM assembler. Source codes
of FTL and DPM are roughly 30000 lines long.

The goal of the project is to increase the reliability of
USP by finding hidden bugs that have not been detected thus
far. To this end, we applied a top-down approach to define
code level properties from high level requirements. First,
we selected target requirements to check from the USP doc-
uments. USP has a set of elaborated design documents in
the following hierarchy.

• Software Requirement Specification (SRS)

• Architecture Design Specification (ADS)

• Detailed Design Specification (DDS)

– DPM Detailed Design Specification

– STL Detailed Design Specification

– BML Detailed Design Specification

– LLD Detailed Design Specification

SRS contains both functional and non-functional re-
quirement specifications with priorities. We selected
three functional requirements with very high priorities (see
Sect. 4.2). Then, from the selected functional require-
ments, we investigated relevant ADS, DDS, and corre-
sponding C codes to specify concrete code level properties
(see Sect. 4.3). We then inserted these code level properties
into the target C files as assert statements and subsequently
analyzed those C files to check whether inserted assert state-
ments are violated or not by using CBMC (see Sect. 5).

4.2 High-level Requirements

The SRS document specifies 13 functional requirements
and 18 non-functional requirements for USP. Each require-
ment specifies its own priority. There are three functional
requirements that have “very high” priority.

• Support prioritized read operation

In order to execute a program through demand paging,
DPM loads a code page into the internal RAM when
a page fault exception occurs. Since the fault latency

4



Concurrency 
Handling

Prioritized
Read

Multi-sector
Read

Page Fault 
Handling While a 
Device is Being 

Programmed

Check “Step 
18. store the 

status”

Check “Step 14. 
wait until the 

device is ready ”

Page Fault 
Handling While a 
Device is Being 

Read

SRS

ADS

DDS

C 
Code

Is the status 
really stored? 

At line 494 of PriRead() in LLD.c
assert(bNeedToSave->saved)

Legend
Spec. in the
design docs

User defined
property to check

Figure 4. Top-down approach to identify code
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should be minimized, FTL should serve a read request
from DPM prior to generic requests from a file system.
This prioritized read request can preempt a generic I/O
operation and resume the preempted operation later.

• Concurrency handling

There are two types of concurrent behaviors in USP.
The first is concurrency among multiple generic I/O
operations. The second is concurrency between
generic I/O operations and a prioritized read opera-
tion. USP should handle these two types of concur-
rent behaviors correctly, i.e., avoid a race condition or
deadlock through synchronization mechanisms such as
semaphores and locks.

• Manage sectors

A file system assumes that flash memory is composed
of contiguous logical sectors. Thus, FTL provides
logical-to-physical mapping, i.e., multiple logical sec-
tors are written over distributed physical sectors and
these distributed physical sectors should be read back
correctly.

We concentrate on checking the above three require-
ments and analyze relevant structures described in ADS. For
example, as depicted in Fig. 4, a functional requirement on a
prioritized read operation is related with page fault handling
mechanisms, which are described in ADS. Again, such page
fault handling mechanisms (e.g. page fault handling while

a device is being programmed) are elaborated in the related
DDS documents.

4.3 Low-level Properties

From the ADS document, we determine which DDS doc-
uments are related to the ADS description that is relevant
to the three high-level requirements. The DDS documents
contain elaborated sequence diagrams for various execution
scenarios for the structures described in ADS. For exam-
ple, as depicted in Fig. 4, we reviewed details of DPM DDS
and LLD DDS that are relevant to the page fault handling
mechanism while a device is being programmed. In LLD
DDS, for example, a concrete sequence diagram for fault
handling while a device is being programmed is described
step by step. Fig. 5 describes one such sequence diagram.

MMU 
Page Fault 
Handler

Page Cache 
Management 

BML LLD : OneNAND: OneNAND 
Device

If there is a free frame, 
go to Step6.

if the NeedToSave flag 
is FALSE, go to STEP 20

1: issue page fault exception

7: find a location where the page is  stored in OneNAND device

8: request read operation

9: request read operation

13: check if the device is ready

15: check the NeedToSave flag

16: request the operation status

17: return the operation status

18: store the status

11: request the ready/busy status

12: return the ready/busy status

10: Set the Preempted flag 

2: request a free frame in page cache

3: find a free frame

4: find a victim page

5: page out the victim page

6: return the free fram

In case of busy status 
because of program
operation

14: wait until the device is ready

Figure 5. A sequence diagram of page fault
handling while a device is being programmed
in LLD DDS

USP allows a prioritized read operation to preempt cur-
rently executing generic operations. Thus, the status of
a preempted operation should be saved and restored back
in order to resume the preempted operation when the pre-
empting prioritized read operation is completed. These sav-
ing and restoring operations are implemented in PriRead,
which handles prioritized read operations. Step 18 in Fig. 5
describes a saving operation.
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To check the correctness of step 18, i.e., whether or not
the current status of a preempted generic operation is actu-
ally saved, we insert the following assert statement at line
494 of PriRead.

assert(!(pstInfo->bNeedToSave) || saved)

pstInfo and bNeedToSave are original program vari-
ables and saved is a newly added variable for verification
purpose, which indicates whether the status has been saved.
In a similar manner, we define 43 such code-level properties
regarding the three high level requirements in a top-down
manner.

5 Unit Testing Results

5.1 Prioritized Read Operation

A prioritized read operation is implemented in a function
PriRead in LLD layer. This function is 234 lines long (in-
cluding comments) and has 30 distinct paths in its control
flow graph. Thus, to achieve full path coverage, a user has
to generate at least 30 different test cases. The test case gen-
eration for path coverage is a difficult and time consuming
task since the user has to analyze the target code to deter-
mine which input data will exercise which path. Instead,
we used CBMC to automatically try all exhaustive value
combinations of function parameters and global data which
satisfy explicit user-defined constraints.

For example, a function parameter nDev indi-
cates a physical device number, which can be 0
to 7 according to the OneNAND hardware specifica-
tion. Thus, we add the following constraint statement
( CPROVER assume(Boolean constraint)) to the head
of PriRead. This restricts the possible range of nDev
between 0 and 7 in the exhaustive analysis performed by
CBMC.

CPROVER assume(0<=nDev && nDev<=7)

In addition, nPbn, another function parameter, indicates a
physical block number, which has its maximal value accord-
ing to the type of NAND device in which it is employed.
This constraint is given as follows.

(!(NANDspec[nDev].nDID==SML)||nPbn<256) &&

(!(NANDspec[nDev].nDID==LRG)||nPbn<2048)

CBMC tries not only all possible values of function param-
eters, but also global data being used by PriRead. For
example, a global data SHDC contains a shared context for
each OneNAND device and it is retrieved by PriRead.
Following the LLD design document, several constraints
can be specified. The following constraint is one such ex-
ample, indicating that the number of physical sectors per a

single unit should be equal to the multiplication of the num-
ber of blocks per unit, the number of pages per block, and
the number of sectors per one page.

SHDC.nPhySctsPerUnit==SHPC.nBlksPerUnit

* SHVC.nPgsPerBlk * SHVC.nSctsPerPg

CBMC translates PriRead into a SAT formula contain-
ing one million Boolean variables and 1340 clauses. In spite
of large computational cost due to an exhaustive analysis,
CBMC analyzed PriRead and found a violation in 8 sec-
onds after consuming 325 megabytes of memory.1 From
this exhaustive analysis, it is found that the low-level prop-
erty described as an example in Sect. 4.3 is violated and a
counter example, as depicted in Fig. 6, is generated. The
counter example describes that PriRead does not save the
current status of an erase operation (see line 9-12 of Fig. 6),
when the erase operation is preempted by a prioritized read
operation (see line 3 of Fig. 6, which indicates that the cur-
rent operation is an erase operation, because bEraseCmd
is assigned as 1).

01:...
02:State 14 file LLD.c line 408 function PriRead thread 0
03: LLD::PriRead::1::bEraseCmd=1
04:State 15 file LLD.c line 412 function PriRead thread 0
05: LLD::PriRead::1::1::2::nWaitingTimeOut=(assignment removed)
06:State 17 file LLD.c line 412 function PriRead thread 0
07: LLD::PriRead::1::1::2::nWaitingTimeOut=(assignment removed)
08:
09:Violated property:
10: file LLD.c line 424 function PriRead
11: assertion !(_Bool)pstInfo->bNeedToSave || (_Bool)saved
12:VERIFICATION FAILED

Figure 6. A counter example violating the as-
sertion

5.2 Concurrency Handling

5.2.1 BML Semaphore Usage Pattern

Although USP allows concurrent I/O requests through STL,
BML does not execute a new BML generic operation while
another BML generic operation is running (i.e., BML oper-
ations must be executed sequentially, not concurrently). For
this purpose, BML uses a binary semaphore to coordinate
concurrent I/O requests from STL. Standard requirements
for a binary semaphore are as follows:

• Every semaphore acquire operation
(OAM AcquireSM) should be followed by a
semaphore release operation (OAM ReleaseSM).

1All experiments presented in this paper are performed on a worksta-
tion equipped with 3Ghz Xeon and 32 gigabytes memory running 64 bit
Fedora Linux 7. We used CBMC version 2.6.
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• Every function should return with a semaphore re-
leased unless the semaphore operation raises an error.

A total of 14 BML functions use the BML semaphore.
Each function is around 220 lines long and its cyclo-
matic complexity is 21 on average. We inserted an inte-
ger variable smp to indicate the status of the semaphore
and simple codes to decrease/increase smp at correspond-
ing semaphore operations in these 14 BML functions. We
checked the following two properties.

1. 0 ≤smp≤ 1 at every semaphore acquire operation.

2. smp==1 when a function using the semaphore returns
unless a semaphore error occurs.

As we analyze PriRead, relevant constraints were
specified in order to reduce the possible state space for the
CBMC analysis. CBMC concludes that all these 14 func-
tions satisfy the above two properties. CBMC takes 10 sec-
onds while consuming around 300 megabytes of memory
on average to analyze each function.

5.2.2 Handling Semaphore Exception

BML semaphore operation may cause an exception in some
instances depending on the hardware status. Once such
BML semaphore exception is raised, normal operations
cannot be performed unless initialization is forced by a file
system application. All BML functions that use the BML
semaphore return BML ACQUIRE SM ERROR to its caller
immediately when the semaphore operation raises an ex-
ception. This error flag should be propagated through call
graph chain to the topmost STL function, which should re-
turn STL CRITICAL ERROR to the application. Fig. 7
presents a partial call graph of functions that eventu-
ally perform the semaphore acquire operation by calling
OAM AcquireSM.

We analyzed the topmost STL functions such as
STL Write (depicted in the left most part of Fig. 7)
to check whether these functions always return
STL CRITICAL ERROR if OAM AcquireSM raises
an exception. For example, for STL Write, CBMC
should analyze 8 levels of the call graph.

We add a global variable SMerr to indicate when a
semaphore exception is raised. We can then check whether
the semaphore exception is correctly propagated to the top-
most application by checking the return value nErr of the
topmost STL functions. This property check can be done by
inserting the following assert statement before the return
statement in the topmost STL functions.

assert(!(SMerr==1)||nErr==STL CRITICAL ERROR)

For example, we verified STL write, which is 84
lines long. In this analysis, however, all sub functions

of STL write (e.g. SM WriteSectors (104 lines),
KeepBoundsOfDepth(31 lines), etc) should be ana-

lyzed together, which further increases the complexity of
the analysis. To reduce the analysis complexity, we start
the analysis by setting the loop unwinding bound as 1,
which means that CBMC analyzes scenarios where all loop
bodies are executed only once or passed. In this set-
ting, CBMC does not report any violations. When the
loop bound is increased to 2, a violation is detected in 97
seconds with 616 megabytes of memory consumed. Af-
ter analyzing the counter example, it is found that a sub-
function GetSInfo has a bug. When GetSInfo calls
BML Read, GetSInfo does not check the return flag of
BML Read. Therefore, GetSInfo fails to recognize the
exception raised in BML Read and does not propagate the
exception to LoadSam and upto STL Write.

5.3 Multi-sector Read (MSR) Operation

5.3.1 Overview of MSR

USP provides a mechanism to simultaneously read as many
multiple sectors as possible in order to improve the read-
ing speed. Due to the non-trivial traversal of data structures
for logical-to-physical sector mapping (see Section 2.2), the
function for MSR is 157 lines long and highly complex,
having 4-level nested loops. The requirement for MSR is
that the content of the read buffer should correspond to the
original data in the flash memory when MSR finishes read-
ing.

Due to the complexity of the nested loops, MSR has
a notorious bug history, to the extent that the developers
seriously considered removing the feature. For example,
if MSR is designed incorrectly, MSR may read data of
Fig. 8.b) incorrectly when PU0, PU1, and PU2 are mapped
to LU0 in order and PU3 and PU4 are mapped to LU1 in
order, because data are not distributed over PS’s in order.
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Figure 7. Call graph of functions using the BML semaphore

5.3.2 Test Environment for MSR

MSR assumes randomly written logical data on PUs and a
corresponding SAM records the actual location of each LS.
The writing of data to read is, however, not purely random.
This means that a test environment has to be created such
that a logical relation is maintained between SAMs and PUs
as shown in Fig. 8, in order to generate valid test scenarios.
In this analysis task, we create a test environment for MSR
by specifying constraints representing this relationship. For
example, the test environment should conform to the fol-
lowing rules.

1. One PU is mapped to at most one LU.

2. If the ith LS is written in the kth sector of the jth PU,
then the (i mod m)th offset of the jth SAM is valid
and indicates the PS number k, where m is the number
of sectors per unit (4 in our experiments).

3. The PS number of the ith LS must be written in only
one of the (i mod m)th offsets of the SAM tables for
the PUs mapped to the b i

mcth LU.

For example, the last two rules can be specified by the
following invariants. 2

∀i, j, k (logical sectors[i] = PU [j].sect[k] →
(SAM [j].valid[i mod m] = true &
SAM [j].offset[i mod m] = k &
∀p.(SAM [p].valid[i mod m] = false)

where p 6= j and PU [p] is mapped tob i

m
cth LU))

Note that the total number of SAMs and PUs configura-
tions increases exponentially as the size of logical sectors or
the number of PUs increases. Thus, it is necessary to limit
the size of the test environment within a reasonable range.

For the number of loop unwindings, the upper bound of
each loop can be obtained from the algorithm of MSR as

2These invariants allow spurious value combinations in SAMs, to re-
duce the complexity of imposing invariants. However, this weakening of
invariants does not produce false positives when checking the requirement.
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Figure 9. Time complexity of the MSR test-
ings

follows. The outermost loop iterates at most L times, where
L is the length of logical data in sectors. The second out-
ermost loop iterates at most M times, where M is the size
of LUs. The third loop iterates at most N times where N
is the total number of PUs. The innermost loop iterates at
most 4 times, since one PU contains 4 PS’s. For example,
L = 6, M = 2, N = 5 for Fig. 8.a).

5.3.3 Testing Results

We tested MSR for 5 to 8 sectors long data distributed over
5 to 10 PUs. Through CBMC experiments, no violations
were detected. Note that the test environment created here
exhaustively generate all scenarios. For example, for 6 sec-
tors long data distributed over 10 PUs, there exist 2.7× 108

distinct test scenarios. CBMC has analyzed all such scenar-
ios exhaustively. Therefore, compared to randomized test-
ing, this exhaustive analysis capability can provide higher
confidence on the correctness of MSR. The experimental
results are illustrated in Fig. 9. For example, it takes 1471
seconds to test all 2.7 × 108 scenarios 6 sectors long data
distributed over 10 PUs. For each of the experiments, 200
to 700 megabytes of memory were consumed. For more
details on the analysis of MSR, see [14].
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6 Lessons Learned

6.1 Software Model Checker as an Effec-
tive Unit Testing Tool

Model checking techniques have been used as a means to
improve the reliability of computing systems by detecting
subtle flaws through an exhaustive analysis. However, due
to the state explosion problem [11] and the gap between the
target program and the corresponding formal model, model
checkers have not been widely used as a software validation
tool.

Through this project, however, we found that cutting-
edge SAT based model checkers can overcome these weak-
nesses. The capability of the direct C code analysis of
CBMC elimitates the overhead to create a formal model.
In addition, the SAT solver could exhaustively test units
of codes while consuming only modest time and memory,
although not all software codes as a whole can be tested
and the binary libraries used by the target program can-
not be analyzed if any. Furthermore, a CBMC based code
analysis is more convenient than actual testing, because
CBMC does not require any test harnesses except environ-
ment constraints. A step-by-step counter example generated
by CBMC also serves as an effective debugging aid.

Finally, as demonstrated in Sect. 5, a CBMC based anal-
ysis, due to its exhaustive analysis capability, could detect
several hidden bugs that had not been previously detected
by Samsung. Therefore, a SAT-based model checker should
be evaluated tried as a unit test tool in software develop-
ment, as it can provide higher confidence of code quality
with an acceptable overhead.

6.2 Benefits of Constraint Based Exhaus-
tive Testing

Although to date there active research on model based
testing has been carried out [20, 19], generation of test cases
adequate for various test criteria [21] still requires a great
deal of human effort in many cases. In this project, we
avoided this laborious task of explicit test case generation.
Instead, we mechanically tested all possible execution sce-
narios that satisfy environmental constraints. This approach
was successful for unit testing of USP; exhaustive unit test-
ing consumed only modest amounts of time and memory.

In addition, even when a set of test cases reaches a com-
plete statement coverage or branch coverage, the absence
of error is still not guaranteed, since different input values
can generate different outputs even in the same execution
path. Thus, the necessity of an exhaustive analysis remains
even when test criteria are satisfied. Therefore, for unit test-
ing, this exhaustive analysis with constraints can produce

better confidence in the correctness of the target code while
requiring minimal human efforts.

6.3 Advantages of a SAT-based Model
Checker

Several works have applied model checking techniques
to verify C programs directly [12, 6, 18]. Software model
checkers such as Blast [7] and SLAM [17] use various ab-
straction techniques such as counter example based abstrac-
tion refinement (CEGAR) to alleviate the state space explo-
sion problem. However, these approaches suffer from var-
ious problems due to excessive abstraction and limitation
of underlying decision theories. Consequently, the anal-
ysis results are inaccurate or the analysis may halt unex-
pectedly due to a failure to find proper predicates. For ex-
ample, we performed the same analysis tasks using Blast
as we did with CBMC. Blast produced correct results for
the analysis of the BMC semaphore usage pattern (see
Sect. 5.2.1). However, Blast unexpectedly halted the anal-
ysis of PriRead (see Sect. 5.1), because it failed to find
proper predicates. Furthermore, we could not expect Blast
to analyze MSR correctly, since Blast has a very limited
analysis capability on array operations.

CBMC can produce accurate results because it straight-
forwardly (i.e. at a bit-level accuracy) transforms a target C
program into a huge SAT formula consiting of millions of
variables and clauses. However, an underlying SAT solver
can solve this huge formula very efficiently with the help of
advanced heuristics (see Sect. 3.1).

One difficulty of SAT based model checking is finding
the upper bounds for loop unwindings. Although this prob-
lem is in general difficult to solve, a user can obtain a good
approximation for unwinding upper bounds after analyzing
the target program. In this project, we could decide the un-
winding bounds from the DDS documents and the target
code without difficulty. In addition, even if we fail to obtain
the unwinding upper bounds, CBMC can still evaluate sce-
narios within the user designated unwinding bounds. This
can still provide opportunities to detect bugs in those in-
complete scenarios. 3

7 Conclusion and Future Work

In this project, we successfully applied a SAT based soft-
ware model checker CBMC to detect bugs in the device
driver software for OneNAND flash memory. These bugs
include incomplete handling of semaphore errors and a log-
ical bug that does not store the current status of an erase
operation that is preempted by a prioritized read operation.

3A user has to check whether a detected bug is a real one through
a counter example generated, if the bug is detected when an insufficient
bound is used.
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These bugs had not been previously detected. In addition,
we could establish confidence in the correctness of the very
complex multi-sector read function, although complete ver-
ification on a large size flash was not established.

It must be noted that the current model checking technol-
ogy is not yet scalable to automatically verify the entire C
code of a safety critical system [3]. However, it is still ben-
eficial to use SAT-based model checkers when testing units
of a target C program with nominal overhead, as demon-
strated in this project. Samsung highly valued the project
results and, as a next project, the authors plan to analyze a
flash file system to check data consistency at the events of
random power-off. We also plan to apply the Satisfiability
Modulo Theories (SMT) solver [4] instead of a SAT solver
for realization of an efficient decision procedure, as this can
remove huge bit-vector equations generated from the target
code.
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