Predicate Calculus
- Undecidability of predicate calculus

Moonzoo Kim
CS Division of EECS Depit.
KAIST

moonzoo@ecs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

msr Intro. to Logic
CS402 Fall 2007

Undecidable problems

Can you tell whether or not the It would be remarkable
following program halts? Indeed If we could make

/[* Fermat's last theorem: for n > 2, there an algorithm that could

exists no positive integers x,y,z s.t. X" + examine any program P
yn=2z"% and tell whether P
mamg{ | | would halt.
Nat r;"(t;:f}, oy In other words, to decide
scant(%d".&n), whether a given program
total=3; - halts or not is, at least, as
while(1) {/* loop invariant:total= x+y+z*/ hard as proving the
for(x=1; x<= total-2; x++) { Fermat’s last theorem
for(y=1; y <= total-x-1; y++) { which took 300 years
z= total - X -y; We know that no such
if(xn + yn == z")) halt; algorithm exists —
J Halting problem is
} undecidable
total++;}}

m Intro. to Logic
. CS402 Fall 2007

Transform of the Halting problem (1/2)

It is undecidable to check whether a Turing machine (TM) will halt if
started on a blank tape (halting problem)

To prove the undecidability of predicate logic, we give an algorithm
which produces a formula A+, in the predicate calculus for every
Turing machine, s.t. A, Is valid iff a Turing machine halts

= Note that we do not make a Turing machine M for every predicate formula,
since it is enough to show that checking some predicate formulas is

undecidable
If we have such an algorithm, it is clear that validity check of predicate
formula is at least as hard as halting problem (i.e., undecideble)

A Turing | Algorithm to ™ A predicate
machine transform formula Aqy,

TM halts < A, is valid

m Intro. to Logic
. CS402 Fall 2007

Transform of the Halting problem (2/2)

To simplify the proof of the transformation algorithm, we
work with two-register machines (TRM) rather than
directly with Turing machine

= I.e., we will show there exists such Ay, for a two-register machine

Thm 5.42 Given a Turing machine that computes a
function f, a two-register machine can be constructed to
compute the same function f

A Turing A two register - Algorithm to ™ A predeicate
machine —> machine transform formula Atgy

Thm 5.42 -
TM halts + TRM halts TRM halts <> Az Is valid

m Intro. to Logic 4
— . CS402 Fall 2007

A two-register machine M

Def 5.41 A two-register machine M consists of two registers x and y which
can hold natural numbers, and a program P = (L,...,L,) which is a list of
Instructions. L, is the instruction halt, and for O<I <n, L is one of:

= X=X+l

m yi=y+l

= if x =0 then goto Ljelsex::x—l,ogj <n

= ify=0thengotolLjelsey:=y-1,0<j<n
An execution sequence of M is a sequence of states s, = (Lik,x,y), where Lik
IS the current instruction at s,, and X,y are the contents of x and y.
S+, IS obtained from s, by executing L; .
The initial state s, = (Lio’ m,0) = (L, m,0) for some m.
If for some k, s, = (L,,X,y), the computation of M has halted and M has
computed y = f(m)

m Intro. to Logic 5

CS402 Fall 2007

Examples

[* L1 is executed m times and then this program halts*/
L,:if x=0 then goto L, else x:=x-1

L,:if y=0 then goto L, else y:=y-1

L,:halt

Execution where
x's initial value=2

I* L, is executed infinitely, i.e., this program never halts */
Lox:i=x+1

L,:if y=0 then goto L, else y:=y-1
Execution where L_-halt

y - - 2-
x's initial value=0

msr Intro. to Logic 6
CS402 Fall 2007

Validity in the predicate calculus

Thm 5.43 (Church) Validity in the predicate calculus is

undecidable
Caution: the proof of Thm 5.43 in the textbook has several flaws...

For every two-register machine M, we construct a formula S,
s.t. S, is valid iff M terminates when started in the state (L,,0,0):
Sm = (A=0.n-1)Si A Po(0,0)) — 32,2, py(21,2,)

Intuitive meaning of p, is as follows
vAp;(m’,m™)) = T iff there exists some state s,=(L;,m’,m")

S, is defined by cases of the [L 5i
instruction L. X :=x+1 VxVy(pi(x,y) = pi1(s(x), y))
' y:=y+1 VxVy(pi(x. y) = pir1 (x, s0)))
i:_t x=20
then goto Lj V x(pi(a, x) = pi(a, x)) A
else x = x - 1| VxVy(pi(s(x),y) = pi1(x.¥)))
ify=0
. then goto Lj Vx(pi(x, @) = pi(x, a)) A '
KAIST <752 Fair 2007 else y :=y - 1|VYxVy@i(xs0)) = pi1(xy)

Example of S,

[* y=x+1 for x <= 1* */

L,:if x=0 then goto L, else x=x-1
L,iy:==y+l

L,:if x=0 then goto L, else x=x-1
Lyy:=y+l

L,:halt

Su= (po(0.0) A
(VX(Po(0,X)—P4(0,X)) A VXy(po(S(X),¥)—P1(X,¥)))) A

Vxy (p1(X.y)—po(X,S(y)) A
(¥X(p2(0,X)—p4(0,x)) A Vxy(p,(S(X).y)—P3(X.y)))) A

VXy(Ps(X,Y)— P4(X,S(Y)))
R

32,7, Py(21,2,)

msr Intro. to Logic
CS402 Fall 2007

Intuitive meaning of S;:

Given a two-register machine M,
execution of M (A_y -1 S; A Py(0,0))
reaches (—)
the halt instruction (3 z,z, p,(2,,2,))

TRM halts — Agy IS valid (1/2)

Suppose that the execution s,,...s,, of M halts and let Z be
an arbitrary interpretation for S,,. If v(S;) = F (for 0<i<n) or
VAPo(0,0))=F, then trivially v, (Sy) =T
Thus, we assume that (A;=o_n.1)S; A Po(0,0)) Is true
= since we need only consider interpretations that satisfy the
antecedent of S,
We show by induction on k that v,(3z,7, p; (21.25)) = T

" P IS the predicate associated with the label L, In state s,
Mind the incorrect notation in the textbook where L, and p, is used
Instead of L; and p;
» For k=0, v/(3z,z, p, (2,,2,)) = vA3Z,2, py(2,,Z,)) = T since
V(Po(0,0))=T from t?1e assumption

induction on k (i.e., progress of execution)

msr Intro. to Logic @ 9

CS402 Fall 2007

TRM halts — Agy IS valid (2/2)

For k >0, the result follows by induction by cases according to the
instruction at Li .

Forx=x+latl; :
VA(¥XY (P, (%.Y) = Py a(S(x).y)))= T by the assumption
vA3z,2, pik_l(zl,zz)) =T by the inductive hypothesis
From the above two facts, v (32,2, p; ,+1(5(21).22)) = T

v{(32,Z; Py, ,+1(8(21).25)) = v£(32,2; B, (S(21).2,)) = T since p; ... = P;,
We can conclude v(3z',z, pik(z’l,zz)) =T since Ix A(f(x)) — IX'A(X).
By induction, this holds for all k.

For if x=0 then goto L, else x=x-1 at L; _:

By induction, this holds for all k.

Since M halts, in the final state s, L; =L, the halt instruction, so
V32,2, p.(2'1,2,) = T and v(S,,) = T.
Since Z was arbitrary, S,, is valid

msr Intro. to Logic 10

CS402 Fall 2007

TRM halts < A.x), IS valid

Suppose that S,, is valid, and consider an interpretation Z s.t.
n I =N, {Py-....P.}, {succ}, {0}) where
(x,y) € P;iff (Lj,x,y) is reached by the register machine M when started in (L,,0,0)

We will show that the antecedent of S, Is true In Z so
that the conclusion of Sy, is also true which means M reaches the halt
Instruction
= The initial state is (L,,0,0) so (0,0) € Pyand v(p,(0,0)) =T
We will show that if the computation has reached L;, then v(S,)=T.
= Assume as an inductive hypothesis that if the computation has reached L, it
has done so in a computation of length-1 in state s,_,=(L;,X;,y;), SO (X,,y;)€P..
= The proof is by cases on the instruction L.
For L; = x:= x+1, the computation can reach the state s, = (Lik, succ(xy), v, = (L
succ(x;),y;), SO VLS, =T
For L; = if x=0 then goto L; else x :=Xx -1, ...s0 V/(S) =T
Since S,, is assumed valid, v/(3z,z, p,(z,,2,))=T and v/p,(m,,m,))=T for
some natural numbers m;, m,. Thus M halts and computes m, = f(0)

-2 +1

msr Intro. to Logic 11
CS402 Fall 2007

Solvable cases

Church’s theorem holds even if the formulas contain only binary
predicate symbols, one constant and one unary function symbol.

This follows from the structure of S, in the proof
Solvable cases of the decision problem

Thm 5.44 There is a decision procedure for validity of the class of pure

formulas in Prenex CNF whose prefixes are of one of the following forms
(where m,n > 0)

VXq... X, 3Yq...Yy (Class V*3*)
VXl...Xn Jy vz,,...z,, (Class v*3v*)
VXq...X, Y13y, VZ4...2,, (Class V*33v*)

Def 7.8 A formula is in prenex conjuntive normal form (PCNF) iff it is
of the form'

Q,X;. M where the Q, are quantifiers and M is a quntifier-free
formula in QZNF The sequence Q,X;...Q, X, Is called the prefix and M is
called the matrix

Thm 5.46 There is a decision procedure for satisfiability of PCNF
formulas A if the matrix of A satisfies the following

All atomic formulas are monadic, that is, all predicate letters are unary

msr Intro. to Logic 12

CS402 Fall 2007

