
1

Intro. to 1st Order Logic
(a.k.a. Predicate Calculus)

Moonzoo Kim
CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

2

Introduction to predicate calculus (1/2)

 Propositional logic (sentence logic) dealt quite satisfactorily
with sentences using conjunctive words (접속사) like not,
and, or, and if … then. But it fails to reflect the finer logical
structure of the sentence

 What can we reason about a sentence itself which deals
with its target domain?
 ex. Jane is taller than Alice (target domain : human being)
 ex2. For natural numbers x and y, x+y ≥ - (x + y) (target domain: N)

 What can we reason about a sentence itself which also
deal with modifiers like there exists…, all …, among … and
only …. ?
 Note that these modifiers enable us to reason about an infinite

domain because we do not have to enumerate all elements in the
domain

3

Introduction to predicate calculus (2/2)

 Ex. Every student is younger than some instructor
 We could simply identify this assertion with a propositional atom p.

However, this fails to reflect the finer logical structure of this sentence
 This statement is about being a student, being an instructor and being

younger than somebody else for a set of university members as a
target domain
 We need to express them and use predicates for this purpose
 S(yunho), I(moonzoo), Y(yunho,moonzoo)

 We need variables x, y to not to write down all instance of S(-), I(-), Y(-)
 Every student x is young than some instructor y

 Finally, we need quantifiers to capture the actual elements by variables
 For every x, if x is a student, then there is some y which is an instructor

such that x is younger than y compare with
 ∀x (S(x) → (∃y (I(y) Æ Y(x,y))))

 Compare with ∀x (S(x) → (∃y (I(y) → Y(x,y))))

Examples of 1st Order-logic Formula
 Bill is a student. Student(Bill)
 All students are smart. ∀ x (Student(x) → Smart(x))
 There exists a student. ∃ x Student(x).
 There exists a smart student. ∃ x (Student(x) Æ Smart(x))
 Every student loves some student. ∀ x (Student(x) → ∃ y (Student(y) Æ Loves(x,y)))
 Every student loves some other student. ∀x(Student(x)→∃y (Student(y) Æ ¬(x=y) Æ

Loves(x,y)))
 There is a student who is loved by every other student.

∃ x (Student(x) Æ ∀ y (Student(y) Æ ¬(x = y) → Loves(y,x)))
 No student loves Bill. ¬ ∃ x (Student(x) Æ Loves(x, Bill))
 Bill does not take Analysis. ¬ Takes(Bill, Analysis).
 Bill takes Analysis or Geometry (or both). Takes(Bill,Analysis)Ç Takes(Bill, Geometry)
 Bill takes Analysis and Geometry. Takes(Bill, Analysis) Æ Takes(Bill, Geometry)
 Bill takes either Analysis or Geometry (but not both)

Takes(Bill, Analysis) ↔ ¬ Takes(Bill, Geometry)
4Excerpted from www.uobabylon.edu.iq/eprints/publication_5_29514_1380.pdf

predicate element
of domain a variable

for a domainquantifier

5

Relations and predicates
 The axioms and theorems of mathematics are defined

on arbitrary sets (domain) such as the set of integers Z
 ex. Fermat's last theorem

 If an integer n is greater than 2, then the equation an + bn = cn has
no solutions in non-zero integers a, b, and c.

 Can we express the Fermat’s last theorem in propositional logic?
 The predicate calculus extends the propositional

calculus with predicate letters that are interpreted as
relations on a domain
 i.e., predicates are interpreted upon domain

 Def 5.2. A relation can be represented by a boolean
valued function R:Dn → {T,F}, by mapping an n-tuple to T
iff it is included in the relation
 R(d1,…dn) = T iff (d1,… dn) ∈ R

6

Predicate formulas
 Let P, A and V be countable sets of

symbols called predicate letters,
constants, and variables, respectively.
 P={p,q,r} A={a,b,c}, V={x,y,z}

 Def 5.4 Atomic formulas and formulas
 atomic formula

 argument ::= x for any x ∈ V
 argument ::= a for any a ∈ A
 argument_list ::= argument+
 atomic_formula ::= p |

p(argument_list) for any p ∈ P

 formula ::== atomic_formula
 formula ::= ¬ formula
 formula ::= formula Ç formula
 formula ::= ∀ x formula
 formula ::= ∃ x formula

7

Free and bound variables
 Def 5.6

 ∀ is the universal quantifier and is read ‘for all’.
 ∃ is the existential quantifier and is read ‘there exists’.
 In a quantified formula ∀ xA, x is the quantified variable and A is the

scope of the quantified variable.
 Def 5.7 Let A be a formula. An occurrence of a variable x in A is a

free variable of A iff x is not within the scope of a quantified variable x.
 Notation: A(x1,…xn) indicates that the set of free variables of the formula

A is a subset of {x1,… xn}. A variable which is not free is bound.
 If a formula has no free variable it is closed
 If {x1,…,xn} are all the free variables of A, the universal closure of A is
∀x1… ∀xn A and the existential closure is ∃x1… ∃xn A

 Ex 5.8 p(x,y), ∃ y p(x,y), ∀x ∃y p(x,y)
 Ex 5.9

 In (∀x p(x)) Æ q(x), the occurrence of x in p(x) is bound and the
occurrence in q(x) is free. The universal closure is ∀x (∀xp(x) Æ q(x)).

 Obviously, it would have been better to write the formula as ∀xp(x)Æ q(y)
where y is the free variable

8

Interpretations (1/5)
 Def 5.10 Let U be a set of formulas s.t. {p1,…pm} are all the

predicate letters and {a1,…, ak} are all the constant symbols
appearing in U. An interpretation I is a triple (D, {R1,…Rm},
{d1,…,dk}), where
 D is a non-empty set,
 Ri is an ni-ary relation on D that is assigned to the ni-ary predicate pi

 Notation: pi
I = Ri

 di ∈ D is an element of D that is assigned to the constant ai
 Notation: ai

I = di

 Ex 5.11. Three numerical interpretations for ∀x p(a,x):
 I1= (N, {≤}, {0}), I2=(N, {≤}, {1}). I3=(Z, {≤}, {0}).
 I4=(S, {substr},{“”}) where S is the set of strings on some alphabet

9

Interpretations (2/5)
 Def 5.12 Let I be an interpretation. An assignment σI : V → D is a

function which maps every variable to an element of the domain of I.
σI[xi ← di] is an assignment that is the same as σI except that xi is
mapped to di

 Def 5.13 Let A be a formula, I an interpretation and σI an assignment.
vσI

(A), the truth value of A under σI is defined by induction on the
structure of A:
 Let A = pk(c1,…,cn) be an atomic formula where each ci is either a variable

xi or a constant ai. vσI
(A) = T iff

 <d1,…dn> ∈ Rk where Rk is the relation assigned by I to pk and
 di is the domain element assigned to ci, either

 by I if ci is a constant or
 by σI if ci is variable

 vσI
(¬A)= T iff vσI

(A)= F
 vσI

(A1 Ç A2) iff vσI
(A1)= T or vσI

(A2)= T
 vσI

(∀x A1) = T iff vσI[x ← d](A1)= T for all d ∈ D
 vσI

(∃x A1) = T iff vσI[x ← d](A1)= T for some d ∈ D

10

Interpretations (3/5)
 Thm 5.14 Let A be a closed formula. Then vσI

(A) does not depend on σI .
In such cases, we use simply vI(A) instead of vσI

(A)
 (important!) Thm 5.15 Let A’ = A(x1,…,xn) be a non-closed formula and let

I be an interpretation. Then:
 vσI

(A’)=T for some assignment σI iff vI(∃x1…∃xn A’) = T
 vσI

(A’)=T for all assignment σI iff vI(∀x1… ∀xn A’) = T
 Thm 5.15 is important since we have many chances to add or remove

quantified variables to and from formula during proofs.
 Def 5.16 A closed formula A is true in I or I is a model for A, if vI(A) = T.

 Notation: I ² A
 Note that we overload ² with usual logical consequence as in propositional

logic
 {A1, A2, A3} ² A

 Def 5.18 A closed formula A is satisfiable if for some interpretation I,
I ² A. A is valid if for all interpretations I, I ² A
 Notation: ² A.

11

Interpretation (4/5)
 Ex 5.19 ² (∀x p(x)) → p(a)

 Suppose that it is not. Then there must be an interpretation
I = (D, {R}, {d}) such that vI(∀x p(x)) = T and vI(p(a)) = F

 By Thm 5.15, vσI
(p(x)) = T for all assignments σI, in particular for

the assignment σ’I that assigns d to x (i.e. vσ’I
(p(x)) = T). But p(a)

is closed, so vσ’I
(p(a)) = vI(p(a)) = F, a contradiction

12

Interpretation (5/5)

13

Example: finite automata

 For an interpretation I = (D,R,F,C) where
 D = {a,b,c}
 R= {Trans, Final, Equality} where

 Trans = {(a,a),(a,b),(a,c),(b,c),(c,c)}
 Final = {b,c}
 Equality={(a,a),(b,b),(c,c)}

 F={}
 C={a}

 Formulas for I where RI=Trans, FI=Final, =I =Equality, iI=a
 I ² ∃y R(i,y)
 I ² ¬F(i)
 I 2 ∀x∀y∀z (R(x,y) Æ R(x,z)→ y = z)
 I ² ∀x∃y R(x,y)

a
b

c

14

Example: partial order set (POSET)
 Def. U is a partially ordered set (poset) if

U is a model of
 ∀xyz (x ≤ y Æ y ≤ z → x ≤ z) (transitivity)
 ∀xy (x≤y Æ y≤x ↔ x = y) (anti-symmetry)

 U1² ∃x ∀y (x ≤ y)
 i.e., U1 has a least element

 U3² ∀x¬∃y (x < y)
 i.e., in U3 no element is strictly less than

another element

d

a

cb

c
ed

b

a

a b c

ba

h

U1 U2 U3
U4

 Def. U is a totally ordered set if U is a
poset and U ² ∀x ∀y (x ≤ y Ç y ≤ x)

 Def. U is densely ordered if
U ² ∀x ∀y (x < y → ∃z (x<z Æ z< y)

 We can distinguish U3 and U4 by
A(x)=∀y (y  x → ¬(y ≤ x) Æ ¬(x ≤ y))
 U4 ² ∀x ∀y (A(x) Æ A(y) → x = y)
 U3 ² ¬∀x ∀y (A(x) Æ A(y) → x = y)

e
gf

d

c≤

15

Exercise: POSET (cont.)
 Define formulas for

 x is the maximum (the largest element in a target domain)
 ∀y y ≤ x

 x is maximal (not smaller than any other elements)
 ¬∃y x < y ≡ ∀y ¬(x < y)
 Note the difference between ∀y y ≤ x and ∀y ¬(x < y).

 For totally ordered set, these two formulas are same, but for POSET, they are different.
 There is no element between x and y

 ¬∃z ((x ≤ z Æ z ≤ y) Ç (y ≤ z Æ z ≤ x))
 x is an immediate successor of y

 (x > y) Æ ¬∃z (y ≤ z Æ z ≤ x)
 z is the infimum of x and y (the greatest element less than or equal to x and y)

 ∀st ((s≤x Æ t≤y) → (s≤z Æ t≤z) Æ (z≤x Æ z≤y))
 Give a formula φ s.t. U2² φ and U4 ² ¬φ
 Let φ = ∃x∀y (x ≤ y Ç y ≤ x). Find posets U1 and U2 s.t. U1 ² φ and U2 ² ¬ φ

16

A formula represents a set of models

 A formula φ describes characteristics of target structures in
a compact way.
 ex. deterministic automata, partial order sets, binary trees,

relational database, etc
 In other words, a formula φ designates a set of models (i.e.,

interpretations) that satisfies φ
 ∀x∀y∀z (R(x,y) Æ R(x,z)→ y = z) represents all deterministic graphs
 ∀x∀y∀z (R(x,y) Æ R(y,z)→ R(x,z)) represents all transitive graphs.

 Validity, satisfiability, and provability of a predicate formula
is all undecidable. However, checking formulas on
concrete interpretations is practical
 ex. SQL queries over relational database
 ex. XQueries over XML documents
 ex. Model checking of a program

