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Introduction to predicate calculus (1/2)

Propositional logic (sentence logic) dealt quite satisfactorily
with sentences using conjunctive words (& = Al) like not,
and, or, and if ... then. But it fails to reflect the finer Ioglcal
structure of the sentence

What can we reason about a sentence itself which deals
with its target domain?

= ex. Jane is taller than Alice (target domain : human being)

= ex2. For natural numbers x and y, x+y > - (x + y) (target domain: N)

What can we reason about a sentence itself which also
deal with modifiers like there exists..., all ..., among ... and
only .... ?

= Note that these modifiers enable us to reason about an infinite
domain because we do not have to enumerate all elements in the
domain



Introduction to predicate calculus (2/2)

Ex. Every student is younger than some instructor

= We could simply identify this assertion with a propositional atom p.
However, this fails to reflect the finer logical structure of this sentence

This statement is about being a student, being an instructor and being
younger than somebody else for a set of university members as a
target domain

= We need to express them and use predicates for this purpose
= S(yunho), [(moonzoo), Y(yunho,moonzoo)

We need variables x, y to not to write down all instance of S(-), I(-), Y(-)
= Every student x is young than some instructor y

Finally, we need quantifiers to capture the actual elements by variables

m Forevery x, if x is a student, then there is some y which is an instructor
such that x is younger than y compare with

= VX (S(x) — 3y (I(y) A Y(x,¥))))
Compare with vVx (S(x) — (3y (I(y) — Y(x,y))))



Examples of 15t Order-logic Formula

predicate element
l of domain  a variable
Bill is a StUdeﬂtaﬂPdent Bill) for a domain

All students are smart\v X ( Student(x) — Smart(x) )

There exists a student. 3 x Student(x).

There exists a smart student. 3 x ( Student(x) A Smart(x) )

Every student loves some student. V x ( Student(x) — 3y ( Student(y) A Loves(x,y) ))

Every student loves some other student. Vx(Student(x)—3y (Student(y) A =(x=y) A
Loves(x,y)))

There is a student who is loved by every other student.
3 x ( Student(x) A Vy ( Student(y) A =(x =y) — Loves(y,x) ))

No student loves Bill. — 3 x ( Student(x) A Loves(x, Bill) )

Bill does not take Analysis. — Takes(Bill, Analysis).

Bill takes Analysis or Geometry (or both). Takes(Bill,Analysis)Vv Takes(Bill, Geometry)
Bill takes Analysis and Geometry. Takes(Bill, Analysis) A Takes(Bill, Geometry)

Bill takes either Analysis or Geometry (but not both)
Takes(Bill, Analysis) & — Takes(Bill, Geometry)
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Relations and predicates

The axioms and theorems of mathematics are defined
on arbitrary sets (domain) such as the set of integers Z

ex. Fermat's last theorem

If an integer n is greater than 2, then the equation a" + b" = c" has
no solutions in non-zero integers a, b, and c.

Can we express the Fermat’s last theorem in propositional logic?

The predicate calculus extends the propositional
calculus with predicate letters that are interpreted as
relations on a domain

l.e., predicates are interpreted upon domain

Def 5.2. A relation can be represented by a boolean
valued function R:D" — {T,F}, by mapping an n-tuple to T
iff it is included in the relation

R(d,,...d,) =Tiff (dy,...d)) € R



Predicate formulas

Let P, A and V be countable sets of
symbols called predicate letters,
constants, and variables, respectively.

PP,y A=a,b.cy, VE{xy.z) L. Va¥y(p(z.y) = py. ).
Def 5.4 Atomic formulas and formulas

atomic formula
argument ::=xforany x € V 3. 3xTy(p(x) A ~p()).
argument :=aforanyae A

2. Vx3yp(x, y).

argument_list ::= argument* 4. Vxp(a, x).
atomic_formula ::=p | 5. Vx(p(x) A g(x)) « (¥ xp(x) A ¥ xq(x).
p(argument_list) forany p € P
formula ::== atomic_formula 6. Ix(p(x) V g(x)) & (Fxp(x) v I xq(x)).
formula ::= - formula 7. ¥x(p(x) = g(x) = (Vaxp(x) = Vxq(x)).
formula ::= formula Vv formula
formula ::=V x formula 8. (Vap(x) = Vxq(0)) = Vx(p(x) = q(x)).

formula :;= 9 x formula



Free and bound variables

Def 5.6
= VY is the universal quantifier and is read ‘for all’.

= s the existential quantifier and is read ‘there exists’.
= In a quantified formula V XA, x is the quantified variable and A is the
scope of the quantified variable.

Def 5.7 Let A be a formula. An occurrence of a variable x in Ais a
free variable of A iff x is not within the scope of a quantified variable x.

= Notation: A(x4,...X,) indicates that the set of free variables of the formula
A is a subset of {x1, X.}. A variable which is not free is bound.

= |f a formula has no free variable it is closed
m If {x4,...,x,} are all the free variables of A, the universal closure of A is

VX,... VX, A and the existential closure is 3x,... 3x, A

Ex 5.8 p(x,y), 3y p(X,y), VX Jy p(x,y)

Ex 5.9

= In (VX p(x)) A q(x), the occurrence of x in p(x) is bound and the
occurrence in q(x) is free. The universal closure is Vx (Vxp(x) A q(x)).

= Obviously, it would have been better to write the formula as Vxp(x)A q(y)
where y is the free variable



Interpretations (1/5)

Def 5.10 Let U be a set of formulas s.t. {p,,...p,,} are all the
predicate letters and {a,,..., a,} are all the constant symbols
appearing in U. An interpretation Z is a triple (D, {R,...R},
{d,,...,d,}), where

= D is a non-empty set,

= R is an ni-ary relation on D that is assigned to the n;-ary predicate p,

Notation: pZ = R,
= d; € Dis an element of D that is assigned to the constant a

Notation: a7 = d,
Ex 5.11. Three numerical interpretations for vx p(a,x):
= = (N (<) {0D), Tp=(W, (<) {1). Za=(2, {<), {O}).
m 7,=(S, {substr},{""}) where S is the set of strings on some alphabet

I ———
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Interpretations (2/5)

Def 5.12 Let 7 be an interpretation. An assignmento,:)V — Disa
function which maps every variable to an element of the domain of Z.
oX; <— dj] is an assignment that is the same as o, except that x; is
mapped to d,

Def 5.13 Let A be a formula, Z an interpretation and o, an assignment.
VUI(A), the truth value of A under o is defined by induction on the
structure of A:
Let A = p,(c4,...,C,) be an atomic formula where each c, is either a variable
X; or a constant a.. VUI(A) = Tiff
<d,,...d,> € R, where R, is the relation assigned by 7 to p, and

d; is the domain element assigned to c;, either
by Z if c; is a constant or
by o if ¢, is variable

(A= Tiffv, (A)=F
(A, \/A2)|fva( D=Torv, (A)=T
(VX A) = TV, g (A= Tforalld e D

XAy =Tiffv, , g(A)=TforsomedeD

o

N

Q
N

\"
\"
\"
Vv

O'I(



Interpretations (3/5)

Thm 5.14 Let A be a closed formula. Then v_ (A) does not depend on o .
In such cases, we use simply v(A) instead O%JI(A)

(important!) Thm 5.15 Let A’ = A(x4,...,X,) be a non-closed formula and let
7 be an interpretation. Then:
= v, (A)=T for some assignment o iff v (3x;...3x, A’) =T
= v, (A)=T for all assignment o iff v (VX;... VX, A) =T
m Thm 5.15 is important since we have many chances to add or remove
quantified variables to and from formula during proofs.

Def 5.16 A closed formula A is true in Z or Z is a model for A, if v(A) = T.
= Notation: ZF A

= Note that we overload F with usual logical consequence as in propositional
logic
{An Ao AgEA
Def 5.18 A closed formula A is satisfiable if for some interpretation Z,
ZE A. Aisvalid if for all interpretations Z, T A

= Notation: E A.
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Interpretation (4/5)
Ex 5.19 E (VX p(x)) — p(a)

Suppose that it is not. Then there must be an interpretation
= (D, {R}, {d}) such that v(Vx p(x)) = T and v/{p(a)) = F
By Thm 5.15, v, ( (x)) = T for all assignments o, in particular for

the aSS|gnmenta that assigns d to x (i.e. v, (p( )) = T). But p(a)
is closed, so v, (p(a)) vAp(a)) = F, acontradlctlon

Example 5.20 Here is a semantic analysis of the formulas from Example 5.5:

. VYY) > PO D)
The formula is satisfiable in an interpretation where p is asmgned a symmetric
relation like =.

o Vx3yp(x,y)
The formula is satisfiable in an interpretation where p is assigned a relation that

is a total function, such as (x,y) e Riff y=x+1forx,ye Z.

e IxIy(px) A~ p(y))

This formula is satisfiable only in a domain with at least two elements.
11



Interpretation (5/5)

e Vxp(a, x)
This expresses the existence of a special element. For example, if p is inter-
preted by the relation < on the domain A, then the formula is true for @ = 0. If
we change the domain to Z the formula is false for the same assignment of < to
p. Thus a change of domain alone can falsify a formula.

o Vx(p(x) A g(x)) <> (Vxp(x) AV xg(x))
The formula is valid. We prove the forward direction and leave the converse
as an exercise. Let T = (D, {R;,R>},{}) be an arbitrary interpretation. By
Theorem 5.15, v, (p(x) A g(x)) = T for all all assignments oz, and by the
inductive definition of an interpretation, v,, (p(x)) = T and v, (g(x)) = T for all
assignments oz. Again by Theorem 5.15, vz(Vxp(x)) = T and vz(Vxg(x)) = T,
and by the definition of interpretation vz (Vxp(x) AVxg(x)) = T.

Show that ¥V does not distribute over disjunction by constructing a falsifying
interpretation for Vx(p(x) V g(x)) < (Vxp(x) V Vxg(x)).

* Vx(p(x) = q(x)) = (Vxp(x) = Vxq(x))
This is a valid formula, but its converse is not.
12



Example: finite automata

For an interpretation Z = (D,R,F,C) where
D ={a,b,c}

R={Trans, Final, Equality} where A
Trans = {(a,a),(a,b),(a,c),(b,c),(c,c)} e‘
Final = {b,c}
Equality={(a,a),(b,b),(c,c)} @
F={ \_
C={a}
Formulas for Z where RZ=Trans, FZ=Final, =2 =Equality, i’=a
7 E dy R(i,y)
7 E =F(i)

7 Vxvyvz (R(x,y) A R(x,z) =y = z)
7 E Vxdy R(x,y)

13



Example: partial order set (POSET)

Def. U is a partially ordered set (poset) if Def. U is a totally ordered set if i/ is a

U is a model of posetand UE VX Vy (X <y Vy<X)

= Vxyz(X=yAy=<z-—xsz)(transitivity) Def. U is densely ordered if

= VXY (X<y A y<X < x =y) (anti-symmetry) UE XYY (X <y — 3z (Xx<z A z< YY)
U= ,HX vy (x=y) We can distinguish U/; and U/, by

= i.e., U, has aleast element AKX)=VY (Y £ X — (Y < X) A =(X < y))
Us= .VXjEIy (x<y) L = U, E VXYY (AKX) AA(Y) = X =)

= i.e., inUzno element is strictly less than o Uy XYy (AG) AA®Y) = X = Y)

another element




Exercise: POSET (cont.)

Define formulas for
x is the maximum (the largest element in a target domain)
Vyy <X
x is maximal (not smaller than any other elements)
~Jdyx<y=s Yy a(x<y)
Note the difference between Vy y < x and Vy —(x <vy).
For totally ordered set, these two formulas are same, but for POSET, they are different.

There is no element between x and y
—3z(x<zAz<y)V(y<zAz<X))
X is an immediate successor of y
(x>y)A—-3z(y<zAz<Xx)
z is the infimum of x and y (the greatest element less than or equal to x and y)
Vst ((S<x A t<y) — (s<z A t<2) A (z<X A z<Y))
Give a formula ¢ s.t. U,F ¢ and U, F —¢
Let p = IxXVy (x <y Vy <Xx). Find posetsd;and U, s.t. U, F pand U, F - ¢
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A formula represents a set of models

A formula ¢ describes characteristics of target structures in
a compact way.

= ex. deterministic automata, partial order sets, binary trees,
relational database, etc

In other words, a formula ¢ designates a set of models (i.e.,
interpretations) that satisfies ¢

= VXVyVz (R(x,y) A R(x,z) — y = z) represents all deterministic graphs

= VxVyVvz (R(x,y) A R(y,z) — R(x,z)) represents all transitive graphs.
Validity, satisfiability, and provability of a predicate formula
Is all undecidable. However, checking formulas on
concrete interpretations is practical

= ex. SQL queries over relational database

= ex. XQueries over XML documents

= eX. Model checking of a program
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