Propositional Logic (a.k.a. Sentential Logic)

Boolean Operators

- Propositional logic (sentence logic) dealt quite satisfactorily with sentences using conjunctive words (접속사) like not, and, or, and if ... then.
- A proposition (p, q, r, ...) in a propositional calculus can get a boolean value (i.e. true or false)
- Propositional formula can be built by combining smaller formula with boolean operators such as ¬, ∧, ∨
- How many different unary boolean operators exist?

How many different binary boolean operators exist?

Binary Boolean Operators

x_1	<i>x</i> ₂	o ₁	0 ₂	03	0 ₄	05	0 ₆	07	0 ₈
T			T	T			T		T
T	F	T	T	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F		

x_1	<i>x</i> ₂	09	0 ₁₀	0 ₁₁	• ₁₂	0 ₁₃	°14	°15	0 ₁₆
T		F	F	F	F	F	F	F	F
T	F	T	T^{+}	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F

Boolean Operators

ор	name	symbol	ор	name	symbol
0 ₂	disjunction	V	0 ₁₅	nor	Ļ
0 ₈	conjunction	٨	0 9	nand	1
0 ₅	implication	\rightarrow	0 ₁₂		
0 3	reverse implication	←	0 ₁₄		
07	equivalence	\leftrightarrow	0 ₁₀	exclusive or	\oplus

Ambiguous representation of formulas

Figure 2.3 Formation tree for $p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$

Figure 2.4 Another formation tree

Other ways to remove ambiguity

- Use parenthesis
- Define precedence and associativity
 - The precedence order
 - $\blacksquare \neg > \land > \uparrow > \lor > \downarrow > \rightarrow > \leftrightarrow$
 - Operators are assumed to associate to the right
 - \blacksquare a \rightarrow b \rightarrow c means (a \rightarrow (b \rightarrow c))
 - aV bV c means (aV(bVc))
 - Some textbook considers ∧, ∨, ↔ as associate to the left. So be careful.

Assignment/ Interpretation ν

 $f = (\mathbf{x}_1 \vee \neg \mathbf{x}_2 \vee \mathbf{x}_3) \wedge (\mathbf{x}_2 \vee \neg \mathbf{x}_1 \vee \mathbf{x}_4)$

Assignment ν_1 to ν_5 , ν_7 , ν_9 , ν_9 , ν_{10} , and ν_{13} to ν_{16} which evaluates f as true are called as model or solution of f

Model/

Interpretations

Inductive truth value calculation for given formula A

Α	$v(A_1)$	$v(A_2)$	$\nu(A)$
$\neg A_1$	T		F
$\neg A_1$	F		
$A_1 \lor A_2$	F	F	F
$A_1 \lor A_2$	other		
$A_1 \wedge A_2$	Т	T	T
$A_1 \wedge A_2$	other	F	
$A_1 \rightarrow A_2$	Т	F	F
$A_1 \rightarrow A_2$	other		

Α	$v(A_1)$	$v(A_2)$	v(A)
$A_1 \uparrow A_2$	T T		F
$A_1 \uparrow A_2$	other	Т	
$A_1 \downarrow A_2$	F	F	T
$A_1 \downarrow A_2$	other	F	
$A_1 \leftrightarrow A_2$	$\nu(A_1) =$	T	
$A_1 \leftrightarrow A_2$	$v(A_1) = \frac{1}{7}$	$\neq v(A_2)$	F
$A_1 \oplus A_2$	$v(A_1) =$	$\neq v(A_2)$	T
$A_1 \oplus A_2$	$v(A_1) =$	$= v(A_2)$	F

Figure 2.5 Evaluation of truth values of formulas

Examples

Example 2.7 Let $A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$, and let ν the assignment such that $\nu(p) = F$ and $\nu(q) = T$, and $\nu(p_i) = T$ for all other $p_i \in \mathcal{P}$. Extend ν to an interpretation. The truth value of A can be calculated inductively using Figure 2.5:

$$\begin{aligned} v(p \to q) &= T \\ v(\neg q) &= F \\ v(\neg p) &= T \\ v(\neg q \to \neg p) &= T \\ v((p \to q) \leftrightarrow (\neg q \to \neg p)) &= T. \end{aligned}$$

Example 2.8 $v(p \rightarrow (q \rightarrow p)) = T$ but $v((p \rightarrow q) \rightarrow p) = F$ under the above interpretation, emphasizing that the linear string $p \rightarrow q \rightarrow p$ is ambiguous.

Example 2.12 Let $S = \{p \rightarrow q, p, p \lor s \leftrightarrow s \land q\}$, and let ν be the assignment given by $\nu(p) = T$, $\nu(q) = F$, $\nu(r) = T$, $\nu(s) = T$. ν is an interpretation for S and assigns the truth values

••••

Satisfiability v.s. validity

Definition 2.24

• A propositional formula A is satisfiable iff $\nu(A)=T$ for some interpretation ν .

- A satisfying interpretation is called a model for A.
- A is valid, denoted $\vDash A$, iff $\nu(A) = T$ for all interpretation ν .
 - A valid propositional formula is also called a tautology.

Theorem 2.25

- A is valid iff $\neg A$ is unsatisfiable.
- A is satisfiable iff $\neg A$ is falsifiable.

Satisfiability v.s. validity

• Example 2.27 Is $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ valid?

p	q	$oldsymbol{ ho} ightarrow oldsymbol{q}$	$\neg \boldsymbol{q} ightarrow \neg \boldsymbol{p}$	$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

Example 2.28 p V q is satisfiable but not valid

