Predicate Calculus - Semantic Tableau

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Informal construction of a valid formula (1/2)

α	α_1	α2
$\neg \neg A_1$	A ₁	
$A_1 \wedge A_2$	A_1	A ₂
$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$
$\neg \left(A_1 \rightarrow A_2 \right)$	A_1	$\neg A_2$
$\neg (A_1 \uparrow A_2)$	A_1	A ₂
$A_1 \downarrow A_2$	$\neg A_1$	$\neg A_2$
$A_1 \leftrightarrow A_2$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$
$\neg (A_1 \oplus A_2)$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$

β	β_1	β ₂
$\neg (B_1 \land B_2)$	$\neg B_1$	¬ B ₂
$B_1 \vee B_2$	B_1	<i>B</i> ₂
$B_1 \rightarrow B_2$	$\neg B_1$	<i>B</i> ₂
$B_1 \uparrow B_2$	$\neg B_1$	¬ B ₂
$\neg (B_1 \downarrow B_2)$	<i>B</i> ₁	<i>B</i> ₂
$\neg (B_1 \leftrightarrow B_2)$	$\neg (B_1 \rightarrow B_2)$	$\neg (B_2 \rightarrow B_1)$
$B_1 \oplus B_2$	$\neg (B_1 \rightarrow B_2)$	$\neg (B_2 \rightarrow B_1)$

$$\neg (\forall x (p(x) \rightarrow q(x)) \rightarrow (\forall x p(x) \rightarrow \forall x q(x)))) \\ \forall x (p(x) \rightarrow q(x)), \neg (\forall x p(x) \rightarrow \forall x q(x)))) \\ \downarrow \\ \forall x (p(x) \rightarrow q(x)), \forall x p(x), \neg \forall x q(x)) \\ \forall x (p(x) \rightarrow q(x)), \forall x p(x), \neg q(a) \\ \downarrow \\ \forall x (p(x) \rightarrow q(x)), p(a), \neg q(a) \\ \downarrow \\ p(a) \rightarrow q(a), p(a), \neg q(a) \\ \downarrow \\ p(a), p(a), \neg q(a) \\ x \end{pmatrix}$$

Informal construction of a valid formula (2/2)

Note that semantic tableau is to find a single counter example

- $\neg \forall x q(x) \equiv \exists x \neg q(x)$
- Therefore, we could replace a variable x in ¬ ∀x q(x) by a single concrete element a in the target domain

In other words, we use $\neg q(a)$ instead of $\neg \forall x q(x)$

$$\begin{array}{c} \forall x \ (p(x) \rightarrow q(x)), \ \forall x \ p(x), \ \neg \forall x q(x) \\ \forall x \ (p(x) \rightarrow q(x)), \ \forall x \ p(x), \ \neg q(a) \\ \downarrow \\ \forall x \ (p(x) \rightarrow q(x)), \ p(a), \ \neg q(a) \\ \downarrow \\ p(a) \rightarrow q(a), \ p(a), \ \neg q(a) \\ \downarrow \\ p(a), \ p(a), \ \neg q(a) \\ \downarrow \\ \mathbf{x} \\ \mathbf{$$

Informal construction of a satisfiable formula (1/3)

- Example 2: a satisfiable but not valid formula
 - $\forall x (p(x) \lor q(x)) \rightarrow (\forall x p(x) \lor \forall x q(x))$

$\neg (\forall x (p(x) \lor q(x)) \rightarrow (\forall x p(x) \lor \forall x q(x)))$
$\forall x (p(x) \lor q(x)), \neg (\forall x p(x) \lor \forall x q(x))))$
$\forall x (p(x) \lor q(x)), \neg \forall x p(x), \neg \forall xq(x)$
$\forall x (p(x) \lor q(x)), \neg \forall x p(x), \neg q(a)$
$\forall x (p(x) \lor q(x)), \neg p(a), \neg q(a)$
p(a) ∨ q(a), ¬ p(a), ¬q(a)
$p(a), p(a), \neg q(a) \qquad q(a), \neg p(a), \neg q(a)$

KAIST

α	α1	α2	
$\neg \neg A_1$	A ₁		
$A_1 \wedge A_2$	A_1	A ₂	
$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$	
$\neg \left(A_{1} \rightarrow A_{2} \right)$	A_1	$\neg A_2$	
$\neg (A_1 \uparrow A_2)$	A_1	<i>A</i> ₂	
$A_1 \downarrow A_2$	$\neg A_1$	$\neg A_2$	
$A_1 \leftrightarrow A_2$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$	
$\neg (A_1 \oplus A_2)$	$A_1 \rightarrow A_2$	$A_2 \rightarrow A_1$	

β	β_1	β ₂
$\neg (B_1 \land B_2)$	$\neg B_1$	¬ B ₂
$B_1 \vee B_2$	B_1	<i>B</i> ₂
$B_1 \rightarrow B_2$	$\neg B_1$	<i>B</i> ₂
$B_1 \uparrow B_2$	$\neg B_1$	$\neg B_2$
$\neg (B_1 \downarrow B_2)$	B_1	<i>B</i> ₂
$\neg (B_1 \leftrightarrow B_2)$	$\neg (B_1 \rightarrow B_2)$	$\neg (B_2 \rightarrow B_1)$
$B_1 \oplus B_2$	$\neg (B_1 \rightarrow B_2)$	$\neg (B_2 \rightarrow B_1)$

Informal construction of a satisfiable formula (2/3)

- What is wrong?
 - 1. Use different constants for different formulas
 - It is ok to use $\neg q(a)$ instead of $\neg \forall x q(x)$
 - However, it is not ok to use the same element a for a different formula $\neg \forall x p(x)$
 - 2.A formula with universal quantifiers without negation cannot be simply replaced by just one instance
 - Universal formulas should never be deleted from the node.
 - Universal formulas remain in the all descendant nodes so as to constrain the possible interpretations of every new constant that is introduced.

$$\forall x (p(x) \lor q(x)), \neg \forall x p(x), \neg \forall xq(x)$$

$$\forall x (p(x) \lor q(x)), \neg \forall x p(x), \neg q(a)$$

$$\forall x (p(x) \lor q(x)), \neg p(b), \neg q(a)$$

$$\forall x (p(x) \lor q(x)), p(a) \lor q(a), \neg p(b), \neg q(a)$$

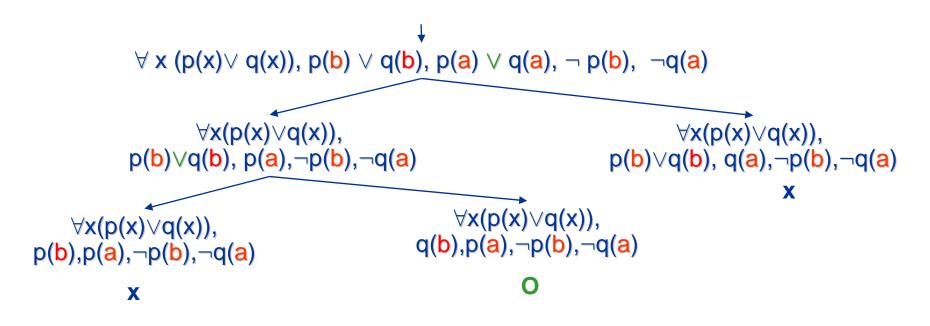
$$x (p(x) \lor q(x)), p(b) \lor q(b), p(a) \lor q(a), \neg p(b), \neg q(a)$$

 \forall

Informal construction of a satisfiable formula (3/3)

The following formula is satisfiable but not valid

• $\forall x (p(x) \lor q(x)) \rightarrow (\forall x p(x) \lor \forall xq(x))$



Infinite construction (1/3)

- $A = A_1 \land A_2 \land A_3$
 - $A_1 = \forall x \exists y p(x,y)$
 - $A_2 = \forall x \neg p(x,x)$
 - $A_3 = \forall xyz (p(x,y) \land p(y,z) \rightarrow p(x,z))$
- Note that we do not have a constant in A
- The construction will not terminate
 - If we continue the tableau construction, an infinite branch is obtained
 - The tableau neither closes nor terminates
 - It defines an countably infinite model
 - Note that once we introduce a new constant a_i by instantiating ∃y, then ∀x should be instantiated with that constant a_i
 - Therefore, semantic tableau will have an infinite sequence of formulas p(a₁,a₂), p(a₂,a₃), ∀x∃yp(x) p(a₃,a₄), ...

KAIST Intro. to Logic CS402 Fall 2007 t a₁ $\forall x \exists yp(x, y), A_2, A_3$ \downarrow $\forall x \exists yp(x, y), \exists yp(a_1, y), A_2, A_3$ \downarrow a₃), $\forall x \exists yp(x, y), p(a_1, a_2), A_2, A_3$ $\forall x \exists yp(x, y), \exists yp(a_2, y), p(a_1, a_2), A_2, A_3$ \downarrow $\forall x \exists yp(x, y), p(a_2, a_3), p(a_1, a_2), A_2, A_3$

Infinite construction (2/3)

- Thm 5.24. A = $A_1 \wedge A_2 \wedge A_3$ has no finite model
 - $A_1 = \forall x \exists y p(x,y)$
 - $A_2 = \forall x \neg p(x,x)$
 - $A_3 = \forall xyz (p(x,y) \land p(y,z) \rightarrow p(x,z))$
 - Suppose that A had a finite model
 - The domain of an interpretation is non-empty so it has at leas one element.
 - By A_1 , there is an infinite sequence of elements a_1, a_2, \dots s.t. $v_{\sigma_{\mathcal{I}}[x \leftarrow a_i][y \leftarrow a_j]}(p(x,y)) = T$ for all i and j=i+1. By A₃, p(a_i, a_j) = T for all j > i since A₃ means transitivity
 - - i.e., $p(a_1, a_2) \land p(a_2, a_3) \rightarrow p(a_1, a_3)$
 - Since we assume that the model is finite, there exists some k > i such that $a_k = a_i$ due to pigeon hole principle.
 - Note that we have an infinite sequence of elements by A₁. But the model has only finite elements.
 - For some k > i s.t. $a_k = a_i$, $p(a_i, a_k) = T$ by A_3 . This contradicts A_2 which requires $v_{\sigma_T[x \leftarrow a_i]}(p(x,x)) = F$.

Infinite construction (3/3)

- Note that construction of semantic tableaux is not a decision procedure for validity in the predicate calculus as we have seen the previous example.
- Also, note that without systematic construction, we may not construct a closed semantic tableaux even when it is possible.
 - In the following example, if we choose the last formula, we can close the tableau immediately. If we choose A₁, however, we will have an infinite branch.

 $\begin{array}{c} \mathsf{A}_1 \land \mathsf{A}_2 \land \mathsf{A}_3 \land \forall x \ (\mathsf{q}(x) \land \neg \mathsf{q}(x)) \\ \downarrow \\ \mathsf{A}_1, \mathsf{A}_2, \mathsf{A}_3, \forall x (\mathsf{q}(x) \land \neg \mathsf{q}(x)) \end{array}$

