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UndecidableUndecidable problemsproblems
It would be remarkable It would be remarkable 
indeed if we could make indeed if we could make 
an algorithman algorithm that could that could 
examine examine anyany program Pprogram P
and tell whether P and tell whether P 
would would halthalt..

In other words, to decide In other words, to decide 
whether a given program whether a given program 
halts or not is, at least, halts or not is, at least, as as 
hard ashard as proving the proving the 
FermatFermat’’s last theorem s last theorem 
which took 300 yearswhich took 300 years

We know that We know that nono such such 
algorithm exists algorithm exists ––

Halting problemHalting problem is is 
undecidableundecidable

Can you tell whether or not the Can you tell whether or not the 
following program halts? following program halts? 
/* Fermat/* Fermat’’s last theorem: for n > 2, there s last theorem: for n > 2, there 

exists no positive integers exists no positive integers x,y,zx,y,z s.ts.t. . xxnn + + 
yynn = = zznn */*/

main() {main() {
NatNat n, total, x, y, z;n, total, x, y, z;
scanf(scanf(‘‘%d%d””,&n,&n););
total=3;total=3;
while(1) {while(1) {/* loop /* loop invariant:totalinvariant:total= = x+y+zx+y+z*/*/

for(xfor(x=1; x<= total=1; x<= total--2; x++) {2; x++) {
for(yfor(y=1; y <= total=1; y <= total--xx--1; y++) {1; y++) {

z= total z= total -- x x --y;y;
if(xif(xnn + + yynn == == zznn)) )) halthalt; ; 

}}
}}
total++;total++;}}}}
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Transform of the Halting problem (1/2)Transform of the Halting problem (1/2)

It is It is undecidableundecidable to check whether a Turing machine (TM) will halt if to check whether a Turing machine (TM) will halt if 
started on a blank tape (halting problem)started on a blank tape (halting problem)
To prove the To prove the undecidabilityundecidability of predicate logic, we give of predicate logic, we give an algorithman algorithm
which produces which produces a formula Aa formula ATMTM in the predicate calculus for every in the predicate calculus for every 
Turing machineTuring machine, , s.ts.t. A. ATMTM is valid is valid iffiff a Turing machine halts  a Turing machine halts  

Note that we do Note that we do notnot make a Turing machine M for every predicate formula, make a Turing machine M for every predicate formula, 
since it is enough to show that checking since it is enough to show that checking somesome predicate formulas is predicate formulas is 
undecidableundecidable

If we have such an algorithm, it is clear that validity check ofIf we have such an algorithm, it is clear that validity check of predicate predicate 
formula is at least as hard as halting problem (i.e., formula is at least as hard as halting problem (i.e., undecidebleundecideble))

A Turing 
machine

A predicate 
formula ATM

TM halts ↔ ATM is valid

Algorithm to 
transform
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Transform of the Halting problem (2/2)Transform of the Halting problem (2/2)

To simplify the proof ofTo simplify the proof of the transformation algorithmthe transformation algorithm, we , we 
work with twowork with two--register machines (TRM) rather than register machines (TRM) rather than 
directly with Turing machinedirectly with Turing machine

i.e., we will show there exists such Ai.e., we will show there exists such ATRMTRM for a twofor a two--register machineregister machine
ThmThm 5.42 Given a Turing machine that computes a 5.42 Given a Turing machine that computes a 
function f, a twofunction f, a two--register machine can be constructed to register machine can be constructed to 
compute the same function fcompute the same function f

A two register
machine

A predeicate
formula ATRM

TRM halts ↔ ATRM is valid

Algorithm to 
transform

A Turing 
machine

Thm 5.42
TM halts ↔ TRM halts
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A twoA two--register machine Mregister machine M
Def 5.41 A Def 5.41 A twotwo--register machineregister machine M consists of two registers x and y which M consists of two registers x and y which 
can hold can hold natural numbersnatural numbers, and a program P = (L, and a program P = (L00,,……,,LLnn) which is a list of ) which is a list of 
instructions.  instructions.  LLnn is the instruction is the instruction halthalt, and for 0, and for 0≤≤I < I < nn, L, L

ii
is one of:is one of:

x:= x+1 x:= x+1 
y:= y+1 y:= y+1 
if x = 0 then if x = 0 then gotogoto LLjj else x := x else x := x –– 1, 0 1, 0 ≤≤ j j ≤≤ nn
if y = 0 then if y = 0 then gotogoto LLjj else y := y else y := y –– 1, 0 1, 0 ≤≤ j j ≤≤ nn

An An executionexecution sequence of M is a sequence of sequence of M is a sequence of states states sskk = (= (LLiikk
,x,y,x,y), where ), where LLiikk

is the current instruction at is the current instruction at sskk, and , and x,yx,y are the contents of x and y.  are the contents of x and y.  
ssk+1k+1 is obtained from is obtained from sskk by executing by executing LLiikk

.  .  
The initial state sThe initial state s00 = (L= (Lii00

, m,0) = (L, m,0) = (L00, m,0) for some m.  , m,0) for some m.  
If for some k, If for some k, sskk = (= (LLnn,x,y,x,y), the computation of M has halted and M has ), the computation of M has halted and M has 
computed y = computed y = f(mf(m))
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ExamplesExamples
/* L1 is executed m times and then this program /* L1 is executed m times and then this program haltshalts*/*/
LL00:if x=0 then :if x=0 then gotogoto LL22 else x:=xelse x:=x--11
LL11:if y=0 then :if y=0 then gotogoto LL00 else y:=yelse y:=y--11
LL22:halt:halt

s0 
(L0,2,0)

s1 
(L1,1,0)

s2 
(L0,1,0)

s3 
(L1,0,0)

s4 
(L0,0,0)

s5 
(L2,0,0)

Execution where 
x’s initial value=2

/* L/* L00 is executed infinitely, i.e., this program is executed infinitely, i.e., this program nevernever halts */halts */
LL00:x := x + 1:x := x + 1
LL11:if y=0 then :if y=0 then gotogoto LL00 else y:=yelse y:=y--11
LL22:halt:halt

s0 
(L0,0,0)

s1 
(L1,1,0)

s2 
(L0,1,0)

s3 
(L1,2,0)

s4 
(L0,2,0)

Execution where 
x’s initial value=0

(note that Li0
= L0, Li1

= L1, Li2
= L0, , Li3

= L1, etc)
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Validity in the predicate calculus Validity in the predicate calculus 
ThmThm 5.43 (Church) Validity in the predicate calculus is 5.43 (Church) Validity in the predicate calculus is 
undecidableundecidable

Caution: the proof of Caution: the proof of ThmThm 5.43 in the textbook has several flaws5.43 in the textbook has several flaws……

For every twoFor every two--register machine M, we construct a formula Sregister machine M, we construct a formula SMM
s.ts.t. S. SMM is valid is valid iffiff M terminates when started in the state (LM terminates when started in the state (L00,0,0):,0,0):

SSMM = (= (ÆÆ(i(i=0..n=0..n--1)1)SSii ÆÆ pp00(0,0)) (0,0)) →→ ∃∃ zz11zz22 ppnn(z(z11,z,z22))
Intuitive meaning of pIntuitive meaning of pii is as followsis as follows

vvII(p(pii(m(m’’,m,m””)) = T )) = T iffiff there exists some state there exists some state sskk=(=(LLii,m,m’’,m,m””))

SSii is defined by cases of the is defined by cases of the 
instruction Linstruction Lii
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Example of SExample of SMM

/* y=x+1 for x <= 1* *//* y=x+1 for x <= 1* */
LL00:if x=0 then :if x=0 then gotogoto LL44 else x=xelse x=x--11
LL11:y:=y+1:y:=y+1
LL22:if x=0 then :if x=0 then gotogoto LL44 else x=xelse x=x--11
LL33:y:=y+1:y:=y+1
LL44:halt:halt

SSMM= (= (pp00(0,0) (0,0) ÆÆ
((∀∀x(px(p00(0,x)(0,x)→→pp44(0,x)) (0,x)) ÆÆ ∀∀xy(pxy(p00(s(x),y)(s(x),y)→→pp11(x,y)))) (x,y)))) ÆÆ
∀∀xy (pxy (p11(x,y)(x,y)→→pp22(x,s(y)) (x,s(y)) ÆÆ
((∀∀x(px(p22(0,x)(0,x)→→pp44(0,x)) (0,x)) ÆÆ ∀∀xy(pxy(p22(s(x),y)(s(x),y)→→pp33(x,y)))) (x,y)))) ÆÆ
∀∀xy(pxy(p33(x,y)(x,y)→→ pp44(x,s(y)) ) (x,s(y)) ) 
→→
∃∃ zz11zz22 pp44(z(z11,z,z22))

Intuitive meaning of SIntuitive meaning of SMM::
Given a twoGiven a two--register machine M, register machine M, 

execution of M (execution of M (ÆÆii=0..n=0..n--1 1 SSii ÆÆ pp00(0,0)) (0,0)) 
reaches (reaches (→→) ) 
the the halthalt instruction (instruction (∃∃ zz11zz22 ppnn(z(z11,z,z22))))
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TRM halts TRM halts →→ AATRMTRM is valid (1/2)is valid (1/2)
Suppose that the execution sSuppose that the execution s00,,……ssmm of M of M haltshalts and let and let II be be 
an arbitrary interpretation for San arbitrary interpretation for SMM.  If .  If vvII(S(Sii) = F (for  0) = F (for  0≤≤i<n) or i<n) or 
vvII(p(p00(0,0))= F, then trivially (0,0))= F, then trivially vvII (S(SMM) = T) = T
Thus, we Thus, we assumeassume that (that (ÆÆ(i(i=0..n=0..n--1)1)SSii ÆÆ pp00(0,0)) is (0,0)) is truetrue

since we need only consider interpretations that satisfy the since we need only consider interpretations that satisfy the 
antecedentantecedent of Sof SMM

We show by induction on We show by induction on k k that vthat vII((∃∃zz11zz22 ppiikk
(z(z11,z,z22)) = T )) = T 

ppiikk
is the predicate associated with the label is the predicate associated with the label LLiikk

in state in state sskk
Mind the incorrect notation in the textbook where Mind the incorrect notation in the textbook where LLkk and and ppkk is used is used 
instead of instead of LLiikk

and and ppiikk
For For k=0k=0, v, vII((∃∃zz11zz22 ppii00

(z(z11,z,z22)) = v)) = vII((∃∃zz11zz22 pp00(z(z11,z,z22)) = T since )) = T since 
vvII(p(p00(0,0))=T from the assumption(0,0))=T from the assumption

s0 s1 sk-1 sk sm

induction on k (i.e., progress of execution) 
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TRM halts TRM halts →→ AATRMTRM is valid (2/2)is valid (2/2)
For For kk >0>0, the result follows by induction by , the result follows by induction by casescases according to the according to the 
instruction at Linstruction at Liikk--11

For For x:= x+1 x:= x+1 at Lat Liikk--11
: : 

vvII((∀∀xy (pxy (piikk--11
(x,y) (x,y) →→ ppiikk--11+1+1(s(x),y)))= T by the (s(x),y)))= T by the assumptionassumption

vvII((∃∃zz11zz22 ppiikk--11
(z(z11,z,z22)) = T by the )) = T by the inductive hypothesisinductive hypothesis

From the above two facts,  vFrom the above two facts,  vII((∃∃zz11zz22 ppiikk--11+1+1(s(z(s(z11),z),z22)) = T)) = T
vvII((∃∃zz11zz22 ppiikk--11+1+1(s(z(s(z11),z),z22)) = v)) = vII((∃∃zz11zz22 ppiikk

(s(z(s(z11),z),z22)) = T since p)) = T since piikk--1+11+1
= = ppiikk

We can conclude vWe can conclude vII((∃∃zz’’11zz22 ppiikk
(z(z’’11,z,z22)) = T since )) = T since ∃∃x x A(f(xA(f(x)) )) →→ ∃∃xx’’A(xA(x’’).  ).  

By induction, this holds for all k.By induction, this holds for all k.
For For if x=0 then if x=0 then gotogoto LLjj else x=xelse x=x--1 1 at Lat Liikk--11

: : 
……
By induction, this holds for all k.By induction, this holds for all k.

Since M halts, in the final state Since M halts, in the final state ssmm, L, Liimm
= = LLnn the halt instruction, so the halt instruction, so 

vvII((∃∃zz’’11zz22 ppnn(z(z’’11,z,z22)) = T and )) = T and vvII(S(SMM) = T.  ) = T.  
Since Since II was arbitrary, was arbitrary, SSMM is validis valid
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TRM halts TRM halts ←← AATRMTRM is valid is valid 
Suppose that SSuppose that SMM is valid, and consider an interpretation is valid, and consider an interpretation II s.ts.t..

I I =(=(NN, {P, {P00,,……,,PPnn}, {}, {succsucc}, {0}) where}, {0}) where
((x,yx,y) ) ∈∈ PPii iffiff ((LLii,x,y,x,y) is reached) is reached by the register machine M when started in (Lby the register machine M when started in (L00,0,0),0,0)

We will show that the We will show that the antecedentantecedent of Sof SMM is true in is true in II so so 
that the that the conclusionconclusion of Sof SM M is also true which means is also true which means M reaches the halt M reaches the halt 
instructioninstruction

The initial state is (LThe initial state is (L00,0,0) so (0,0) ,0,0) so (0,0) ∈∈ PP0 0 and vand vII(p(p00(0,0)) = T(0,0)) = T
We will show that if the computation has reached LWe will show that if the computation has reached Lii, then , then vvII(S(Sii)=T. )=T. 

Assume as an inductive hypothesis that if the computation has reAssume as an inductive hypothesis that if the computation has reached Lached Lii, it , it 
has done so in a computation of lengthhas done so in a computation of length––1 in state s1 in state skk--11=(=(LLii,x,xii,y,yii), so (x), so (xii,y,yii))∈∈PPii..
The proof is by cases on the instruction LThe proof is by cases on the instruction Lii

For LFor Lii = = x:= x+1x:= x+1, the computation can , the computation can reachreach the state the state sskk = (= (LLiikk
, , succ(xsucc(xii), ), yyii) = () = (LLiikk--11+1+1, , 

succ(xsucc(xii),y),yii), so ), so vvII(S(Sii) = T) = T
For LFor Lii = = if x=0 then if x=0 then gotogoto LLjj else x := x else x := x --11, , ……so so vvII(S(Sii) = T) = T

Since SSince SMM is assumed valid, vis assumed valid, vII((∃∃zz11zz22 ppnn(z(z11,z,z22))=T and v))=T and vII(p(pnn(m(m11,m,m22))=T for ))=T for 
some natural numbers msome natural numbers m11, m, m22.  Thus M halts and computes m.  Thus M halts and computes m22 = f(0)= f(0)



Intro. to Logic 
CS402 Fall 2007  

12

Solvable casesSolvable cases
ChurchChurch’’s theorem holds even if the formulas contain only s theorem holds even if the formulas contain only binarybinary
predicate symbols, predicate symbols, oneone constant and constant and oneone unary function symbol.unary function symbol.

This follows from the structure of SThis follows from the structure of SMM in the proofin the proof
Solvable cases of the decision problemSolvable cases of the decision problem

ThmThm 5.44 There is a decision procedure for validity of the class of5.44 There is a decision procedure for validity of the class of pure pure 
formulas in formulas in PrenexPrenex CNF whose prefixes are of one of the following forms CNF whose prefixes are of one of the following forms 
(where (where m,nm,n ≥≥ 0)0)

∀∀xx11……xxnn ∃∃yy11……yymm (Class (Class ∀∀**∃∃*)*)
∀∀xx11……xxnn ∃∃y y ∀∀zz11,,……zzmm (Class (Class ∀∀**∃∀∃∀*)*)
∀∀xx11……xxnn ∃∃yy11∃∃yy22 ∀∀zz11……zzmm (Class (Class ∀∀**∃∃∀∃∃∀*)*)

Def 7.8 A formula is in Def 7.8 A formula is in prenexprenex conjuntiveconjuntive normal formnormal form (PCNF) (PCNF) iffiff it is it is 
of the form:of the form:

QQ11xx11……QQnnxxnn M where the M where the QQii are quantifiers and M is a are quantifiers and M is a quntifierquntifier--free free 
formula in CNF.  The sequence Qformula in CNF.  The sequence Q11xx11……QQnnxxnn is called the prefix and M is is called the prefix and M is 
called the called the matrixmatrix

ThmThm 5.46 There is a decision procedure for 5.46 There is a decision procedure for satisfiabilitysatisfiability of PCNF of PCNF 
formulas A if the matrix of A satisfies the followingformulas A if the matrix of A satisfies the following

All atomic formulas are All atomic formulas are monadicmonadic, that is, all predicate letters are unary, that is, all predicate letters are unary


