Intro. to 1st Order Logic (a.k.a. Predicate Calculus)

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Introduction to predicate calculus (1/2)

- Propositional logic (sentence logic) dealt quite satisfactorily with sentences using conjunctive words (접속사) like not, and, or, and if ... then. But it fails to reflect the *finer logical structure* of the sentence
- What can we reason about a sentence itself which deals with its target domain?
 - ex. Jane is taller than Alice (target domain : human being)
 - ex2. For natural numbers x and y, $x+y \ge -(x + y)$ (target domain: \mathcal{N})
- What can we reason about a sentence itself which also deal with modifiers like there exists..., all ..., among ... and only ?
 - Note that these modifiers enable us to reason about an infinite domain because we do not have to enumerate all elements in the domain

Introduction to predicate calculus (2/2)

- Ex. Every student is younger than some instructor
 - We could simply identify this assertion with a propositional atom p. However, this fails to reflect the finer logical structure of this sentence
- This statement is about being a student, being an instructor and being younger than somebody else for a set of university members as a target domain
 - We need to express them and use **predicates** for this purpose
 - S(yunho), I(moonzoo), Y(yunho,moonzoo)
- We need variables x, y to not to write down all instance of S(-), I(-), Y(-)
 - Every student x is young than some instructor y
- Finally, we need quantifiers to capture the actual elements by variables
 - For every x, if x is a student, then there is some y which is an instructor such that x is younger than y compare with
 - $\forall x \ (S(x) \rightarrow (\exists y \ (I(y) \land Y(x,y))))$
 - Compare with $\forall x (S(x) \rightarrow (\exists y (I(y) \rightarrow Y(x,y))))$

$\begin{array}{c} \textbf{Examples of 1}^{st} \textbf{Order-logic Formula}\\ \textbf{predicate} & \textbf{element}\\ \textbf{of domain} & \textbf{a variable}\\ \textbf{Bill is a student. Student(Bill)} & \textbf{for a domain}\\ \textbf{All students are smart.} \forall x (Student(x) \rightarrow Smart(x)) \end{array}$

- There exists a student. $\exists x$ Student(x).
- There exists a smart student. $\exists x (Student(x) \land Smart(x))$
- Every student loves some student. $\forall x (Student(x) \rightarrow \exists y (Student(y) \land Loves(x,y)))$
- Every student loves some other student. $\forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(x) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(y) \rightarrow \exists y (Student(y) \land \neg (x=y) \land \forall x(Student(y) \land \neg (x=y) \land (x=y) \land \forall x(Student(y) \land \neg (x=y) \land (x=y)$ Loves(x,y)))
- There is a student who is loved by every other student. \exists x (Student(x) $\land \forall$ y (Student(y) $\land \neg$ (x = y) \rightarrow Loves(y,x)))
- No student loves Bill. $\neg \exists x$ (Student(x) \land Loves(x, Bill))
- Bill does not take Analysis. \neg Takes(Bill, Analysis).
- Bill takes Analysis or Geometry (or both). Takes(Bill, Analysis) V Takes(Bill, Geometry)
- Bill takes Analysis and Geometry. Takes(Bill, Analysis) \land Takes(Bill, Geometry)
- Bill takes either Analysis or Geometry (but not both) Takes(Bill, Analysis) $\leftrightarrow \neg$ Takes(Bill, Geometry)

KAIST **Excerpted from** www.uobabylon.edu.iq/eprints/publication_5_29514_1380.pdf

Relations and predicates

- The axioms and theorems of mathematics are defined on arbitrary sets (domain) such as the set of integers Z
 - ex. Fermat's last theorem
 - If an integer n is greater than 2, then the equation aⁿ + bⁿ = cⁿ has no solutions in non-zero integers a, b, and c.
 - Can we express the Fermat's last theorem in propositional logic?
- The predicate calculus extends the propositional calculus with predicate letters that are interpreted as relations on a domain

• i.e., predicates are interpreted upon domain

 Def 5.2. A relation can be represented by a boolean valued function R:Dⁿ → {T,F}, by mapping an n-tuple to T iff it is included in the relation

• $R(d_1,...d_n) = T \text{ iff } (d_1,...d_n) \in \mathcal{R}$

Predicate formulas

- Let P, A and V be countable sets of symbols called predicate letters, constants, and variables, respectively.
 - $\mathcal{P}=\{p,q,r\} \mathcal{A}=\{a,b,c\}, \mathcal{V}=\{x,y,z\}$
- Def 5.4 Atomic formulas and formulas
 - atomic formula
 - argument ::= x for any $x \in \mathcal{V}$
 - argument ::= a for any a $\in \mathcal{A}$
 - argument_list ::= argument⁺
 - atomic_formula ::= p | $p(argument_list)$ for any $p \in P$
 - formula ::== atomic_formula
 - Iformula ::= ¬ formula
 - formula ::= formula ∨ formula
 - formula ::= ∀ x formula
 - formula ::= ∃ x formula

- 1. $\forall x \forall y (p(x, y) \rightarrow p(y, x)).$
- 2. $\forall x \exists yp(x, y)$.
- 3. $\exists x \exists y(p(x) \land \neg p(y)).$
- 4. $\forall xp(a, x)$.
- 5. $\forall x(p(x) \land q(x)) \leftrightarrow (\forall xp(x) \land \forall xq(x)).$
- 6. $\exists x(p(x) \lor q(x)) \leftrightarrow (\exists xp(x) \lor \exists xq(x)).$
- 7. $\forall x(p(x) \rightarrow q(x)) \rightarrow (\forall xp(x) \rightarrow \forall xq(x)).$
- 8. $(\forall xp(x) \rightarrow \forall xq(x)) \rightarrow \forall x(p(x) \rightarrow q(x)).$

Free and bound variables

Def 5.6

- \forall is the universal quantifier and is read 'for all'.
- \blacksquare \exists is the existential quantifier and is read 'there exists'.
- In a quantified formula ∀ xA, x is the quantified variable and A is the scope of the quantified variable.
- Def 5.7 Let A be a formula. An occurrence of a variable x in A is a free variable of A iff x is not within the scope of a quantified variable x.
 - Notation: $A(x_1,...,x_n)$ indicates that the set of free variables of the formula A is a subset of $\{x_1,...,x_n\}$. A variable which is not free is bound.
 - If a formula has no free variable it is closed
 - If $\{x_1, ..., x_n\}$ are all the free variables of A, the universal closure of A is $\forall x_1 ... \forall x_n A$ and the existential closure is $\exists x_1 ... \exists x_n A$
- Ex 5.8 p(x,y), ∃ y p(x,y), ∀x ∃y p(x,y)
- Ex 5.9
 - In (∀x p(x)) ∧ q(x), the occurrence of x in p(x) is bound and the occurrence in q(x) is free. The universal closure is ∀x (∀xp(x) ∧ q(x)).
 - Obviously, it would have been better to write the formula as $\forall xp(x) \land q(y)$ where y is the free variable

Interpretations (1/5)

- Def 5.10 Let U be a set of formulas s.t. {p₁,...p_m} are all the predicate letters and {a₁,..., a_k} are all the constant symbols appearing in U. An interpretation *I* is a triple (D, {R₁,...R_m}, {d₁,...,d_k}), where
 - D is a non-empty set,
 - R_i is an n_i-ary relation on D that is assigned to the n_i-ary predicate p_i
 Notation: p_i^T = R_i
 - $d_i \in D$ is an element of D that is assigned to the constant a_i
 - Notation: $a_i^{\mathcal{I}} = d_i$
- Ex 5.11. Three numerical interpretations for $\forall x \ p(a,x)$:
 - $\ \ \, \mathcal{I}_1 = (\mathcal{N}, \{\leq\}, \{0\}), \, \mathcal{I}_2 = (\mathcal{N}, \{\leq\}, \{1\}). \, \mathcal{I}_3 = (\mathcal{Z}, \{\leq\}, \{0\}).$
 - $\mathcal{I}_4 = (S, {\text{substr}}, {\text{""}})$ where S is the set of strings on some alphabet

Interpretations (2/5)

- Def 5.12 Let *I* be an interpretation. An assignment σ_I: V → D is a function which maps every variable to an element of the domain of *I*. σ_I[x_i ← d_i] is an assignment that is the same as σ_I except that x_i is mapped to d_i
- Def 5.13 Let A be a formula, *I* an interpretation and σ_I an assignment.
 v_{σ_I}(A), the truth value of A under σ_I is defined by induction on the structure of A:
 - Let A = p_k(c₁,...,c_n) be an atomic formula where each c_i is either a variable x_i or a constant a_i. v_{σ_τ}(A) = T iff
 - $<d_1,...d_n > \in R_k$ where R_k is the relation assigned by \mathcal{I} to p_k and
 - d_i is the domain element assigned to c_i, either
 - by \mathcal{I} if c_i is a constant or
 - by $\sigma_{\mathcal{I}}$ if c_i is variable
 - $v_{\sigma_{\mathcal{T}}}(\neg A) = T \text{ iff } v_{\sigma_{\mathcal{T}}}(A) = F$
 - $v_{\sigma_{\mathcal{I}}}(A_1 \vee A_2)$ iff $v_{\sigma_{\mathcal{I}}}(A_1) = T$ or $v_{\sigma_{\mathcal{I}}}(A_2) = T$
 - $v_{\sigma_{\mathcal{I}}}(\forall x A_1) = T \text{ iff } v_{\sigma_{\mathcal{I}}[x \leftarrow d]}(A_1) = T \text{ for all } d \in D$
 - $v_{\sigma_{\mathcal{I}}}(\exists x A_1) = T \text{ iff } v_{\sigma_{\mathcal{I}}[x \leftarrow d]}(A_1) = T \text{ for some } d \in D$

Interpretations (3/5)

- Thm 5.14 Let A be a closed formula. Then $v_{\sigma_{\mathcal{I}}}(A)$ does not depend on $\sigma_{\mathcal{I}}$. In such cases, we use simply $v_{\mathcal{I}}(A)$ instead of $v_{\sigma_{\mathcal{I}}}(A)$
- (important!) Thm 5.15 Let A' = $A(x_1,...,x_n)$ be a non-closed formula and let \mathcal{I} be an interpretation. Then:
 - $\mathbf{v}_{\sigma_{\mathcal{T}}}(A')=T$ for some assignment $\sigma_{\mathcal{I}}$ iff $\mathbf{v}_{\mathcal{I}}(\exists x_1... \exists x_n A') = T$
 - $\mathbf{v}_{\sigma_{\mathcal{T}}}^{\mathcal{L}}(A')=T$ for all assignment $\sigma_{\mathcal{I}}$ iff $\mathbf{v}_{\mathcal{I}}(\forall x_1... \forall x_n A') = T$
 - Thm 5.15 is important since we have many chances to add or remove quantified variables to and from formula during proofs.
- Def 5.16 A closed formula A is true in \mathcal{I} or \mathcal{I} is a model for A, if $v_{\mathcal{I}}(A) = T$.
 - Notation: $\mathcal{I} \models \mathbf{A}$
 - Note that we overload ⊨ with usual logical consequence as in propositional logic
 - $[A_1, A_2, A_3] \vDash A$
- Def 5.18 A closed formula A is satisfiable if for some interpretation \mathcal{I} , $\mathcal{I} \vDash A$. A is valid if for all interpretations \mathcal{I} , $\mathcal{I} \vDash A$
 - Notation: \models **A**.

Interpretation (4/5)

• Ex 5.19 \vDash (\forall x p(x)) \rightarrow p(a)

- Suppose that it is not. Then there must be an interpretation $\mathcal{I} = (D, \{R\}, \{d\})$ such that $v_{\mathcal{I}}(\forall x \ p(x)) = T$ and $v_{\mathcal{I}}(p(a)) = F$
- By Thm 5.15, v_{σ_I}(p(x)) = T for all assignments σ_I, in particular for the assignment σ'_I that assigns d to x (i.e. v_{σ'_I}(p(x)) = T). But p(a) is closed, so v_{σ'_I}(p(a)) = v_I(p(a)) = F, a contradiction

Example 5.20 Here is a semantic analysis of the formulas from Example 5.5:

• $\forall x \forall y(p(x, y) \rightarrow p(y, x))$

The formula is satisfiable in an interpretation where p is assigned a symmetric relation like =.

• $\forall x \exists yp(x, y)$

The formula is satisfiable in an interpretation where p is assigned a relation that is a total function, such as $(x, y) \in R$ iff y = x + 1 for $x, y \in Z$.

• $\exists x \exists y(p(x) \land \neg p(y))$

This formula is satisfiable only in a domain with at least two elements.

Interpretation (5/5)

• $\forall xp(a, x)$

This expresses the existence of a special element. For example, if p is interpreted by the relation \leq on the domain \mathcal{N} , then the formula is true for a = 0. If we change the domain to \mathcal{Z} the formula is false for the same assignment of \leq to p. Thus a change of domain alone can falsify a formula.

• $\forall x(p(x) \land q(x)) \leftrightarrow (\forall xp(x) \land \forall xq(x))$

The formula is valid. We prove the forward direction and leave the converse as an exercise. Let $\mathcal{I} = (D, \{R_1, R_2\}, \{\})$ be an arbitrary interpretation. By Theorem 5.15, $v_{\sigma_{\mathcal{I}}}(p(x) \land q(x)) = T$ for all all assignments $\sigma_{\mathcal{I}}$, and by the inductive definition of an interpretation, $v_{\sigma_{\mathcal{I}}}(p(x)) = T$ and $v_{\sigma_{\mathcal{I}}}(q(x)) = T$ for all assignments $\sigma_{\mathcal{I}}$. Again by Theorem 5.15, $v_{\mathcal{I}}(\forall xp(x)) = T$ and $v_{\mathcal{I}}(\forall xq(x)) = T$, and by the definition of interpretation $v_{\mathcal{I}}(\forall xp(x) \land \forall xq(x)) = T$.

Show that \forall does not distribute over disjunction by constructing a falsifying interpretation for $\forall x(p(x) \lor q(x)) \leftrightarrow (\forall xp(x) \lor \forall xq(x))$.

∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x))
 This is a valid formula, but its converse is not.

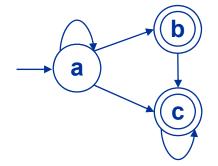
Example: finite automata

For an interpretation $\mathcal{I} = (\mathcal{D}, \mathcal{R}, \mathcal{F}, \mathcal{C})$ where

- D = {a,b,c}
- R= {Trans, Final, Equality} where
 - Trans = {(a,a),(a,b),(a,c),(b,c),(c,c)}
 - Final = {b,c}
 - Equality={(a,a),(b,b),(c,c)}
- *F*={}
- C={a}

• Formulas for \mathcal{I} where $R^{\mathcal{I}}$ =Trans, $F^{\mathcal{I}}$ =Final, $=\mathcal{I}$ =Equality, $i^{\mathcal{I}}$ =a

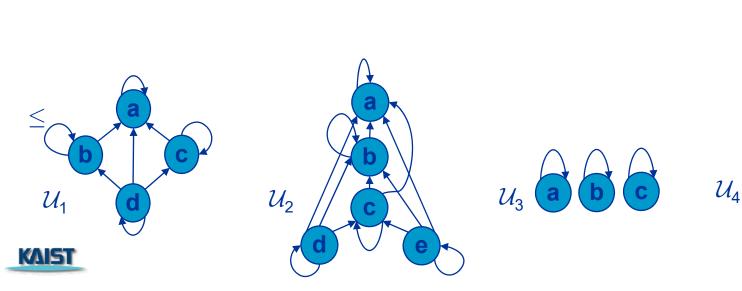
- $\mathcal{I} \vDash \exists y \mathsf{R}(i,y)$
- *I* ⊨ ¬F(i)
- $\mathcal{I} \nvDash \forall x \forall y \forall z \ (\mathsf{R}(x,y) \land \mathsf{R}(x,z) \rightarrow y = z)$
- $\mathcal{I} \models \forall x \exists y \mathsf{R}(x,y)$

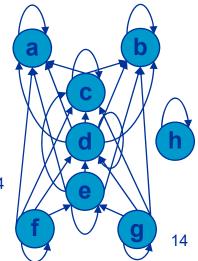


Example: partial order set (POSET)

- Def. U is a partially ordered set (poset) if U is a model of
 - $\forall xyz (x \le y \land y \le z \rightarrow x \le z)$ (transitivity)
 - $\forall xy (x \le y \land y \le x \leftrightarrow x = y)$ (anti-symmetry)
- $\quad \mathcal{U}_1 \vDash \exists x \; \forall y \; (x \leq y)$
 - i.e., \mathcal{U}_1 has a least element
- *U*₃⊨ ∀x¬∃y (x < y)
 - i.e., in U₃ no element is strictly less than another element

- Def. \mathcal{U} is a totally ordered set if \mathcal{U} is a poset and $\mathcal{U} \vDash \forall x \forall y (x \le y \lor y \le x)$
- Def. \mathcal{U} is densely ordered if $\mathcal{U} \vDash \forall x \ \forall y \ (x < y \rightarrow \exists z \ (x < z \land z < y))$
- We can distinguish \mathcal{U}_3 and \mathcal{U}_4 by $A(x) = \forall y \ (y \neq x \rightarrow \neg(y \leq x) \land \neg(x \leq y))$
 - $\mathcal{U}_4 \vDash \forall x \forall y (A(x) \land A(y) \rightarrow x = y)$
 - $\mathcal{U}_3 \vDash \neg \forall x \; \forall y \; (A(x) \land A(y) \rightarrow x = y)$





Exercise: POSET (cont.)

Define formulas for

- x is the maximum (the largest element in a target domain)
 - $\forall y \ y \leq x$
- x is maximal (not smaller than any other elements)
 - ¬∃y x < y ≡ ∀y ¬(x < y)
 - Note the difference between $\forall y \ y \le x$ and $\forall y \neg (x \le y)$.
 - For totally ordered set, these two formulas are same, but for POSET, they are different.
- There is no element between x and y
 - $\neg \exists z \; ((x \leq z \land z \leq y) \lor (y \leq z \land z \leq x))$
- x is an immediate successor of y
 - $(x > y) \land \neg \exists z (y \le z \land z \le x)$
- z is the infimum of x and y (the greatest element less than or equal to x and y)
 - $\forall st ((s \le x \land t \le y) \rightarrow (s \le z \land t \le z) \land (z \le x \land z \le y))$
- Give a formula ϕ s.t. $\mathcal{U}_2 \vDash \phi$ and $\mathcal{U}_4 \vDash \neg \phi$
- Let $\phi = \exists x \forall y \ (x \leq y \lor y \leq x)$. Find posets \mathcal{U}_1 and \mathcal{U}_2 s.t. $\mathcal{U}_1 \vDash \phi$ and $\mathcal{U}_2 \vDash \neg \phi$

A formula represents a set of models

- A formula ϕ describes characteristics of target structures in a compact way.
 - ex. deterministic automata, partial order sets, binary trees, relational database, etc
- In other words, a formula ϕ designates a set of models (i.e., interpretations) that satisfies ϕ
 - $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$ represents all deterministic graphs
 - $\forall x \forall y \forall z \ (R(x,y) \land R(y,z) \rightarrow R(x,z))$ represents all transitive graphs.
- Validity, satisfiability, and provability of a predicate formula is all undecidable. However, checking formulas on concrete interpretations is practical
 - ex. SQL queries over relational database
 - ex. XQueries over XML documents
 - ex. Model checking of a program

