HW#2. Due Oct 17th (Wed 11AM)

1. Prove in \mathcal{G} and \mathcal{H}

$$\vdash (A \to B) \to (\neg B \to \neg A),$$

$$\vdash (A \to B) \to ((\neg A \to B) \to B),$$

$$\vdash ((A \to B) \to A) \to A.$$

- 2. Prove that if $\vdash U$ in \mathcal{G} then there is a closed semantic tableau for \overline{U} (the forward direction of Theorem 3.6).
- 3. Prove the derived rule called *modus tollens*:

$$\frac{\vdash \neg B \qquad \vdash A \to B}{\vdash \neg A}.$$

- 4. Give proofs in \mathcal{G} for each of the three axioms of \mathcal{H} .
- 5. Prove $\vdash (\neg A \rightarrow A) \rightarrow A$ (Theorem 3.29).

KAIST