
ReRe--engineering Home Service Robotsengineering Home Service RobotsReRe engineering Home Service Robots engineering Home Service Robots
Improving Software Reliability: A Case StudyImproving Software Reliability: A Case Study

Moonzoo Kim, etc

AgendaAgenda

IntroductionIntroductionIntroductionIntroduction

ReRe--engineering Software Architectureengineering Software Architecture

Control Plane ReControl Plane Re--engineering engineering

Data Plane ReData Plane Re--engineering engineering

Lessons LearnedLessons Learned

2/34
CS350 Intro. to SE
Spring 2008

IntroductionIntroductionHome Service Robots

Designed for providing various services to human user
- Service areas : home security, patient caring, cleaning, etc

Markets for home service robots are still being formed- Markets for home service robots are still being formed

3/34
CS350 Intro. to SE
Spring 2008

Project BackgroundProject BackgroundHome Service Robots

• SAIT started development of SHR00 from 2002
– 4 separate teams (13 persons)

• Vision recognition, speech recognition, simultaneous localization
and mapping (SLAM) actuatorand mapping (SLAM), actuator

• Both SHR00 and SHR50 suffered feature interaction
problemsproblems
– SAIT decided to develop SHR100 from scratch

SAIT t d POSTECH t i th li bilit• SAIT requested POSTECH to improve the reliability
of SHR100 in six months
– SHR100 is written in 17K line of C/C++

4/34
CS350 Intro. to SE
Spring 2008

IntroductionIntroductionComponents of Home Service Robots

Robots are created based on various technical components
- Speech recognizer vision recognizer actuator etc- Speech recognizer, vision recognizer, actuator, etc

Front CameraFront Camera

Ceiling
Camera

•Map building
•Self-positioning

Single
Board

Computer

•Controlling
peripherals

8-Channel
Microphones

Front CameraStructured Light

Front CameraMotor Controller

Front CameraCeiling Camera

Front
Camera

Speaker

Camera

•Face Recognition
•User following
•Remote Surveillance

Self positioning

LCD •Information
Di l

•Sound
generation

Front CameraCeiling Camera

8 channel
Microphones

•Speaker
Localization

Structured • Obstacle Detection

Display

Actuator •Movement

Light
Sensor

• Foot Step Detection

Wireless
LAN

•Communication to H
ome Server

5/34
CS350 Intro. to SE
Spring 2008

IntroductionIntroductionIntegration of Components

Robot developers concentrate on technical components only,
resulting in integration in an ad-hoc and bottom-up way
- Difficult to coordinate components to provide services

PDA
Call & Come

8-Channel
Microphones

Front CameraFront Camera

Call & Come Tele-PresenceSurveillance
User Following

Tele-PresenceSurveillance

User Following Navigation SLAM
Structured

Light

g

Motor ControllerMotor Controller

Legend

Ceiling CameraCeiling Camera

Light

Name Sensor/Actuator

Service Component Data FlowName

Name External Device

6/34
CS350 Intro. to SE
Spring 2008

ReRe--engineering Software Architectureengineering Software ArchitectureProblems

Problems due to bottom-up integration
L k f l b l i- Lack of global view

- Difficulty in analyzing the behavior of integrated systems
I t ti ft i difi ti f th t- Integration often requires modifications of other components

Feature interaction problemsFeature interaction problems

- Invisible interactions between the components
- Difficulty to trace the cause of problems (debugging difficulty)

Cannot develop products in reasonable project timeCannot develop products in reasonable project time
Cannot evolve according to quickly changed market demands
Cannot satisfy required quality attributes (e.g. safety and temporal properties)

7/34
CS350 Intro. to SE
Spring 2008

ReRe--engineering Software Architectureengineering Software ArchitectureProposed Approach

To provide hierarchical and modular SAp
- Top-down global views
- Visualization of component interactionsp
- High adaptability for evolving features/ technologies

T l f l t ti & ifi tiTo apply formal construction & verification
to the core of SW
- Rigorous and automated debugging support
- Explicit interaction mechanism among components
- Compact and easy-to-understand code

8/34
CS350 Intro. to SE
Spring 2008

ReRe--engineering Software Architectureengineering Software ArchitectureProposed Approach

Re-engineering based on the following three principles

1. Separation of control plane from computational plane
2. Distinction between global behavior and local behavior2. Distinction between global behavior and local behavior
3. Layering in accordance with data refinement hierarchy

9/34
CS350 Intro. to SE
Spring 2008

ReRe--engineering Software Architectureengineering Software ArchitectureRe-engineering Principles

Principle1: Separation of Control Components from Computational
Components.

The first class of data is control
d t f h dli b t b h i

p

Apply Apply data for handling robot behaviors.
: correctness is the foremost
concern due to complexity of

Control

Control Plane

Control Control

pp ypp y
Control Oriented Development MethodologyControl Oriented Development Methodology

To the Control PlaneTo the Control Plane

reactive system.

The second class of data is Computational

Control
Components

Computational Computational

Control
Component 1

Control
Component n

The second class of data is
computational data for handling
robot function.
: efficient computation is the most

Computational
Component 1

p
Components

Computational
Component m

Data Plane
Apply Apply : efficient computation is the most

important goal.
Data Oriented Development MethodologyData Oriented Development Methodology

To the Data PlaneTo the Data Plane

Event (Up-stream) Data FlowName Component

Legend

10/34
CS350 Intro. to SE
Spring 2008

(p)

Event (Down-stream)

Data FlowName Component
Control

ReRe--engineering Software Architectureengineering Software ArchitectureRe-engineering Principles

Principle2: Separation of Local Behaviors from Global Behaviors

Mode manager components
Control Plane

defines the system modes and the
interaction policy between service
components. Service ServiceLocal Behavior

Global Behavior
Control Components

Mode
Manager

p

Service manager components
defines the behavior of service Computational Computational

C t
Computational
C t

Manager 1 Manger nControl Components

defines the behavior of service
feature by controlling the
computational components.

Component 1Components Component m

Data Plane
Legend

Event (Up-stream)

Event (Down-stream)

Name Component

11/34
CS350 Intro. to SE
Spring 2008

ReRe--engineering Software Architectureengineering Software ArchitectureRe-engineering Principles

Principle3: Layering in Accordance with Data Refinement Hierarchy

Global Behavior
Control Components

Control Plane

Mode
Manager

QoS Manager determines the level
at which the computation should be

Local Behavior
Control Components

p

Service
Manager1

Service
Manager n

at which the computation should be
performed according to service

Computational
Component 1

Computational
Component m

QoS Manager

There exist data
refinement hierarchy

Data
Repository

Data Plane

Computation Layer k
for data computation and
different service features
may use different

Computation Layer 1

y
computational
component layers.

12/34
CS350 Intro. to SE
Spring 2008

M d

ReRe--engineering Software Architecture engineering Software Architecture New Software Architecture

Call &
Come

User
Following

Mode
Manager

Security
Monitoring

Tele-
Presence

Control Plane

Structured
Light

User
Interface

Vision
Manager

Audio
Manager

Come Following Monitoring

SLAM

Presence

Light g g

Data
Repository

Data Plane

Object Recognition

Vision QoS
Manager

Audio Source

Audio QoS
Manager

Object Recognition
through Color

Analysis

Image Format

Audio Source
Direction Analysis

Audio Pattern
Recognition

Event (Up-stream)
Legend

Name

Image
Acquisition

g
Conversion

Audio
Acquisition

Recognition

Control

Event (Down-stream)
Data Flow

Name

Conceptual
Component

13/34
CS350 Intro. to SE
Spring 2008

cqu s t o

Data Repository Data Repository

ReRe--engineered SHR100 Architectureengineered SHR100 ArchitectureRe-engineering Control Plane (1/3)

Mode
ManagerManager

module sm

CALL_COME,
Control Plane
Implementation

CALL_COME_DONE,CALL_STOP_DONE

Tele-Presence
module tp

Call & Come
module cnc

User
Following

module uf

Security
Monitoring
module sm

_
CALL_STOP

p
in Esterel

stopped()
GO() human in range()

EVENT

GO()
ROTATE()
STOP()

Navigation User Interface

human_in_range()
detected()

Vision Manager
Audio SLAM

Data Plane
Implementation
in C/C++ Navigation

Manager
SLAM

Data
Repository

in C/C++

14/34
CS350 Intro. to SE
Spring 2008

Repository

A i t l d f th ti CC i

Overview of the Previous CC Overview of the Previous CC
ImplementationImplementation

Re-engineering Control Plane (2/3)

01:class CCallComeDlg {
02 i d

A main control procedure for the preemptive CC service

• processState() is
02: int m_order;
03: ...
04: void processState() {
05: ...
06: switch(m order) {

p ()

called periodically

once in every 100

illi d
06 switch(m_order) {
07: case 0: STOP();
08: m_order++;
09: break;
10: case 1: ROTATE();
11 d

milliseconds.

• CC executes

through sequential
11: m_order++;
12: break;
13: case 2: static int nCount = 0;
14: if (abs(m_befO-curO)==0) nCount++;
15: else nCount = 0;

through sequential

steps identified by

the value of

d

New
Com-
mands 15 else nCount 0;

16: if (nCount > 2) m_order++;
17: break;
18: ...
19: case 9: CALL_N_COME_FINISHED();
20 d 1

m_order

• nCount is

declared as a

mands

20: m_order = -1;
21: break;
22: }/* End of processState()}
23:}

declared as a

static local

variable at line 13

15/34
CS350 Intro. to SE
Spring 2008

This straightforward pattern is error prone.

Overview of the reOverview of the re--engineered CC engineered CC
ImplementationImplementation

Re-engineering Control Plane (3/3)

Esterel handles a
preemptive event e with a

ti t

01:module control_plane: % Control Plane
02:input EVENT: integer;
03:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;
04:signal CALL_COME, CALL_STOP in
05:run mode man||run cnc||run uf||run tp||run sm; preemption operator

EVERY e DO statements

05:run mode_man||run cnc||run uf||run tp||run sm;
06:end signal
07:end module
08:
09:module cnc: % Call and Come service
10:function human in range() : boolean;

END EVERY.

Interactions among Esterel

10:function human_in_range() : boolean;
11:input CALL_COME,CALL_STOP; %come,stop commands
12:output STOP,ROT,GO,CC_DONE,CS_DONE,DET,N_DET;
13:var mv:=false:boolean,n:integer in
14: every immediate [CALL_COME or CALL_STOP] do
15: present g

modules are clearly defined
via events

p
16: case CALL_COME do % come command
17: mv := true;
18: emit STOP; pause;
19: run rot_det;
20: ...

PRESENT CASE e DO
statements END PRESENT

21: emit CC_DONE;pause;
22: case CALL_STOP do % stop command
23: emit STOP;
24: if mv=true then emit CS_DONE;
25: else mv:=true;pause;run rot_det end if;
26 d

Submodule can be
conveniently utilized

26: end present;
27: mv := false;
28: end every
29:end var
30:end module
31:

16/34
CS350 Intro. to SE
Spring 2008

RUN module
31:...

Reactive Synchronous Language EsterelReactive Synchronous Language EsterelEsterel Background (1/5)

Synchrony =
Input Output

Synchrony =
abstraction of the
real world
C l b d

event event

Cycle-based
execution model,
global clock

computation
memory

Perfect synchrony
y

i t t tinput output

time

Execution instants

17/34
CS350 Intro. to SE
Spring 2008

The Esterel LanguageThe Esterel LanguageEsterel Background (2/5)

Synchronous language

Structural imperative styleStructural imperative style

Basic constructs
Classical control flow
p;q, p||q, loop p end

Signals:
signal S in p end, emit S,

present S then p else q end

Preemption
abort p when S, every s do p end every

Exception handling

18/34
CS350 Intro. to SE
Spring 2008

trap T in p end, exit T

The Esterel SemanticsThe Esterel SemanticsEsterel Background (3/5)

ABRO example 0

1
R/ R/

R/

2 3
/RBA /RBA

/ORAB

Input A,B,R;
Output O;
loop
[

4
/ORA/ORB

it h(t t){

[
await A

||
await B

] switch(state){
case 0: state=1; break;
case 1: if(!R)if(A)if(B) {O();state=4;}

else state=2;
else if(B)state=3;break;

];
emit O;
halt

every R else if(B)state=3;break;
case 2: if(R)state=1;

else if(B){O();state=4;} break;
case 3: if(R)state=1;

else if(A){O();state=4;} break;

every R

19/34
CS350 Intro. to SE
Spring 2008

case 4: if(R)state=1;break;
}

Overview of Esterel ToolsOverview of Esterel ToolsEsterel Background (4/5)

The esterel Compiler:
C/VHDL/Verilog code generation.C/ / e og code ge e a o

interface between Esterel and C.

The xes Graphical Simulator:
graphical interactive simulation

session recording/replay.

Th M d l Ch kThe xeve Model Checker:
analyzes an Esterel program.

check presence of an output signal
with given configuration of input
signals.

20/34
CS350 Intro. to SE
Spring 2008

signals.

Commercial Esterel Studio 5.21Commercial Esterel Studio 5.21Esterel Background (5/5)

21/34
CS350 Intro. to SE
Spring 2008

Behavior of CCBehavior of CCFormal Verification of Stopping Behaviors (1/5)

• !S indicates output p
signal

• ?S indicates presence?S indicates presence
of the input signal S

• #S indicates absence• #S indicates absence
of the input signal S

22/34
CS350 Intro. to SE
Spring 2008

Requirement PropertiesRequirement PropertiesFormal Verification of Stopping Behaviors (2/5)

Stopping behaviors are safety critical

Three properties on the stopping behaviorsThree properties on the stopping behaviors
P1: If a user does not give a command to the robot, the robot must not move.

P2: If a user does not give a “come” command but may give a “stop” command toP2: If a user does not give a come command, but may give a stop command to
the robot, the robot must not move.

P3: If a user gives a “stop” command, the robot must stop and not move without
any new command.

We verify whether P1,P2, and P3 are satisfied in the following
two cases

When the CC service runs solely

When the CC service and the UF service run concurrently

23/34
CS350 Intro. to SE
Spring 2008

Verification Result IVerification Result IFormal Verification of Stopping Behaviors (3/5)

We check P1 by setting
Input signals COME_COMMAND and STOP_COMMAND as “always
absent”absent”
Output signal GO to check.

Both cases satisfy P1

24/34
CS350 Intro. to SE
Spring 2008

Verification Result IIVerification Result IIFormal Verification of Stopping Behaviors (4/5)

The CC service satisfies P2, but not CC and UF together.

- Verification result said that ROTATE and GO could be possibly e cat o esu t sa d t at O a d GO cou d be poss b y
emitted when COME_COMMAND command was absent and
STOP_COMMAND might be given

- I.e. feature interaction happens

UF should had been triggered only after a “come”
command
1. We refined CNC_DONE into CNC_COME_DONE and

CNC STOP DONECNC_STOP_DONE.

2. We modified the UF implementation so that only
CNC COME DONE could invoke UFCNC_COME_DONE could invoke UF.

3. After this modification, we could see that P2 was satisfied by the
concurrent CC and UF services.

25/34
CS350 Intro. to SE
Spring 2008

The property P3

Verification Result IIIVerification Result IIIFormal Verification of Stopping Behaviors (5/5)

The property P3.
P3: If a user gives a “stop” command, the robot stops and does not move
without any new commandwithout any new command.

To verify P3, we need to build an observer to detect violations

26/34
CS350 Intro. to SE
Spring 2008

Experimental ResultsExperimental ResultsRe-engineering Data Plane (1/2)

Layered Implementation of Vision Manager
- The layered architectural pattern is organized based on the- The layered architectural pattern is organized based on the
data refinement hierarchy.
I t f I l t ti

1. Image data from the front
camera are captured
(Layer 1)

class Vision_L3_FaceRecognition
: public Layer3 {
public :
virtual bool L3Service()

class Layer3 {
protected :

Layer2 *lowerLayer;

i

Interface Implementation

(Layer 1),
2. then converted into a file

format (Layer 2)
3 fi ll h f i

{…
if(lowerLayer->L2Service()){
…
if(m_faceRec.Rec()){
DR::setData(m_facePattern);

… }

public :
virtual bool L3Service()= 0;
void setLowerLayer(Layer2 *l){

lowerLayer = l; }
}

3. finally a human face is
identified by analyzing
colors in the file (Layer 3).

… }

class Vision_L2_FormatConversion
: public Layer2 {
public :
virtual bool L2Service()

class Layer2 {
protected :
Layer1 *lowerLayer;

virtual bool L2Service()
{…
if(lowerLayer->L1Service()){
…
if(m_frmtConversion.Conv()){
DR::setData(m_imgFormat);

}

public :
virtual bool L2Service()= 0;
void setLowerLayer(Layer1 *l){

lowerLayer = l; }
}

27/34
CS350 Intro. to SE
Spring 2008

… }

Experimental ResultsExperimental ResultsRe-engineering Data Plane (2/2)

Vision QoS Manager
- The QoS manager layer selects the ‘right’ level of data refinements- The QoS manager layer selects the right level of data refinements.

Vision
QoS

Vision Computation

tm(100)
/ Recognize Face

QoS
Manager

Vision QoS
QM

UF vision

Req UF Vision
/ Recognize Face

Stop UF
Vision

Req CC Vision
/ R i F

Face
Recognition

Manager

L3

L2

Vision Ready
CC vision

/ Recognize Face

Face Not Detected

/Initialize
Vision

Req SM Vision

Face
Detected

Image
Acquisition

Image
Conversion

L2

L1

Format
Conversion

Done

Req TP Vision
/Convert Format

SM Vision

Req SM Vision
/Convert Format

Format
Conversion

Done

28/34
CS350 Intro. to SE
Spring 2008

TP Vision

Lessons LearnedLessons LearnedNecessity of Re-engineering
From the experience of re-engineering SHR100, we are
convinced that re-engineering is essential

- Due to the limited development time, developers tend to
concentrate only on technical components at the early state

itho t considering ho the ill be integratedwithout considering how they will be integrated.

- Once feasibility of the project is confirmed through an early
i i h d l h ld bprototype, re-engineering the product at later stage should be

enforced for increased quality of the product.

8 -C h a n n e l

F ro n t C a m e ra

C ll & C8 -C h a n n e l

F ro n t C a m e ra

C ll & C

Mode
Manager

8 C h a n n e l
M ic ro p h o n e s

N a vig a tio n

C a ll & C o m e

S tru c tu red
L ig h t

8 C h a n n e l
M ic ro p h o n e s

N a vig a tio n

C a ll & C o m e

S tru c tu red
L ig h t U s er F o llo w in gU s er F o llo w in g

Call & Come

Navigation
Vision Audio

M

User
Following

Structured

29/34
CS350 Intro. to SE
Spring 2008

M o to r C o n tro lle rM o to r C o n tro lle r
Navigation Manager ManagerLight Manager

Lessons LearnedLessons LearnedSeparation of Priority Management

F ro n t C am e raF ro n t C am e ra
- We found that unclear global

i it h f th
Global Priority Scheme RequiredGlobal Priority Scheme Required

8 -C h a n n e l
M ic ro p h o n es

F ro n t C am e ra

C a ll & C o m e8-C h a n n e l
M ic ro p h o n es

F ro n t C am e ra

C a ll & C o m e

priority scheme was one of the
primary causes of feature
interaction problems.

M o to r C o n tro lle r

N a vig a tio n
S tru c tu red

L ig h t

M o to r C o n tro lle r

N a vig a tio n
S tru c tu red

L ig h t U s er F o llow in gU s er F o llow in g

Global Priority SchemeGlobal Priority Scheme
M o to r C o n tro lle rM o to r C o n tro lle r

Mode Manager

With th hit t th
Local SchemeLocal Scheme

Call & Come User
Following

-With the new architecture, the
global priority scheme is
separated from the service

Navigation
Vision

Manager
Audio

Manager
Structured

Light Manager

components and manageability of
priority was increased drastically.

30/34
CS350 Intro. to SE
Spring 2008

Lessons LearnedLessons LearnedNeeds of Monitoring Capability

A monitoring capability is an important aid for tracking down
possible sources of a problem.

8-C h an n e l
M ic ro p h o n es

F ro n t C am e ra

C a ll & C o m e8-C h an n e l
M ic ro p h o n es

F ro n t C am e ra

C a ll & C o m e
-Determining where to put probes
is difficult if the role of eachM icro p h o n es

N a vig a tio n
S tru c tu re d

L ig h t

M icro p h o n es

N a vig a tio n
S tru c tu re d

L ig h t U ser F o llow in gU ser F o llow in g

is difficult, if the role of each
component and the ways they
interact each other are not clear

M o to r C o n tro lle r

g

M o to r C o n tro lle r

g

Mode Manager

Call & Come User
Following

g

-The new SA that we proposed
ld ll i t thi diffi lt ith

Navigation
Vision

Manager
Audio

Manager

g

Structured
Li ht M

could alleviate this difficulty with
clear interaction strategy
between components

31/34
CS350 Intro. to SE
Spring 2008

g Manager ManagerLight Manager

Lessons LearnedLessons LearnedAdvantage of a Reactive PL

-We uncovered subtle bugs g
which decrease the accuracy of
detecting a user
- Implementing preemption inImplementing preemption in
C++ is error prone.

E t l lb l i t ti- Esterel enalbes clear interactions
among the components
- Esterel has formal semantics as
Mealy machine, which allows
rigorously analysis such as model
checking

32/34
CS350 Intro. to SE
Spring 2008

g

Lessons LearnedLessons LearnedIndustrial Viewpoints

• After all, SAIT decided not to adopt re-
engineered robot sw in their robot g
prototype

• Excuses areExcuses are
– Overhead of using a new language

• Most robot developers are not from CS field• Most robot developers are not from CS field

– Inability to optimize final code manually
• For consumer products resource constraints are still• For consumer products, resource constraints are still

major issues

– Version discrepancyVersion discrepancy
• While re-engineering was going on at POSTECH,

SAIT constantly add/updated features, which our re-

33/34
CS350 Intro. to SE
Spring 2008

engineered code did not cover

ConclusionConclusion

A Case Study of Re-engineering Home Service Robot

- Based on the three engineering principles we designed a new- Based on the three engineering principles, we designed a new
SA and re-engineered existing source code.

By this re engineering interactions among the components- By this re-engineering, interactions among the components
became visible and the responsibility of behaviors could be
assigned to components clearly, which enhance the reliabilityass g ed o co po e s c ea y, c e a ce e e ab y

- By this re-engineering, we can apply model checking technique
to improve the reliability of the control planeto improve the reliability of the control plane

Future work

- Resource management problem

- Guideline for reverse-engineering

34/34
CS350 Intro. to SE
Spring 2008

g g

