Predicate Calculus - Undecidability of predicate calculus

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

Undecidable problems

Can you tell whether or not the following program halts?

/* Fermat's last theorem: for n > 2, there exists no positive integers x,y,z s.t. xⁿ + yⁿ = zⁿ */

main() {

```
\frac{Nat}{Nat} n, total, x, y, z; \\scanf('%d",&n); \\total=3; \\while(1) {/* loop invariant:total= x+y+z*/ 
for(x=1; x<= total-2; x++) { 
for(y=1; y <= total-x-1; y++) { 
z= total - x -y; 
if(x<sup>n</sup> + y<sup>n</sup> == z<sup>n</sup>)) halt; 
} 
total++;}}
```

- It would be remarkable indeed if we could make an algorithm that could examine any program P and tell whether P would halt.
 - In other words, to decide whether a given program halts or not is, at least, as hard as proving the Fermat's last theorem which took 300 years
- We know that no such algorithm exists –
 - Halting problem is undecidable

Transform of the Halting problem (1/2)

- It is undecidable to check whether a Turing machine (TM) will halt if started on a blank tape (halting problem)
- To prove the undecidability of predicate logic, we give an algorithm which produces a formula A_{TM} in the predicate calculus for every Turing machine, s.t. A_{TM} is valid iff a Turing machine halts
 - Note that we do not make a Turing machine M for every predicate formula, since it is enough to show that checking some predicate formulas is undecidable
- If we have such an algorithm, it is clear that validity check of predicate formula is at least as hard as halting problem (i.e., undecideble)

Transform of the Halting problem (2/2)

- To simplify the proof of the transformation algorithm, we work with two-register machines (TRM) rather than directly with Turing machine
 - i.e., we will show there exists such A_{TRM} for a two-register machine
- Thm 5.42 Given a Turing machine that computes a function f, a two-register machine can be constructed to compute the same function f

A two-register machine M

- Def 5.41 A two-register machine M consists of two registers x and y which can hold natural numbers, and a program P = (L₀,...,L_n) which is a list of instructions. L_n is the instruction halt, and for 0≤I < n, L_i is one of:
 - x:= x+1
 - y:= y+1
 - if x = 0 then goto L_j else $x := x 1, 0 \le j \le n$
 - if y = 0 then goto L_j else $y := y 1, 0 \le j \le n$
- An execution sequence of M is a sequence of states $s_k = (L_{i_k}, x, y)$, where L_{i_k} is the current instruction at s_k , and x,y are the contents of x and y.
- s_{k+1} is obtained from s_k by executing L_{i_k} .
- The initial state $s_0 = (L_{i_0}, m, 0) = (L_0, m, 0)$ for some m.
- If for some k, s_k = (L_n,x,y), the computation of M has halted and M has computed y = f(m)

Examples

6

Validity in the predicate calculus

- Thm 5.43 (Church) Validity in the predicate calculus is undecidable
 - Caution: the proof of Thm 5.43 in the textbook has several flaws...
- For every two-register machine M, we construct a formula S_M s.t. S_M is valid iff M terminates when started in the state (L₀,0,0):
 - $S_M = (\land_{(i=0..n-1)} S_i \land p_0(0,0)) \rightarrow \exists z_1 z_2 p_n(z_1,z_2)$
 - Intuitive meaning of p_i is as follows
 - v₁(p_i(m',m")) = T iff there exists some state s_k=(L_i,m',m")
 - S_i is defined by cases of the instruction L_i

Li	Si
x := x + 1	$\forall x \forall y (p_i(x, y) \rightarrow p_{i+1}(s(x), y))$
y := y + 1	$\forall x \forall y (p_i(x, y) \rightarrow p_{i+1}(x, s(y)))$
if x = 0	
then goto Lj	$\forall x(p_i(a, x) \to p_j(a, x)) \land$
else x := x - 1	$\forall x \forall y (p_i(s(x), y) \rightarrow p_{i+1}(x, y)))$
if y = 0	
then goto Lj	$\forall x(p_i(x,a) \rightarrow p_j(x,a)) \land$
else y := y - 1	$\forall x \forall y (p_i(x, s(y)) \rightarrow p_{i+1}(x, y)))$

Example of S_M

/* y=x+1 for x <= 1* */	$S_{M} = (p_{0}(0,0) \land$
L_0 : if x=0 then goto L_4 else x=x-1	$(\forall x(p_0(0,x) \rightarrow p_4(0,x)) \land \forall xy(p_0(s(x),y) \rightarrow p_1(x,y)))) \land$
L ₁ :y:=y+1	$\forall xy (p_1(x,y) \rightarrow p_2(x,s(y)) \land$
L_2 : if x=0 then goto L_4 else x=x-1	$(\forall x(p_2(0,x) \rightarrow p_4(0,x)) \land \forall xy(p_2(s(x),y) \rightarrow p_3(x,y)))) \land$
L ₃ :y:=y+1	$\forall xy(p_3(x,y) \rightarrow p_4(x,s(y)))$
L ₄ :halt	\rightarrow
	$\exists z_1 z_2 p_4(z_1, z_2)$

- Intuitive meaning of S_M:
 - Given a two-register machine M,
 - execution of M ($\land_{i=0..n-1}$ S_i \land p₀(0,0))
 - reaches (\rightarrow)
 - the halt instruction $(\exists z_1 z_2 p_n(z_1, z_2))$

TRM halts $\rightarrow A_{TRM}$ is valid (1/2)

- Suppose that the execution s₀,...s_m of M halts and let I be an arbitrary interpretation for S_M. If v_I(S_i) = F (for 0≤i<n) or v_I(p₀(0,0))= F, then trivially v_I(S_M) = T
- Thus, we assume that $(\wedge_{(i=0..n-1)}S_i \wedge p_0(0,0))$ is true
 - since we need only consider interpretations that satisfy the antecedent of S_M
- We show by induction on k that $v_{\mathcal{I}}(\exists z_1 z_2 p_{i_k}(z_1, z_2)) = T$
 - p_{ik} is the predicate associated with the label L_{ik} in state s_k
 - Mind the incorrect notation in the textbook where L_k and p_k is used instead of L_{ik} and p_{ik}
 - For k=0, $v_{\mathcal{I}}(\exists z_1 z_2 p_{i_0}(z_1, z_2)) = v_{\mathcal{I}}(\exists z_1 z_2 p_0(z_1, z_2)) = T$ since $v_{\mathcal{I}}(p_0(0,0))=T$ from the assumption

TRM halts \rightarrow A_{TRM} is valid (2/2)

- For k >0, the result follows by induction by cases according to the instruction at L_{ik-1}
 - For x = x+1 at $L_{i_{k-1}}$:

...

- $v_{\mathcal{I}}(\forall xy \ (p_{i_{k-1}}(x,y) \rightarrow p_{i_{k-1}+1}(s(x),y))) = T by the assumption$
- $v_{\mathcal{I}}(\exists z_1 z_2 p_{i_{k-1}}(z_1, z_2)) = T$ by the inductive hypothesis
- From the above two facts, $v_{\mathcal{I}}(\exists z_1 z_2 p_{i_{k-1}+1}(s(z_1), z_2)) = T$
- $v_{\mathcal{I}}(\exists z_1 z_2 p_{i_{k-1}+1}(s(z_1), z_2)) = v_{\mathcal{I}}(\exists z_1 z_2 p_{i_k}(s(z_1), z_2)) = T \text{ since } p_{i_{k-1}+1} = p_{i_k}$
 - We can conclude $v_{\mathcal{I}}(\exists z'_1 z_2 p_{i_k}(z'_1, z_2)) = T$ since $\exists x A(f(x)) \rightarrow \exists x' A(x')$.
- By induction, this holds for all k.
- For if x=0 then goto L_j else x=x-1 at L_{ik-1}:
 - By induction, this holds for all k.
- Since M halts, in the final state s_m , $L_{i_m} = L_n$ the halt instruction, so $v_{\mathcal{I}}(\exists z'_1 z_2 p_n(z'_1, z_2)) = T$ and $v_{\mathcal{I}}(S_M) = T$.
- Since \mathcal{I} was arbitrary, S_M is valid

TRM halts \leftarrow **A**_{TRM} **is valid**

- Suppose that S_M is valid, and consider an interpretation \mathcal{I} s.t.
 - $\mathcal{I} = (\mathcal{N}, \{P_0, ..., P_n\}, \{succ\}, \{0\})$ where
 - $(x,y) \in P_i$ iff (L_i,x,y) is reached by the register machine M when started in $(L_0,0,0)$
- We will show that the antecedent of S_M is true in \mathcal{I} so that the conclusion of S_M is also true which means M reaches the halt instruction
 - The initial state is $(L_0,0,0)$ so $(0,0) \in P_0$ and $v_{\mathcal{I}}(p_0(0,0)) = T$
- We will show that if the computation has reached L_i , then $v_{\mathcal{I}}(S_i)=T$.
 - Assume as an inductive hypothesis that if the computation has reached L_i, it has done so in a computation of length-1 in state $s_{k-1}=(L_i,x_i,y_i)$, so $(x_i,y_i)\in P_i$.
 - The proof is by cases on the instruction L_i
 - For $L_i = x := x+1$, the computation can reach the state $s_k = (L_{i_k}, succ(x_i), y_i) = (L_{i_{k-1}+1}, succ(x_i), y_i)$, so $v_{\mathcal{I}}(S_i) = T$
 - For $L_i = if x=0$ then goto L_j else $x := x 1, ... so v_{\mathcal{I}}(S_i) = T$
- Since S_M is assumed valid, $v_{\mathcal{I}}(\exists z_1 z_2 p_n(z_1, z_2)) = T$ and $v_{\mathcal{I}}(p_n(m_1, m_2)) = T$ for some natural numbers m_1, m_2 . Thus M halts and computes $m_2 = f(0)$

Solvable cases

Church's theorem holds even if the formulas contain only binary predicate symbols, one constant and one unary function symbol.

This follows from the structure of S_M in the proof

- Solvable cases of the decision problem
 - Thm 5.44 There is a decision procedure for validity of the class of pure formulas in Prenex CNF whose prefixes are of one of the following forms (where $m,n \ge 0$)
 - $\forall x_1...x_n \exists y_1...y_m$ (Class $\forall^*\exists^*$)
 - $\forall x_1...x_n \exists y \forall z_1,...z_m \text{ (Class } \forall^* \exists \forall^* \text{)}$
 - $\forall x_1...x_n \exists y_1 \exists y_2 \forall z_1...z_m$ (Class $\forall^* \exists \exists \forall^*$)
 - Def 7.8 A formula is in prenex conjuntive normal form (PCNF) iff it is of the form:
 - Q₁x₁...Q_nx_n M where the Q_i are quantifiers and M is a quntifier-free formula in CNF. The sequence Q₁x₁...Q_nx_n is called the prefix and M is called the matrix
 - Thm 5.46 There is a decision procedure for satisfiability of PCNF formulas A if the matrix of A satisfies the following
 - All atomic formulas are monadic, that is, all predicate letters are unary

