
Intro. to Logic
CS402 Fall 2007

1

Propositional Calculus

- Semantics (2/3)
Moonzoo Kim

CS Division of EECS Dept.

KAIST

moonzoo@cs.kaist.ac.kr

http://pswlab.kaist.ac.kr/courses/cs402-07

Intro. to Logic
CS402 Fall 2007

2

Overview

 2.1 Boolean operators

 2.2 Propositional formulas

 2.3 Interpretations

 2.4 Logical equivalence and substitution

 2.5 Satisfiability, validity, and consequence

 2.6 Semantic tableaux

 2.7 Soundness and completeness

Logical equivalence

 Defn 2.13. Let A1,A22F. If º(A1) = º(A2) for all

interpretation, then A1 is logically equivalent to A2,

denoted A1 ≡ A2

 Example 2.14. Is p Ç q equivalent to q Ç p?

p q º(p Ç q) º(q Ç p)

T T T T

T F T T

F T T T

F F F F

Logical equivalence

 We can extend the result of example 2.14 from
atomic propositions to general formulas

 Theorem 2.15 Let A1 and A2 be any formulas. Then
A1 Ç A2 ≡ A2 Ç A1.

 Proof

 Let º be an arbitrary interpretation for A1 Ç A2.
Then, º is an interpretation for A2 Ç A1, too.

 Similarly, º is an interpretation for A1 and A2

 Therefore, º(A1Ç A2)=T iff º(A1) =T or º(A2) =T
iff º(A2Ç A1)=T

Logical equivalence

Definition 2.22

 A binary operator o is defined from a set of operators

{o1, … on} if and only if there is a logical equivalence

A1 o A2 ≡ A, where A is a formula constructed from

occurrences of A1 and A2 using the operator {o1, …, on}.

 Similarly, the unary operator : is defined from a set of

operators {o1, … on} iff : A1 ≡ A, where A is constructed

from occurrences of A1 and the operators in the set.

 Examples

 $ is defined from {!, Æ } because A $ B ≡ (A ! B) Æ (B ! A)

 ! is defined from {:, Ç } because A ! B ≡ :A Ç B

 Æ is defined from {:, Ç } because A Æ B ≡ :(:A Ç:B)
Intro. to Logic
CS402 Fall 2007

5

Object language v.s. metalanguage

 Note that ‘≡’ is not a binary operator used in

propositional logic (object language).

 ‘≡’ (metalanguage) is used to explain a relationship

between two formulas.

 Theorem 2.16

 A1 ≡ A2 if and only if A1 $ A2 is true in every interpretation

Logical substitution

 Logical equivalence justifies substitution of one formula

for another

 Defn 2.17 A is subformula of B if the formation tree for A

occurs as a subtree of the formation tree for B. A is

proper subformation of B if A is a subformation of B, but

A is not identical to B.

 Example 2.18 The formula (p ! q) $ (:p ! :q)

contains the following proper subformulas:

p ! q, : p ! : q, : p, : q, p and q

Logical substitution

 Def. 2.19

 If A is a subformula of B and A’ is any formula,

 then B’, the substitution of A’ for A in B, denoted B{A Ã A’}, is the

formula obtained by replacing all occurrences of the subtree for A in

B by the tree for A’.

 Theorem 2.21 Let A be a subformula of B and let A’ be a
formula such that A ≡ A’. Then B ≡ B{A Ã A’}

 One of the most important applications of substitution is

simplication

 Ex. p Æ (:p Ç q) ≡ (p Æ :p) Ç (p Æ q) ≡ false Ç (p Æ q) ≡ p Æ q

Satisfiability v.s. validity

 Definition 2.24

 A propositional formula A is satisfiable iff º(A)=T for some

interpretation º.

 A satisfying interpretation is called a model for A.

 A is valid, denoted ² A, iff º (A) = T for all interpretation º.

 A valid propositional formula is also called a tautology.

 Theorem 2.25

 A is valid iff :A is unsatisfiable.

 A is satisfiable iff :A is falsifiable.

Intro. to Logic
CS402 Fall 2007

9

Satisfiability v.s. validity

Definition 2.26

 Let V be a set of formulas. An algorithm is a decision

procedure for V if given an arbitrary formula A 2 F, it

terminates and return the answer ‘yes’ if A 2 V and the

answer ‘no’ if A  V

 By theorem 2.25, a decision procedure for satisfiability

can be used as a decision procedure for validity.

 Suppose V is a set of all satisfiable formulas

 To decide if A is valid, apply the decision procedure for
satisfiability to :A

 This decision procedure is called a refutation procedure

Intro. to Logic
CS402 Fall 2007

10

Satisfiability v.s. validity

 Example 2.27 Is (p ! q) ! (: q ! : p) valid?

Intro. to Logic
CS402 Fall 2007

11

p q p ! q : q ! : p (p ! q) ! (: q ! : p)

T T T T T

T F F F T

F T T T T

F F T T T

 Example 2.28 p \/ q is satisfiable but not valid

Logical consequence

 Definition 2.30 (extension of satisfiability from a

single formula to a set of formulas)

 A set of formulas U = {A1 , … An} is (simultaneously)
satisfiable iff there exists an interpretation º such that º

(A1) = … = º (An) = T.

 The satisfying interpretation is called a model of U.

 U is unsatisfiable iff for every interpretation º, there

exists an i such that º (Ai) = F.

Logical consequence

 Let U be a set of formulas and A a formula. If A is true in

every model of U, then A is a logical consequence of U.
 Notation: U ² A

 If U is empty, logical consequence is the same as validity

 Theoem 2.38
 U ² A iff ² A1Æ … Æ An ! A where U={A1 … An}

 Note Theorem 2.16

 A1 ≡ A2 if and only if A1 $ A2 is true in every interpretation

Theories
 Logical consequence is the central concept in the foundations

of mathematics

 Valid formulas such as p Ç q $ q Ç p are trivial and not

interesting

 Ex. Euclid assumed five formulas about geometry and deduced

an extensive set of logical consequences.

 Definition 2.41

 A set of formulas T is a theory if and only if it is closed under

logical consequence.

 T is closed under logical consequence if and only if for all formula A,
if T ² A then A 2 T.

 The elements of T are called theorems

 Let U be a set of formulas. T (U) = {A | U ² A} is called the

theory of U. The formulas of U are called axioms and the
theory T (U) is axiomatizable.

 Is T (U) theory?

Examples of theory

 U = { pÇ qÇ r, q!r, r!p}

 Interpretation v1, v3 and v4 are models
of U

 Which of the followings are true?
 U ² p

 U ² q!r

 U ² r Ç :q

 U ² p Æ :q

 Theory of U, i.e,T (U)
 U µ T (U)

 because for all formula A 2 U, A ² A

 p 2 T (U)
 because U ² p

 q!r 2 T (U)
 because U ² q!r

 p Æ (q!r) 2 T (U)
 because U ² p Æ (q!r)

 since U ² p and U ² q!r)

 …

p q r pÇ qÇ r q!r r!p

v1 T T T T T T

v2 T T F T F T

v3 T F T T T T

v4 T F F T T T

v5 F T T T T F

v6 F T F T F T

v7 F F T T T F

v8 F F F F T T

Ex. Theory of Euclidean geometry

 A set of 5 axioms U = {A1,A2,A3,A4,A5} such that

 A1:Any two points can be joined by a unique straight line.

 A2:Any straight line segment can be extended indefinitely in a
straight line.

 A3:Given any straight line segment, a circle can be drawn having
the segment as radius and one endpoint as center.

 A4:All right angles are congruent.

 A5:For every line l and for every point P that does not lie on l
there exists a unique line m through P that is parallel to l.

 Euclidean theory TEuclid= T (U) = { A | U ² A}

 I.e.,Teuclid is axiomatizable by the above 5 axioms

 Ex. one logical consequence of the axioms

 given a line segment AB, an equilateral triangle

exists that includes the segment as one of its
sides.

http://upload.wikimedia.org/wikipedia/commons/5/5e/Euclid-proof.jpg

Ex2. Model checking (formal verification)

 A file system M can be specified by the following 7 formulas (i.e., a file
system model M = { A1,A2,A3,A4,A5,A6,A7})
 A1:A file system object has one or no parent.

 sig FSObject { parent: lone Dir }

 A2:A directory has a set of file system objects

 sig Dir extends FSObject { contents: set FSObject }

 A3:A directory is the parent of its contents
 fact defineContents { all d: Dir, o: d.contents | o.parent = d }

 A4: A file in the file system is a file system object
 sig File extends FSObject {}

 A5: All file system objects are either files or directories
 fact fileDirPartition { File + Dir = FSObject }

 A6: There exists only one root
 one sig Root extends Dir { }{ no parent }

 A7: File system is connected
 fact fileSystemConnected { FSObject in Root.*contents }

 We can prove that this file system does not have a cyclic path
 A: No cyclic path exists

 assert acyclic { no d: Dir | d in d.^contents }

 M ² A (i.e., this file system M does not have cyclic path)

root

D1 D2

F1 F2 D11

F111

