
SafeHome
Design Model

Including:

-Class diagrams

-CRC cards

-State diagrams

Team 1.
20020551 Choi, Jaeyoung

20040235 Park, Ji-young

20050410 Lee, Jae-song

1. Table of Contents
21.
Table of Contents

42.
Overall architecture

53.
Class Diagram

53.1.
Overall structure of Server

73.2.
Manager interface

83.3.
Device interface

93.4.
Security part

113.5.
Surveillance part

123.6.
Client part

144.
CRC Cards

144.1.
Server-sides

144.1.1.
Server

154.1.2.
Manager

154.1.3.
Security Manager

174.1.4.
Surveillance Manager

184.1.5.
Floor Plan Manager

184.1.6.
Session Manager

184.1.7.
Password Manager

204.1.8.
Control Panel

214.1.9.
Device

214.1.10.
Sensor

224.1.11.
Camera

224.2.
Client-sides

224.2.1.
Client

234.2.2.
Page

234.2.3.
Floor Plan

244.2.4.
Sub Floor

254.2.5.
Wall

254.2.6.
Wall Segment

264.2.7.
Window

264.2.8.
Door

285.
State diagram

285.1.
Server

295.2.
Security Manager

315.3.
Surveillance Manager

325.4.
Password Manager

335.5.
Session Manager

345.6.
Floor Plan Manager

355.7.
Control Panel

366.
Appendix

366.1.
Who did what list

366.2.
Requirement Index

2. Overall architecture
[image: image1.emf]Server

Client(remote PC, home PC)

Security Manager Surveillance Manager

Password Manager

Session Manager ControlPanel

Floorplan Manager

Sensor Camera

User Interface

Server receives messages from control panel and client(remote PC or home PC). It then processes the message using managers. Server does not know what’s inside each managers and how it is done. It just sends the message passed from control panel or client to the appropriate manager to let it handle. Intelligence are distributed among managers. All UI related features are contained in client.

s
3. Class Diagram

3.1. Overall structure of Server
[image: image2.emf]SecurityManager

SurveillanceManager

Sensor

Camera

PasswordManager

FloorplanManager

SessionManager

ControlPanel

1

1

1

1

1

0..*

1

0..*

1

1

1

1

1

1

Device

1

1

Manager

Server

-securityManager

-surveillanceManager

-sessionManager

-passwordManager

-controlPanelManager

-floorPlanManager

-controlPanel

-eventHandleClient()

-eventHandleSensor()

-eventHandleControlPanel()

-eventHandlePhone()

-powerOn()

+powerOff()

+run()

Server is the main class of whole server program, which runs infinitely and gets some event from client, control panel, phone line, and sensor. Then server sends the event message to appropriate Manager. Each Manager executes own method depending on the event.

Manager and Device is Abstract Interface and its detailed description is in next sections. Device Interface provides the general event listener so that Server can send event to the Manager. The detailed structure of each Manager is described in later parts, and detailed operation is in state diagram.
Server has run() method and it is called by main function, and the method gets event from client, control panel, phone line, and sensor while running infinitely and invokes eventHandleClient(), eventHandleSensor(), eventHandleControlPanel(), eventHandlePhone() to do. Actual read routine is implemented in eventHandle*() methods.

powerOn() and powerOff() sets the Server on and off. powerOn() is done by constructor, therefore the method is private; powerOff() method is explicitly called by other routine, and it is therefore public.
3.2. Manager interface
[image: image3.emf]Server

-securityManager

-surveillanceManager

-sessionManager

-passwordManager

-controlPanelManager

-floorPlanManager

-controlPanel

-eventHandleClient()

-eventHandleSensor()

-eventHandleControlPanel()

-eventHandlePhone()

-powerOn()

+powerOff()

+run()

Manager

+execute(methodID: int, argc: int, argv: string[])

PasswordManager

FloorplanManager SessionManager SurveillanceManager

SecurityManager

1

1

Every manager class implements Manager interface. Manager interface provides basic event receiver routine. It has a method named execute(), which must be implemented by each inherited class. The method is called by Server and specific event information is given as a parameter. Each inherited class determines which event is passed, and executes own method.
3.3. Device interface
[image: image4.emf]Device

+location : string

+id : int

+powerOn()

+powerOff()

+getID()

+getLocation(id: int)

Camera

+maxPan : int

+defaultPan : int

+currentPan : int

+maxZoom : int

+defaultZoom : int

+currentZoom : int

+reset()

+setDefault(pan: int, zom: int)

+getImage()

Sensor

+isActive : bool

+type : int

+status : int

+getType()

+setSensorActiveness(isActive: bool)

+getSensorStatus()

Device abstract interface provides basic attributes and methods which is common in devices. powerOn() and powerOff() methods is used to manage power, and getID() and getLocation() provides basic name and location information.

Camera encapsulates camera hardware and it holds camera-specific attributes and methods. It has default and current pan/zoom status; reset() method reverts current status to default, and setDefault() modifies default setting to the current values. getImage() returns current image of camera.

Sensor encapsulates sensor hardware and it holds sensor-specific attributes and methods. It can be active or bypassed; bypassed sensor is ignored when server detects sensor notification. The value is saved in isActive attribute and set by setSensorActiveness() method. Each sensor may have different type and it makes different behavior when System detects sensor notification. Its value is saved in type attribute and read by getType().
3.4. Security part
[image: image5.emf]SecurityManager

-sensorList : Sensor[]

-sensorListBackupPath : String

-arm(passwd: int, mode: int)

-disarm(passwd: int)

-chime(passwd: int)

-bypassSensor(passwd: int, sensorNo: int)

-panicMode()

-onDetectSignal(sensorNo: Integer, status: Integer)

-setAlarm()

+saveSensorList(path: String)

+loadSensorList(path: String)

+addSensor()

+removeSensor(sensorNo: int)

+indoorSounder(on: bool)

+externalStrobte(on: bool)

Server

-securityManager

-surveillanceManager

-sessionManager

-passwordManager

-controlPanelManager

-floorPlanManager

-controlPanel

-eventHandleClient()

-eventHandleSensor()

-eventHandleControlPanel()

-eventHandlePhone()

-powerOn()

+powerOff()

+run()

Sensor

+isActive : bool

+type : int

+status : int

+getType()

+setSensorActiveness(isActive: bool)

+getSensorStatus()

ControlPanel

+msgQueue

+arm(mode: int)

+disarm()

+bypass(sensorNo: int)

+chime(sensorNo: int)

+power(on: bool)

+displayNumber(number: int)

+makeBeep(times: int)

+parseQueue()

+emptyQueue()

PasswordManager

-trial: Integer

-webID: String

-webPassword1st: String

-Attribute1: String

-masterPW: String

-homeownerPW: String[]

-guestPW: String[]

-configureIDPW(masterPW: int, webID: String, 1stPW: String, 2ndPW: String)

-checkIDPW(webID: String, 1stPW: String, 2ndPW: String)

+verifyPassword(passwd: int): int

-changePassword(masterPW: int, userNumber: int, newPasword: int)

-addPassword(masterPW: int, userNumber: int, password: int)

-deletePassword(masterPW: int, userNumber: int)

-loadAccountInfo()

-saveAccountInfo()

1

1

1

0..*

1

1

manipulate ControlPanel

+manipulatee

+manipulator

verify password

+password Verifier

+password verify requester

Security Manager manages arming mode and receives sensor event and some of client event, passed by Server. The actual method to change Arming mode is arm() and disarm(). Arming and disarming requires master password, therefore Security Manager depends on Password Manager to verify it. The detailed arming mode operation is described in state diagram.
Sensor list of Security Manager is saved as a backup in storage system, and it saves whenever data is changed or system is terminating by saveSensorList() method; the data is loaded from storage on initializing by loadSensorList() method.

Password Manager manages and operates add/delete of specific password. It also has public method named verifyPassword() which is used by Security Manager to verify given password.

3.5. Surveillance part

[image: image6.emf]Server

-securityManager

-surveillanceManager

-sessionManager

-passwordManager

-controlPanelManager

-floorPlanManager

-controlPanel

-eventHandleClient()

-eventHandleSensor()

-eventHandleControlPanel()

-eventHandlePhone()

-powerOn()

+powerOff()

+run()

SurveillanceManager

-cameraList : Camera[]

-cameraListBackupPath: String

-replayPath: String

-saveCameraList()

-loadCameraList()

+getCameraList(): String

-getThumbnailView(): Image[]

+getSpecificCameraView(): Image

+recordCamera()

+getReplayList(): String

+viewReplay()

+addCamera()

+removeCamera()

Camera

+maxPan : int

+defaultPan : int

+currentPan : int

+maxZoom : int

+defaultZoom : int

+currentZoom : int

+reset()

+setDefault(pan: int, zom: int)

+getImage()

1

1

1

0..*

Surveillance Manager manages cameras attached to Safehome system. It controls the behavior of camera in response to events passed from client. Detailed behavior of SurveillanceManager is described in state diagram.
3.6. Client part
[image: image7.emf]Page

+id: Integer

+drawPage()

+onLeftClick()

+onRequest()

firstPage

regiPage

loginPage

leftMenuBar surRightTop

surPick

surAll

surReplay

secRightTop

secPage

conRightTop

conPass

surFeed

conFloor

floorPlan

+name

+subFloorList

+subFloorNum

+metric

+addSubFloor()

+deleteSubFloor()

+drawSubFloor()

+saveFloor()

+loadFloor()

+setFloorName()

+setMetric()

surReFeed

subFloor

+name

+wallSegmentList

+windowList

+doorList

+addObject()

+deleteObject()

+moveObject()

wall

+id

+type

+draw()

wallSegment

+id

+type

+startCoordinates

+stopCoordinates

+nextWallSegment

+draw()

+setCoordinates()

window

+id

+type

+startCoordinates

+stopCoordinates

+nextWindow

+draw()

+setCoordinates()

door

+id

+type

+startCoordinates

+stopCoordinates

+nextDoor

+draw()

+setCoordinates()

Client

+run()

+sendMsg()

+rcvMsg()

1

0..*

Client class provides some pages for UI. Some pages need to communicate with server. Client class does it to handle requests and responses.

Pages are connected with each other as the image above. Each page class inherit page class and is similar to each other, so we drew just a super class (page Class).

FloorPlan class is different with server-side floorPlan class. User can configure a floor plan with this client. So, here the floorPlan class has some detailed function about configuring the floor plan.

FloorPlan class has subFloorList (subFloor class list). A subFloor class represents a single floor in floor plan. FloorPlan class can add subFloor, delete subFloor, etc, and send completed floor plan to server to save it.

SubFloor class has detailed information about a floor. It can add/delete/move Wall segments, windows, doors.

Wall segments, windows, doors inherit Wall class (super class).
4. CRC Cards
* For the traceability link, please refer to appendix 6.2
4.1. Server-sides
Server-side classes are only used in server software, not client software.

4.1.1. Server
	Class: Server

	Contains all managers of SafeHome system. Receives messages and signals from client, sensors, control panel, phone line and dispatch each of these to corresponding managers.

	Attributes:

	securityManager – object of SecurityManager

	surveillanceManager – object of SurveillanceManager

	sessionManager – object of SessionManager

	passwordManager –object of PasswordManager

	floorPlanManager – object of FloorplanManager

	controlPanelManager – object of ControlpanelManager

	Operations:

	run() – check incoming events inside loop

	eventHandleClient() – handles event from client

	eventHandleSensor() – handles signal from sensors

	eventHandleControlPanel() – handles signal from control panel

	eventHandlePhone() –handles signal from phone line

	powerOn() – initialize all manager objects

	powerOff() – terminate the system

	Responsibility
	Collaborator

	eventHandleClient()
	Security, Surveillance, FloorPlan, Session, Password Manager

	eventHandleSensor()
	Sensor

	eventHandleControlPanel()
	Control Panel

	eventHandlePhone()
	Security Manager

	PowerOn()
	Security, Surveillance, FloorPlan, Session, Password Manager

	PowerOff()
	Security, Surveillance, FloorPlan, Session, Password Manager

	Traceability Link

	All Function

4.1.2. Manager

	Class: Manager

	Abstract class of manager interfaces which are used in Server class.

The class has a public method to receive event from server, and each manager subclass may have other public method used by other manager subclass.

	Attributes:

	None

	Operations:

	execute(event) – executes a event provided by server.

	Responsibility
	Collaborator

	execute()
	Server

	Traceability Link

	

4.1.3. Security Manager
	Class: SecurityManager

	Security Manager is a manager class of all security features and controls all sensors attached to the Safehome server.

Security Manager change system state according to user request, and react upon sensor detection.

	Attributes:

	sensorList : Sensor[] – holds list of Sensor objects

	sensorListBackupPath : String

	mode : integer{disarm, away, stay, instance, chime}

	controlPanel – object of ControlPanel

	Operations:

	arm(mode : int) – configure the system setting to armed state

	disarm() – configure the system setting to disarmed state

	chimeMode() – configure the system to monitor the door/window sensors only

	bypassSensor(sensorNo : int, active : bool) – bypass/unbypass sensor

	panicButton() – call security company

	onDetectSignal(sensorNo : int, status : int) – assess the sensor detection to the system configuration

	setAlarm() – set the alarm

	saveSensorList() – save the sensor information to the archive

	loadSensorList() – load the sensor information from the archive

	getCurrentMode() : int–returns current mode of the system

	indoorSounder(on : bool) – activate/deactivate indoor sounder

	externalStrobe(on : bool) – activate/deactivate external strobe

	addSensor() – add sensor to the Sensor objects list

	removeSensor() – remove sensor from the Sensor objects list

	Responsibility
	Collaborator

	arm()
	Sensor, Control Panel

	disarm()
	Sensor, Control Panel

	chimeMode()
	Sensor, Control Panel

	bypassSensor()
	Sensor, Control Panel

	panicButton()
	

	onDetectSignal()
	Sensor

	setAlarm()
	

	saveSensorList()
	

	loadSensorList()
	

	getCurrentMode()
	

	indoorSounder()
	

	externalStrobe()
	

	addSensor()
	Sensor

	removeSensor()
	

	Traceability Link

	IR1, IR11, FR13~FR25

4.1.4. Surveillance Manager

	Class: SurveillanceManager

	Manager class of all surveillance related features. Manages all cameras attached to Safehome system. Controls operations of cameras upon client’s requests.

	Attributes:

	cameraList

	cameraListBackupPath

	replayPath

	Operations:

	saveCameraList()

	loadCameraList()

	getCameraList()

	getThumbnailView()

	getSpecificCameraView()

	recordCamera() - call getImage() of camera every second and save it

	getReplayList()

	viewReplay()

	addCamera()

	removeCamera()

	Responsibility
	Collaborator

	saveCameraList()
	

	loadCameraList()
	

	getCameraList()
	Camera

	getThumbnailView()
	Camera

	getSpecificCameraView()
	Camera

	recordCamera()
	Camera

	getReplayList()
	

	viewReplay()
	

	addCamera()
	Camera

	removeCamera()
	

	Traceability Link

	IR6~IR10, FR7~FR12

4.1.5. Floor Plan Manager

	Class: FloorPlanManager

	Floorplan Manager contains floorPlan data

	Attributes:

	floorPlan : txt

	Operations:

	setFloorPlan()

	getFloorPlan()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR11, IR13, FR6, FR7, FR13~20

4.1.6. Session Manager

	Class: SessionManager

	SessionManager manages the login status of system. Handles login and logout operation.

	Attributes:

	isLogin : bool

	Operations:

	logIn(string ID, string 1stPW, string 2ndPW) : Integer

	logOut() : Integer

	getIsLogin() : bool

	Responsibility
	Collaborator

	login()
	Password Manager

	logout()
	

	getIsLogin()
	

	Traceability Link

	IR4, FR4, FR5

4.1.7. Password Manager

	Class: PasswordManager

	Password Manager manages all passwords and ID used in Safehome system. It provides verification of password feature to other managers.

	Attributes:

	webID - string

	webPassword1st – string

	webPassword2nd – string

	masterPW – int

	homeownerPW : string[]

	guestPW : string[]

	trial - int

	Operations:

	configureIDPW() : bool – synchronizes password to the SafeHome Database Server

	checkIDPW(ID, PW) bool

	verifyPassword() : returns user privilege: {0: SA, 1: HO, 2: Guest, 3: Invalid}

	changePassword(masterPW, usernumber, changedPW)

	addPassword(masterPW, Priority, PW)

	deletePassword(masterPW, PW)

	loadAccountInfo()

	saveAccountInfo()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR1~IR4, IR11~13, FR1~FR4, FR13~FR19, FR24, FR25

4.1.8. Control Panel
	Class: ControlPanel

	Stores key input sequence from control panel to the queue and parse it every time there is a new input to extract meaningful command.

ControlPanel class controls the display of control panel and beep.

	Attributes:

	msgQueue – char[]

	Operations:

	makeBeep(times : int)

	arm(mode : int)

	disArm()

	bypass(sensorNo : int)

	chime()

	power(on : bool)

	displayNumber(number : int)

	addQueue()

	parseQueue()

	emptyQueue()

	executeCommand()

	Responsibility
	Collaborator

	addQueue()
	

	parseQueue()
	SecurityManager, PasswordManager

	emptyQueue()
	

	executeCommand()
	

	makeBeep()
	

	arm()
	

	disArm()
	

	bypass()
	

	chime()
	

	power()
	

	displayNumber(number : int)

	IR1

4.1.9. Device

	Class: Device

	Abstract interface class of Sensor and Camera.
Contains common attributes and operations for all devices.

	Attributes:

	location : string

	id : int

	Operations:

	powerON() – turn on the power of device

	powerOFF() – turn off the power of device

	getID() : int

	getLocation() – string

	Responsibility
	Collaborator

	powerON()
	

	powerOFF()
	

	Traceability Link

	

4.1.10. Sensor

	Class: Sensor extends Device

	Sensor class contains information of each sensor’s type, activeness and status.

	Attributes:

	isActive : bool

	type : int{motion, door, window, water, smoke, CO, heat}

	status : int{detect, normal}

	Operations:

	getType() – returns the value type

	setSensorActiveness(isActive : bool) – set the isActive value

	getSensorStatus() : int – get the status of sensor

	Responsibility
	Collaborator

	getType()
	Control Panel

	setSensorActiveness()
	

	getSensorStatus()
	

	Traceability Link

	

4.1.11. Camera

	Class: Camera extends Device

	Camera class contains information about each camera’s zoom/pan configuration.

	Attributes:

	maxPan : int – represents the maximum pan degree of camera

	maxZoom : int – represents the maximum zoom level of camera

	currentPan : int – holds the current pan degree of camera

	currentZoom : int – holds the current zoom level of camera

	defaultPan : int – holds the default pan degree of camera

	defaultZoom : int – holds the default zoom level of camera

	Operations:

	reset()

	setDefault(pan : int, zoom : int)

	getImage() – returns the current snapshot image of camera feed

	Responsibility
	Collaborator

	reset()
	

	setDefault()
	

	getImage()
	

	Traceability Link

	

4.2. Client-sides

Client-side classes are only used in client software, not server software.

4.2.1. Client

	Class: Client

	UI part of Safehome system. Communicates with server to handle requests and responses.

	Attributes:

	None

	Operations:

	sendMsg() – send message to Server

	rcvMsg() – receive message from Server

	run() – check events from socket or button

	Responsibility
	Collaborator

	sendMsg()
	Server

	rcvMsg()
	Server

	run()
	

	Traceability Link

	IR2~IR13

4.2.2. Page

	Class: Page

	Page class is an abstract class for all the pages used in client-side of Safehome server.

	Attributes:

	Id

	Operations:

	drawPage()

	onLeftClick()

	onRequest()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR2~13

4.2.3. Floor Plan

	Class: FloorPlan (web interface)

	Floor Plan in client-side is different from server-side. It provides features to configure the floor plan.

	Attributes:

	Name

	subFloorList

	subFloorNum

	Metric

	Operations:

	addSubFloor()

	deleteSubFloor()

	drawSubFloor()

	saveFloor()

	loadFloor()

	setFloorName()

	setMetric()

	Responsibility
	Collaborator

	addSubFloor
	subFloor

	deleteSubFloor
	subFloor

	drawSubFloor
	subFloor

	Traceability Link

	IR13, FR6

4.2.4. Sub Floor

	Class: SubFloor (web interface)

	Subfloor class represents a single floor in floor plan. It contains list of walls, windows, and doors and methods to add/delete or move objects.

	Attributes:

	Name

	wallSegmentList

	windowList

	doorList

	Operations:

	addObject()

	deleteObject()

	moveObject()

	Responsibility
	Collaborator

	addObject
	Wall

	deleteObject
	Wall

	moveObject
	Wall

	Traceability Link

	IR13, FR6

4.2.5. Wall

	Class: Wall (web interface)

	Wall class represents the wall shown in floor plan. It is a super class of wall segment, door, and window class

	Attributes:

	Id

	Type

	Operations:

	draw()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR13, FR6

4.2.6. Wall Segment

	Class: WallSegment (web interface) extends Wall

	WallSegment class represents actual wall in the floorplan.

	Attributes:

	Id

	Type

	startCoordinates

	stopCoordinates

	nextWallSegment

	Operations:

	setCoordinates()

	setNextWallSegment()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR13, FR6

4.2.7. Window

	Class: Window (web interface) extends Wall

	Window class represents window placed in wall.

	Attributes:

	Id

	Type

	startCoordinates

	stopCoordinates

	nextWindow

	Operations:

	setCoordinates()

	setNextWindow()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR13, FR6

4.2.8. Door

	Class: Door (web interface)

	Door class represent door installed in wall.

	Attributes:

	Id

	Type

	startCoordinates

	stopCoordinates

	nextDoor

	Operations:

	setCoordinates()

	setNextDoor()

	Responsibility
	Collaborator

	
	

	Traceability Link

	IR13, FR6

5. State diagram

5.1. Server
[image: image8.emf]Booting

entry/initialize securityManager

entry/initialize surveillanceManager

entry/initialize passwordManager

entry/initialize sessionManager

entry/initialize controlPanelManager

entry/initialize floorPlanManager

entry/initialize client, sensor, controlpanel, phoneline connection

Power On

Waiting Event

[System Init Success] / run()

Handling Client Event

Handling Sensor Event

Handling ControlPanel Event

Handling Phoneline Event

[Client Event Received]

[Sensor Event Received]

[ControlPanel Event Received]

[Phoneline Event Received]

Terminating

entry/terminate securityManager

[Turn Off Event Received]

[System Termination Success]

[Event Handled]

[Event Handled]

[Event Handled]

[Event Handled]

On initializing, Server creates each Manager Object, and initializes each connection socket of client, sensor, control panel, and phone line.

Then Server waits infinitely for event of any connection. If an event is found, server sends to and receives the return data from each Event Manager. Then Server sends return data to the original connection and goes back to wait mode.
The Server can be normally terminated only when control panel sends the terminate event. In the case, Security Manager returns the “turn off” order and Server receives it, and terminates itself.
Traceability Link:

5.2. Security Manager
[image: image9.emf]Initializing

entry/loadSensorInfo()

entry/power on all sensors

Armed (Stay)

entry/mode := stay

Disarmed

entry/mode := disarmed

[Server creates Security Manger]

[sensorList Loaded]

arm stay

Armed (Away)

entry/mode := away

Armed (Instance)

entry/mode := instance

arm away

arm instance

disarm

disarm

disarm

Set Alarm

entry/activateIndoorSounder()

entry/activateExternalStrobe()

entry/call Security Company

disarm

[failed to call Security Company] / Call Security Company again

sensor detection

sensor detection

sensor detection

Assessing Sensor Detection

entry/Assess sensor against configuration

[alarm condition encountered]

[sensor not under monitoring]

[sensor not under monitoring]

[sensor not under monitoring]

Terminating

entry/saveSensorInfo()

entry/power off all sensors

[Server enters terminating sequence]

[termination successful]

Chime

entry/mode := chime

engage chime mode

door/window sensor detection / call makeBeep() of ControlPanel

disengage chime mode

Processing Bypass

do/to bypass, isActive := false else, to unbypass isActive := true

bypassSensor()

done

Waiting for 20 seconds

[mode := away or stay& detected sensor is main door]

[Disarm unsuccessful within 20 seconds]

disarm

sensor detection

[[sensor not under monitoring]]

Security Manager has four arming modes; ‘Disarmed’, ‘Armed Instance’, ‘Armed Away’, and ‘Armed Stay’. Armed mode indicates any one of later three modes. Mode change can be Disarmed mode to Armed mode, and Armed to Disarmed, but not Armed mode to other Armed mode, for example, Armed Instance to Armed Away.
When detection signal is arrived, the manager goes to the Assessing Sensor Detection stage: Security Manager checks if the sensor is bypassed or not. If the sensor is bypassed, signal is ignored. If the mode is Away or Stay, or the mode is Disarmed and the sensor is main door, the manager waits for 20 seconds, and if there is no disarm event during the period then the manager sets alarm. If the mode is Instance, the manager sets alarm without any waiting.
If the disarm event is arrived, the mode is changed to disarm, and the manager sets off the alarm.
On initializing, the arming mode is set to Disarmed automatically. On Terminating, the arming mode must be disarmed; on armed mode program will not exit normally.

Traceability Link : All features of Security Function Diagram of Analysis Model

5.3. Surveillance Manager
[image: image10.emf]Intializing

entry/loadCameraInfo()

Terminating

entry/saveCameraInfo()

[Server creates surveillanceManager]

Idle

[Server enters terminating sequence]

[termination successful]

[cameraList loaded]

Recording

entry/call getImage() of camera on recording

entry/save the image to the replay archive

Timer

[Done]

Viewing Specific Camera

entry/call getImage() of specific camera

Viewing Thumbnail

Viewing Replay

entry/viewReplay()

Sending Camera List

entry/getCameraInfo()

Camera List Request

specific replay request

 [thumbnail info constructed] / return thumbnail images

specific camera image request

getImage() done / return camera image

thumbnail view request

ViewReplay() done / return replay image

getCameraInfo() done / return Camera List

Sending Replay List

entry/getReplayList()

getReplayList() done / return replay list

Replay List request

Manipulating Camera List

entry/addCamera() or deleteCamera()

manipulate camera list request

addCamera() or deleteCamera() done

Surveillance Manager manages camera list and camera video, and responses camera event request sent by Server.
On recording event, the manager registers new Timer which executes Record callback routine per every 1 second until the record schedule. The record routine reads the current image of specific camera and saves to the storage. If the recording task is done, the timer must be destroyed.

On Viewing Specific Camera event, the manager reads the image of specific camera and returns to the Server.

On Viewing Thumbnail event, the manager reads image of every camera and returns to the Server.

On Sending Camera List event, the manager returns the list of all camera information, gathered from each Camera object.

Traceability Link : All features of Surveillnace Function Diagrams of Analysis Model
5.4. Password Manager

[image: image11.emf]Initialization

entry/loadAccountInfo()

Terminating

entry/saveAccountInfo()

[Server creates passwordManager]

saveAccountInfo() done

Verifying Password

do/validatePassword against password lists

Adding/Deleting Password

entry/call addPassword() or deletePassword()

Idle

loadAccountInfo() done

password verification request

[verification done] / return user privileage

[Server enters terminating sequence]

password add/delete request

addPassword() or deletePassword() done

Configuring WebID/Password

entry/configureIDPW()

webID/PW configuration request

configureIDPW() done

Checking ID/PW

entry/checkIDPW()

ID/PW check request

checkIDPW() done

Password Manager manages homeowners’ password list, and checks whether the given ID and password is correct or not, given master password is correct or not.

Web ID and password must be synchronized to SafeHome Company Database Server. When user wants to change the Web password, configureIDPW method is called. The method connects to the Database Server, and requests to change the password data.
Traceability Link : ‘Configure/change user passwords’ of analysis model, ‘configure ID/passwords’ of analysis model, ‘change passwords’ of analysis model

5.5. Session Manager

[image: image12.emf]Log Off

entry/isLogin := false

[Server creates sessionManager]

Log On

entry/isLogin := true

[Server enters terminating sequence]

logging on

entry/checkIDPW() of Session Manager

logging off

logout request

[Server enters terminating sequence]

login request

[checkIDPW() == true]

[checkIDPW() == false]

done

Session Manager manages that the login/not login mode of current client connection.
On initializing, the login mode is set to Log Off. If a client connected, client sends ID and password information. The manager compares it using Session Manager. If the input is incorrect, the manager increases the number of invalid access; else the manager sets the login mode to Log On and reset the count.
Traceability Link : ‘Log-in’, ‘Log-out’ of Analysis model
5.6. Floor Plan Manager

[image: image13.emf]Idle Sending Floorplan

entry/getFloorplan()

[Server creates floorplanManager]

[Server enters terminating sequence]

floorplan request

return floorplan

Saving Floorplan

entry/setFloorPlan()

floorplan changed setFloorPlan() done

Floor Plan Manager has the location of floor plan data; the manager does not know detailed structure of data because it is only meaningful for the client software.

When client software requires the data, the manager reads the data from specific location and returns it.
When client software saves the changed data, the manager saves it to the location.

Traceability Link : ‘Configure floor plan’ of Analysis Model
5.7. Control Panel
[image: image14.emf]Initializing

entry/turnOn() of Control Panel

[Server creates controlPanel Manager]

Terminating

entry/call turnOff() of Control Panel

turnOff() done

Idle

turnOn() done

Parsing

Turn Off System / call powerOff() of Server

Returning Event

entry/return event to the server run() loop

[parsing result is a valid command]

done

[nothing to execute]

on read()

Reading Key Input

do/read key input from control panel HW

Control Panel deals with control panel hardware line, and has two main part: to read event from hardware and to send event to hardware.

To read an event from hardware, the class reads key inputs using hardware API and appends the inputs to the internal queue. Then it parses the queue sequence, and returns a meaningful event to the Server. If there is no usable event yet, just returns null.
To send an event to hardware, the class provides API wrapper methods so other Manager classes may use them without knowing detailed structure of hardware API protocol. It has no important states.
Traceability Link : ‘Power Off’ of analysis model, ‘Power On’ of analysis model
6. Appendix

6.1. Who did what list

1) Choi, Jaeyoung

- Class diagram of security management

- State diagram of security management.

- CRC chart of security management

2) Park, Ji-young

- Class diagram of client-side

- CRC chart of client-side

- Class diagram, state diagram of password, session, and floorplan management

3) Lee, Jae-song

- Class diagram of surveillance management

- State diagram of surveillance management

- CRC chart of surveillance management

6.2. Requirement Index
- Interface Requirements

IR1: 3.1.1 Control Panel

IR2: 3.2.1 Initial Page

IR3: 3.2.2 Registration Page

IR4: 3.2.3 Log-in Page

IR5: 3.2.4.1 Left-side Menu Bar

IR6: 3.2.4.2.1.2.1 ‘Pick a Camera’ Frame

IR7: 3.2.4.2.1.2.2 ‘All Camera’ Frame

IR8: 3.2.4.2.1.2.3 ‘Replay’ Frame

IR9: 3.2.4.2.1.3 Video Feed Window

IR10: 3.2.4.2.1.4 Video Playback Window

IR11: 3.2.4.2.2 Security Subpage
IR12: 3.2.4.2.3.2.1 Change Passwords

IR13: 3.2.4.2.3.2.2 Configure Floor Plan

- Functional Requirements

FR1 4.1.3 Configure/Change user passwords

FR2 4.1.4 Configure ID/password on initial setup

FR3: 4.1.5 Change Two-Level Passwords

FR4: 4.1.6 Log in

FR5: 4.1.7 Log out

FR6 4.1.8 Configure Floor Plan

FR7 4.2.1 Pick a Camera in Floor Plan

FR8 4.2.2 Select Camera by Thumbnail View

FR9 4.2.3 View Specific Camera Video

FR10 4.2.4 Control pan/zoom for cameras

FR11 4.2.5 Record camera output

FR12 4.2.6 Replay Camera Output

FR13 4.3.1 Initiate Monitoring (Away Mode)

FR14 4.3.2 Initiate Monitoring (Stay Mode)

FR15 4.3.3 Initiate Monitoring (Instance Mode)

FR16 4.3.4 Stop Monitoring

FR17 4.3.5 Bypass Sensors

FR18 4.3.6 Unbypass Sensors

FR19 4.3.7 Monitor Door/Window (Chime Mode)

FR20 4.3.8 Panic Button in case of Emergency

FR21 4.3.9 Sensor Monitoring for Unauthorized Access

FR22 4.3.10 Sensor Monitoring for Fire, Smoke, and CO Level

FR23 4.3.11 Sensor Monitoring for Water Levels in Basement

FR24 4.3.12 Alarm Condition Encountered

FR25 4.3.13 Access Security Function via PC access

PAGE
SafeHome Design Model (Team 1) - 4/37 Page

