SAT for Software Model Checking Introduction to SAT-problem for newbie

Moonzoo Kim (original slides from Changbeom Choi)

Content

- Motivation
- Model Checking as a SAT problem

• SAT & SAT-solver?

• Discussion

Motivation

Model Checking

Motivation

Model Checking as a SAT Problem

• What we are going to do

SAT?

SAT

problem

SAT

UNSAT

• SAT = Satisfiability

Propositional ϕ

= Propositional Satisfiability

- We can use SAT solver for many NP-complete problems
 - Hamiltonian path
 - 3 coloring problem
 - Traveling sales man's problem
- Recent interest as a verification engine

SAT Formula

- A set of propositional variables and clauses involving variables
 - $(x_1 \lor x_2' \lor x_3) \land (x_2 \lor x_1' \lor x_4)$
 - x_1 , x_2 , x_3 and x_4 are variables (true or false)
- Literals: Variable and its negation
 x₁ and x₁'
- A clause is satisfied if one of the literals is true
 x₁=true satisfies clause 1
 - x_1 =false satisfies clause 2
- Solution: An assignment v that satisfies all clauses

DPLL(Davis-Putnam-Logemann-Loveland) Framework

```
/* The Quest for Efficient Boolean Satisfiability Solvers
* by L.Zhang and S.Malik, Computer Aided Verification 2002 */
DPLL(a formula \phi, assignment) {
   necessary = deduction(\phi, assignment);
   new_asgnment = union(necessary, assignment);
   if (is_satisfied(\phi, new_asgnment))
         return SATISFIABLE;
   else if (is_conflicting(\phi, new_asgnmnt))
         return UNSATISFIABLE;
   var = choose_free_variable(\phi, new_asgnmnt);
   asgn1 = union(new_asgnmnt, assign(var, 1));
   if (\mathbf{DPLL}(\phi, \operatorname{asgn}^1) == SATISFIABLE)
         return SATISFIABLE;
   else {
         asgn2 = union (new_asgnmnt, assign(var,0));
         return DPLL (\phi, asgn2);
```

DPLL Example

Simple Translation From Code to SAT Formula

- CBMC (C Bounded Model Checker, In CMU)
 Handles function calls using inlining
 - Unwinds the loops a fixed number of times
 - Allows user input to be modeled using nondeterminism
 - So that a program can be checked for a set of inputs rather than a single input
 - Allows specification of assertions which are checked using the bounded model checking

MC as a SAT problem - Simple Translation From Code to SAT Formula

Unwinding Loop

Original code

Unwinding the loop 3 times

Unwinding assertion: \longrightarrow assert (! (x < 2))

MC as a SAT problem - Simple Translation From Code to SAT Formula

From C Code to SAT Formula

Original code
x=x+y;
if (x!=1)
x=2;
else
x++;
assert(x<=3);

Convert to static single v
static single assignment (SSA))

$$x_1=x_0+y_0;$$

if $(x_1!=1)$
 $x_2=2;$
else
 $x_3=x_1+1;$
 $x_4=(x_1!=1)?x_2:x_3;$
assert $(x_4<=3);$

Generate constraints

 $C \equiv x_1 = x_0 + y_0 \land x_2 = 2 \land x_3 = x_1 + 1 \land (x_1! = 1 \land x_4 = x_2 \lor x_1 = 1 \land x_4 = x_3)$ P = x₄ <= 3

Check if $C \land \neg P$ is satisfiable, if it is then the assertion is violated

 $C \land \neg P$ is converted to Boolean logic using a bit vector representation for the integer variables $y_0, x_0, x_1, x_2, x_3, x_4$ and their arithmetic operations

MC as a SAT problem - Simple Translation From Code to SAT Formula

From C Code to SAT Formula

•Example of arithmetic encoding into pure propositional formula

Assume that x,y,z are three bits positive integers represented by propositions $x_0x_1x_2$, $y_0y_1y_2$, $z_0z_1z_2$ $C \equiv z=x+y \equiv (z_0 \leftrightarrow (x_0 \oplus y_0) \oplus ((x_1 \land y_1) \lor (((x_1 \oplus y_1) \land (x_2 \land y_2))))$ $\land (z_1 \leftrightarrow (x_1 \oplus y_1) \oplus (x_2 \land y_2))$ $\land (z_2 \leftrightarrow (x_2 \oplus y_2))$

SAT-Solvers?

- Started with DPLL (1962)
 - Able to solve 10-15 variable problems
- Satz (Chu Min Li, 1995)
 - Able to solve some 1000 variable problems
- Chaff (Malik et al., 2001)
 - Intelligently hacked DPLL, Won the 2004 competition
 - Able to solve some 10000 variable problems
- Current state-of-the-art
 - Minisat and SATELITEGTI (Chalmer's university, 2004-2006)
 - Jerusat and Haifasat (Intel Haifa, 2002)
 - Ace (UCLA, 2004-2006)

Motivation

Countermeasure of State Explosion

- 1981 Clarke / Emerson: CTL Model Checking Sifakis / Quielle
- 1982 EMC: Explicit Model Checker Clarke, Emerson, Sistla
- 1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan
 1992 SMV: Symbolic Model Verifier
 McMillan

101000

 10^{5}

10100

- 1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu
 2000 Counterexample-guided Abstraction Refinement
 - Clarke, Grumberg, Jha, Lu, Veith